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A B S T R A C T   

Background: Recent evidence links ambient air pollution to COVID-19 incidence, severity, and death, but few 
studies have analyzed individual-level mortality data with high quality exposure models. 
Methods: We sought to assess whether higher air pollution exposures led to greater risk of death during or after 
hospitalization in confirmed COVID-19 cases among patients who were members of the Kaiser Permanente 
Southern California (KPSC) healthcare system (N=21,415 between 06-01-2020 and 01-31-2022 of whom 99.85 
% were unvaccinated during the study period). 
We used 1 km resolution chemical transport models to estimate ambient concentrations of several common air 
pollutants, including ozone, nitrogen dioxide, and fine particle matter (PM2.5). We also derived estimates of 
pollutant exposures from ultra-fine particulate matter (PM0.1), PM chemical species, and PM sources. We 
employed Cox proportional hazards models to assess associations between air pollution exposures and death 
from COVID-19 among hospitalized patients. 
Findings: We found significant associations between COVID-19 death and several air pollution exposures, 
including: PM2.5 mass, PM0.1 mass, PM2.5 nitrates, PM2.5 elemental carbon, PM2.5 on-road diesel, and PM2.5 on- 
road gasoline. Based on the interquartile (IQR) exposure increment, effect sizes ranged from hazard ratios (HR) 
= 1.12 for PM2.5 mass and PM2.5 nitrate to HR ~ 1.06–1.07 for other species or source markers. Humidity and 
temperature in the month of diagnosis were also significant negative predictors of COVID-19 death and negative 
modifiers of the air pollution effects. 
Interpretation: Air pollution exposures and meteorology were associated the risk of COVID-19 death in a cohort of 
patients from Southern California. These findings have implications for prevention of death from COVID-19 and 
for future pandemics.   

1. Introduction 

The COVID-19 pandemic represents one of the largest threats to 
population health in more than a century. Currently, more than 624 
million people worldwide have been diagnosed with COVID-19, result-
ing in more than 6.5 million deaths (World Health Organization, 2022). 
Researchers have extensively investigated the etiology of COVID-19, yet 
considerable uncertainties remain on how risk factors may influence 

COVID-19 incidence, severity, and death. Recent evidence from the 
North America, Asia, and Europe implicates air pollution as a risk factor 
for COVID-19 incidence, prognosis, and death (Brandt et al., 2020; Li 
et al., 2020; Wu et al., 2020; Zhang et al., 2020; Zhu et al., 2020; Lippi 
et al., 2019; Coker et al., 2020; Wang et al., 2020; Travaglio et al., 2021; 
Yao et al., 2021; Huang et al., 2021; Chen et al., 2021; Berg et al., 2021; 
Zhou et al., 2021). 

Biologically plausible mechanisms suggest air pollution exposure 
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may render people more susceptible to contracting COVID-19, and once 
they have the infection, higher air pollution exposure may worsen their 
prognosis (Rebuli et al., 2021; Wang et al., 2020; De Angelis et al., 2021; 
Kifer et al., 2021; SanJuan-Reyes et al., 2021). Nitrogen dioxide (NO2), a 
marker for traffic-related air pollution (Zeldovich, 2015; Quiros et al., 
2013), likely increases the risk of lung infections by impairing the 
function of alveolar macrophages and epithelial cells in the lung (Neu-
pane et al., 2010). The findings from these epidemiological and toxi-
cological studies align with a large body of research linking air pollution 
to risk of respiratory viral and bacterial infection (Wang et al., 2020; 
Ciencewicki and Jaspers, 2007), respiratory chronic morbidities (e.g., 
asthma, chronic pulmonary disease, lung cancer) (Jerrett et al., 2008; 
Bai et al., 2018; Sydbom et al., 2001), hospitalizations (Neupane et al., 
2010), and mortality (Jerrett et al., 2005; Beelen et al., 2008; Bozack 
et al., 2021). 

In reviewing the growing literature on air pollution exposure and 
COVID-19 outcomes, we found only four other mortality studies have 
used individual level data with some levels of control for potential 
confounders (Chen et al., 2021; Bozack et al., 2021; Elliott et al., 2021; 
Nobile et al., 2022; Chen et al., 2022). These studies focused on the early 
phases of the pandemic, which may have led to lower statistical power 
due to a relatively small number of deaths. While some of the mortality 
studies used high-quality exposure estimates, none assessed source 
contributions or ultrafine particle concentrations. In addition, none of 
these studies examined interactions between air pollution and meteo-
rological variables such as temperature and humidity. Here we expand 
the evidence base with a large sample of individual data, a longer study 
period, exposure models capable of assessing particle species and sour-
ces, and meteorological variables. In this context, we addressed two 
research objectives. Firstly, we assessed whether higher air pollution 
exposures led to greater risk of death in confirmed COVID-19 cases 
among patients who were members of the Kaiser Permanente Southern 
California (KPSC) healthcare system. Secondly, we investigated whether 
meteorology variables influenced the risk of COVID-19 death or modi-
fied associations between air pollution and COVID-19 death. 

2. Materials and methods 

2.1. KPSC cohort and health data 

KPSC is a large integrated health care system with a racially/ethni-
cally and socioeconomically diverse membership of 4.7 million people, 
living across nine southern California counties. KPSC’s membership 
approximately represents the underlying population of the second 
largest urban region in the United States; further details of the KPSC 
membership are described elsewhere (Koebnick et al., 2012). KPSC’s 
Electronic Health Record (EHR) is an integrated data system that cap-
tures all aspects of patient care, including diagnoses, inpatient and 
outpatient encounters, pharmacy encounters, and laboratory tests. 

Clinical care changed rapidly during the first months of the 
pandemic. We therefore began our observation period on 06/01/2020 
when new standards of COVID care, such as lying patients in the prone 
position, had become more common. We identified patients with KPSC 
COVID-19 molecular diagnostic tests and diagnoses (ICD-10 codes: 
J12.89, J20.8, J22, J80, B34.2, B97.29, U07.1) from 06/01/2020 to 01/ 
30/2021. We include both diagnoses and COVID-19 tests because pa-
tients may have been tested outside of KPSC and received a diagnosis at 
KPSC without being re-tested. 

The study cohort is comprised of patients who were 18 years or older 
at the time of diagnoses or positive COVID-19 test. We limited our 
sample to members who had at least 1 year of membership before their 
COVID-19 diagnoses/test to reliably assess co-morbidities. We defined 
COVID-19 hospitalizations as hospitalizations occurring within 21 days 
of COVID-19 diagnoses or positive test (N = 316,224) (Nau et al., 2021). 
We used hospitalized patients from the cohort rather from all those who 
tested positive because testing could have occurred after possible 

contact with an infected person or after the onset of severe illness at the 
point of hospital admission. This would result in uncertainty about the 
time window at which the test could have occurred among different 
study patients that would introduce substantial errors in our follow up 
times, which would lead to biased results in the statistical models. 
Restricting to those hospitalized eliminated this potential problem, as no 
uncertainty existed in the time of hospitalization. After applying eligi-
bility and exclusion criteria, the analytic cohort consisted of 21,415. 
Deaths were included up to 90 days after the initial hospitalization (see 
Online Data Supplement [ODS] for further details on death ascertain-
ment). We excluded patients who lost membership during our 90-obser-
vation window and who were hospitalized for childbirth. This study was 
approved by the Kaiser Permanente Institutional Review Board. 

The KPSC EHR provides information on patient age and sex. Member 
race/ethnicity categories have been created using a validated algorithm 
that uses multiple data sources (Nau et al., 2021). 

Body mass index (BMI: kg/m2) has been found to be an important 
risk factor for COVID-19 mortality (Tartof et al., 2020). The most recent 
BMI available in the EHR was used to adjust for this potential 
confounder (Tartof et al., 2020). We cleaned BMI data using validated 
algorithms to delete biologically implausible values. 

Five broad comorbidity categories that have been used in prior 
COVID-19 research were created to identify co-morbidities that may 
increase a person’s risk of severe COVID-19 outcomes (Nau et al., 2021; 
Quan et al., 2005). We use Elixhauser disease categories to create 
COVID-19 relevant disease categories (see ODS for further details). 

Smoking status and the Exercise Vital Sign (EVS) data are collected 
during each KPSC in-person outpatient health care encounter. Smoking 
status was coded (ever or never) based on the information provided 
during the last encounter before the COVID-19 test/diagnoses reaching 
back up to four years. The EVS queries on usual exercise is coded in the 
EHR in minutes/week of moderate to vigorous exercise. All EVS infor-
mation for the past four years was identified for every patient. The 
median value of minutes of exercise per week was calculated and used in 
our analysis (Young et al., 2018; Zhou et al., 2021). 

We identified patients who were enrolled at KPSC via MediCal to 
identify patients with very low income. In sum, four individual-level 
confounders were considered: smoking status, BMI, Medicaid (low in-
come), and EVS. 

We queried vaccination status and found only 33 members of our 
cohort were vaccinated prior to hospitalization; thus about 99.85 % of 
the cohort was unvaccinated during the study period. 

We also followed common practice in analyses of EHR data and 
added predictors of community-level SES to help proxy individual SES 
and adjust for community level effects of social determinants of health 
(Krieger, 1992; Diez-Roux et al., 2001; Geronimus and Bound, 1998). 
Community-level predictors at the census block-group level were drawn 
from the American US Census Bureau, 2018; (Messer et al., 2006). They 
include a validated neighborhood deprivation index (NDI), a measure of 
crowding (the proportion of households with more than one occupant 
per home), and the proportion of workers aged 16 and older who 
commute to work via public transportation (Messer et al., 2006). 

GridMET are high-spatial resolution (~4-km) surface meteorological 
data covering the contiguous U.S. We acquired GridMET daily maximum 
temperature and daily maximum relative humidity for our entire study 
period through Google Earth Engine (https://developers.google.com/ea 
rth-engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET?hl = en). We 
aggregated the GridMET data to monthly means for the home address of 
every study participant up to the month where they were hospitalized 
with COVID-19. 

2.2. Exposure Assessment: Chemical transport model 

Exposure simulations were carried out across California using the 
source-oriented UC Davis-California Institute of Technology (UCD-CIT) 
3D reactive chemical transport model (CTM) (Venecek et al., 2019) .The 
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UCD/CIT model predicts the evolution of gas and particle phase pol-
lutants in the atmosphere in the presence of emissions, transport, 
deposition, chemical reaction, and phase change. The pressing timeline 
for the current study during an ongoing public health crisis necessitated 
leveraging past efforts that prepared and validated CTM inputs. We 
previously reported CTM exposure fields with 4 km resolution over 
California for the years 2000–2016 (Yu et al., 2019). The most recent 
year (i.e., 2016) of this time window was selected as the starting point to 
characterize chronic exposure in the current study. Meteorology and 
emissions inputs for the year 2016 were downscaled to improve spatial 
resolution to 1 km. Bias in the raw CTM output fields was removed using 

a constrained regression model based on source apportionment tags and 
the difference between predicted and measured concentrations. See ODS 
for further details on CTM methods. 

CTM predictions include a wide range of pollutants. For our study 
area, we estimated PM2.5 total mass, PM2.5 nitrates, PM2.5 organic car-
bon (OC), PM2.5 elemental carbon (EC), ultra-fine particle mass or PM0.1 
for particles with diameters of 100 nm or less, nitrogen dioxide (NO2), 
and ozone (O3). We also extracted source tracers for on-road diesel, on- 
road gasoline, and biomass burning. These exposure fields were assigned 
to the geocoded home address of the cohort members. Although the 
exposure fields were restricted to 2016, we accounted for population 

Table 1 
Descriptives of hospitalized patients, by outcome (overall, survived or died).   

Died within 90 days 

Characteristic Overall, N = 21,4151 0, N = 16,6001 1, N = 4,8151 

Age at diagnosis (years) 64 (52, 75) 61 (50, 72) 74 (64, 83) 
Race/ethnicity    
White 4,861 (23 %) 3,550 (21 %) 1,311 (27 %) 
Asian-Pacific Islander 2,281 (11 %) 1,801 (11 %) 480 (10.0 %) 
Black 1,851 (8.6 %) 1,444 (8.7 %) 407 (8.5 %) 
Hispanic 12,077 (56 %) 9,541 (57 %) 2,536 (53 %) 
Other/Multiple/Unknown 345 (1.6 %) 264 (1.6 %) 81 (1.7 %) 
Gender    
F 9,067 (42 %) 7,284 (44 %) 1,783 (37 %) 
M 12,348 (58 %) 9,316 (56 %) 3,032 (63 %) 
Smoking status    
Never Smoker 13,392 (63 %) 10,825 (66 %) 2,567 (54 %) 
Ever Smoker 7,738 (37 %) 5,542 (34 %) 2,196 (46 %) 
Unknown 285 233 52 
BMI 31 (27, 36) 31 (27, 36) 29 (25, 35) 
Unknown 608 502 106 
Medicaid    
N 18,722 (87 %) 14,596 (88 %) 4,126 (86 %) 
Y 2,693 (13 %) 2,004 (12 %) 689 (14 %) 
Exercise Vital Sign (median) 0 (0, 90) 0 (0, 100) 0 (0, 65) 
Unknown 748 625 123 
Percent housing units with greater than 1 occupants per room 0.09 (0.03, 0.18) 0.09 (0.03, 0.18) 0.08 (0.03, 0.18) 
Unknown 598 466 132 
NDI_ACS2013 0.42 (-0.28, 1.25) 0.43 (-0.27, 1.25) 0.40 (-0.30, 1.26) 
Unknown 6 5 1 
Percent workers age 16 + commute by public transportation 0.02 (0.00, 0.05) 0.02 (0.00, 0.05) 0.02 (0.00, 0.05) 
Unknown 599 465 134 
BMI category    
Normal weight 2,777 (13 %) 1,876 (12 %) 901 (19 %) 
Overweight 5,933 (29 %) 4,468 (28 %) 1,465 (31 %) 
ObeseClass1 5,669 (27 %) 4,543 (28 %) 1,126 (24 %) 
ObeseClass2or3 6,193 (30 %) 5,075 (32 %) 1,118 (24 %) 
Underweight 235 (1.1 %) 136 (0.8 %) 99 (2.1 %) 
Unknown 608 502 106 
Frailty (Lancet index) 5 (2, 12) 5 (2, 10) 9 (4, 18) 
Unknown 4,608 4,008 600 
Elixhauser comorbidities 3.0 (1.0, 5.0) 2.0 (1.0, 5.0) 5.0 (2.0, 7.0) 
Cardiovascular Disease 8,637 (41 %) 5,625 (35 %) 3,012 (63 %) 
Unknown 410 349 61 
Hypertension 12,369 (59 %) 8,738 (54 %) 3,631 (76 %) 
Unknown 410 349 61 
COPD 4,519 (22 %) 3,276 (20 %) 1,243 (26 %) 
Unknown 410 349 61 
Diabetes 9,524 (45 %) 6,887 (42 %) 2,637 (55 %) 
Unknown 410 349 61 
Other Elixhauser dx 13,627 (65 %) 9,878 (61 %) 3,749 (79 %) 
Unknown 410 349 61 
Skilled Nursing Facility flag 293 (1.4 %) 136 (0.8 %) 157 (3.3 %) 
County of residence    
Kern 543 (2.6 %) 435 (2.7 %) 108 (2.3 %) 
Los Angeles 10,580 (51 %) 8,226 (51 %) 2,354 (50 %) 
Orange 2,142 (10 %) 1,744 (11 %) 398 (8.5 %) 
Riverside 2,372 (11 %) 1,755 (11 %) 617 (13 %) 
San Bernardino 2,890 (14 %) 2,131 (13 %) 759 (16 %) 
San Diego 1,874 (9.0 %) 1,512 (9.4 %) 362 (7.7 %) 
Ventura 423 (2.0 %) 338 (2.1 %) 85 (1.8 %) 
Unknown 591 459 132 
Days of follow-up 7 (4, 16) 6 (4, 11) 17 (10, 27) 

1Median (IQR); n (%) 1. 0 = not dead after 90 days; 1 = dead within 90 days 
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mobility by assigning exposures to each address for any member of the 
cohort who moved in the past five years. We then did time-weighted 
averaging of the exposures to account for mobility effects for those 
who had moved in the preceding 5 years. 

2.3. Statistical models 

We used Cox proportional hazards models with adjustment for po-
tential individual and neighborhood confounders. All models were 
stratified at baseline for age, sex, and race-ethnicity. Age was included in 
5-year intervals. We controlled for potential non-independence at the 
census-tract level with a sandwich estimator, which allowed for robust 
variance estimation. All analyses were run in the R package version 4.0.4 
(2021–02-15). 

The Cox model estimates the instantaneous hazard of dying during 
the follow up as: 

hij(t) = h0s(t) exp(βPij + δXij + ζZij + ϕWitj) (1)  

where, 
hij(t): hazard function for the ith subject in jth census tract 

neighborhood; 
h0s(t): the baseline hazard function for stratum s (i.e., age, race and 

sex); 
Pij: air pollution exposure metric of interest (e.g., PM2.5) standard-

ized to the interquartile range for individual i in census tract j; 
Xij: individual risk factors (i.e., smoking, exercise, BMI, poverty) for 

individual i in census tract j; 
Zij: neighborhood risk factors (i.e., deprivation index, proportion 

taking public transit, crowding) for individual i in census tract j; and. 
Witj: weather conditions (i.e., maximum temperature and humidity) 

for individual i at the tth month of admission in census tract j. 
Equation (1) above represents the general form of the model. Con-

founders, however, were selected for each pollutant with the following 
procedure: We ran unadjusted models stratified by age, race/ethnicity, 
and sex for each pollutant exposures. We tested every possible 
confounder (BMI, smoking, etc) one at a time with each pollution esti-
mate. We included any confounder that changed the unadjusted pollution 
coefficient by at least 10 %. We subsequently ran the adjusted models for 
all pollution exposures that included variables meeting the 10 % crite-
rion. Exposures were standardized for comparison across pollutants by 
dividing each by their respective interquartile ranges (IQR). 

For pollutants that had statistically significant effects at conventional 
levels after adjustment (i.e., p < 0.05), we then conducted stratified 

analyses on variables that could modify the association between COVID- 
19 death and air pollution, including race/ethnicity, sex, age, and 
number of chronic diseases categories. 

We also tested for interaction by running models with a multiplica-
tive term with one pollutant and one meteorological variable. When 
significant interactions were present based on the p-value of the inter-
action term, we stratified the HR estimates for the pollutant by tertile of 
the meteorological variable. 

We examined two-pollutant models (i.e., O3 and NO2, NO2 and PM2.5 
mass, and O3 and PM2.5 mass). We also explored the concen-
tration–response (CR) functions for each pollutant that had a significant 
individual effect in a fully adjusted model. The CR functions were esti-
mated via the pspline function in the gam library in R. 

We also investigated the potential contribution of different SARS- 
COV2 variants by performing sensitivity analyses that were restricted 
to periods when the Delta variant was dominant. The California 
Department of Public Health has done retrospective genomic analyses 
on specimens from all stages of the pandemic (https://covid19.ca.gov/ 
variants/). In the early part of our study, five different variants were 
circulating. For much of the study period, the Delta variant was domi-
nant. In the last month or so of our study, the Omicron variant became 
dominant. It is likely, however, that many of the hospitalizations that 
would have occurred in the last weeks to month of our study would have 
resulted from Delta due to latency in the infection time and the time 
required for a person to become ill enough to be hospitalized. 

Our sensitivity analyses focused on the period of 06/19/2020 to 01/ 
03/2021. The first date corresponds to the initial timepoint at which the 
Delta variant accounted for more than 50 % of the cases. We then 
identified the point at which Delta lost dominance (i.e., greater than 50 
%) as 12/19/2020. We added a two week buffer to this end date on the 
assumption that many of the hospitalizations and subsequent deaths 
from Delta would have taken at least two weeks to occur. This yields a 
conservative estimate for the end of the sensitivity analysis to be 01/03/ 
2021. We reran our analyses for PM2.5 during this restricted time period 
so that results could be compared to the main analysis. 

2.4. Role of the funder 

The California Air Resources Board (CARB) funded most of this 
research and oversaw peer review of an unpublished final report doc-
umenting the methods and results, which was required by the terms of 
the funded contract. CARB staff also offered comments intended to 
improve the clarity of presentation in the final report. The Health Effects 
Institute also funded some of the study, but had no active role in the 

Fig. 1. Hospital admission dates, among patients in study.  
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research. Neither funder had any role in the decision to publish this 
manuscript. 

3. Results 

3.1. Descriptive statistics 

Table 1 displays the descriptive statistics for the cohort of the 21,415 
KPSC patients who were hospitalized with COVID-19, of whom 4,815 
died. Cohort characteristics of were as follows: median age 64 (IQR: 52, 
75), 58 % male, 56 % Hispanic origin, 23 % white, 11 % Asian/Pacific 
Islanders, 8.6 % Black, and 1.6 % were of other or unknown race/ 
ethnicity. Some 37 % were ever smokers, and 13 % had health insurance 
through MediCal, a government health program for low-income people. 

Fig. 1 shows the hospitalizations over the entire time period, which 
included a major surge in admissions in November 2020 to the end of 
our study period. 

Most hospitalized patients were overweight or obese, with 29 % 
meeting criteria for overweight, 27 % for obesity class 1, and 30 % for 
obesity class 2 or higher. Some 41 % had a history of cardiovascular 
disease, 59 % had hypertension, 22 % had chronic obstructive pulmo-
nary disease, 45 % had diabetes, and 65 % had another chronic 
condition. 

Patients who died within 90 days of their first hospitalization were 
older than those who did not (median age 74 vs 61 years), more likely to 
be male (63 % vs 56 %), and more likely to be ever smokers (46 % vs 34 
%). Patients who died had more comorbidities (median Elixhauser index 
5.0 vs 2.0) and greater prevalence of chronic diseases. Of those who 
died, 63 % had prevalent cardiovascular disease (vs 35 % in survivors), 
76 % had hypertension (vs 54 %), 55 % had diabetes (vs 42 %), and 26 % 
had chronic obstructive pulmonary disease (COPD) (vs 20 %). 

Descriptive statistics for the pollutants are shown in Table 2. 
Table 3 shows many of the pollutants had moderate to high corre-

lations with one another (e.g., PM2.5 and PM2.5 nitrate r ~ 0.9). Ozone 
was the least correlated with the other pollutants and, as expected, had 
negative associations with NO2 (r ~ 0.25) and some of the particle 
species or source tracers. 

Fig. 2 shows spatial distribution of several pollutants across Southern 
California, including: PM2.5 mass, PM2.5 nitrates, PM2.5 EC, PM0.1 as well 
as on-road gasoline and diesel tracers. Substantial differences exist in the 
spatial patterns among several pollutants. For example, on-road gasoline 
displayed variation consistent with highways that carry large volumes of 
traffic, while PM2.5 and PM2.5 nitrate had more smoothly-varying ex-
posures across the region, likely due to a large contributions to the mass 
from secondary formation in the atmosphere. All pollutants had rela-
tively higher concentrations in the inland areas of San Bernardino and 
Riverside. 

3.2. Results from adjusted models 

The confounders selected for each pollutant in our adjusted models 
are shown Table 3 of the ODS. Fig. 3 below and ODS Table 5 show the 
main results on associations between air pollution and COVID-19 death. 
After confounding adjustment, we found several air pollutants were 
related to COVID-19 death among hospitalized patients including: PM2.5 
mass (HR = 1.12, 95 % CI 1.06, 1.17); PM2.5 nitrates (HR = 1.12, 95 % 
CI 1.07, 1.17); PM2.5 EC (HR = 1.07, 95 % CI 1.03, 1.12); PM0.1 mass 
(HR = 1.06, 95 % CI 1.02, 1.10); PM2.5 on-road diesel (HR = 1.06, 95 % 
CI 1.03, 1.10); and PM2.5 on-road gasoline (HR = 1.07, 95 % CI 1.02, 

Table 2 
Descriptive statistics for pollutants shown by overall sample and sample by 
event.   

Died within 90 days 

Characteristic Overall, N =
21,4151 

0, N = 16,600 1, N = 4,815 

NO2    

Median (IQR) 21 (13, 25) 21 (13, 25) 20 (14, 25) 
Mean (SD) 19 (7) 19 (7) 19 (7) 
Range 1, 39 1, 39 2, 36 
O3 (maximum)    
Median (IQR) 66 (60, 72) 66 (60, 72) 67 (60, 73) 
Mean (SD) 66 (8) 66 (8) 66 (8) 
Range 40, 84 40, 84 43, 83 
PM2.5 (mass)    
Median (IQR) 12.30 (10.50, 

14.00) 
12.30 (10.50, 
14.00) 

12.40 (10.60, 
14.00) 

Mean (SD) 12.34 (2.40) 12.33 (2.39) 12.39 (2.44) 
Range 5.77, 27.70 5.77, 27.70 6.05, 23.80 
PM2.5 (nitrates)    
Median (IQR) 3.81 (2.88, 4.54) 3.80 (2.86, 

4.53) 
3.84 (2.93, 
4.56) 

Mean (SD) 3.64 (1.18) 3.63 (1.17) 3.67 (1.20) 
Range 0.19, 7.16 0.19, 7.16 0.26, 7.02 
PM2.5 (organic carbon)    
Median (IQR) 2.07 (1.56, 2.60) 2.08 (1.56, 

2.60) 
2.05 (1.57, 
2.56) 

Mean (SD) 2.08 (0.69) 2.08 (0.69) 2.07 (0.68) 
Range 0.31, 8.24 0.31, 8.24 0.32, 7.59 
PM0.1 (mass)    
Median (IQR) 0.90 (0.72, 1.07) 0.90 (0.72, 

1.07) 
0.91 (0.74, 
1.06) 

Mean (SD) 0.89 (0.29) 0.89 (0.29) 0.90 (0.29) 
Range 0.22, 6.63 0.26, 6.63 0.22, 4.20 
PM2.5 (elemental 

carbon)    
Median (IQR) 0.47 (0.33, 0.59) 0.47 (0.33, 

0.60) 
0.46 (0.34, 
0.58) 

Mean (SD) 0.47 (0.19) 0.47 (0.19) 0.47 (0.19) 
Range 0.05, 1.53 0.06, 1.52 0.05, 1.53 
On-road diesel PM2.5    
Median (IQR) 0.30 (0.19, 0.41) 0.30 (0.19, 

0.41) 
0.29 (0.20, 
0.40) 

Mean (SD) 0.32 (0.18) 0.32 (0.18) 0.32 (0.18) 
Range 0.01, 1.78 0.01, 1.76 0.02, 1.78 
On-road gasoline 

PM2.5    
Median (IQR) 0.071 (0.052, 

0.093) 
0.072 (0.052, 
0.094) 

0.071 (0.052, 
0.091) 

Mean (SD) 0.073 (0.029) 0.073 (0.030) 0.072 (0.029) 
Range 0.003, 0.213 0.003, 0.213 0.003, 0.194 
Biomass combustion 

PM2.5    
Median (IQR) 1.01 (0.73, 1.26) 1.01 (0.73, 

1.27) 
0.99 (0.72, 
1.25) 

Mean (SD) 1.02 (0.46) 1.02 (0.45) 1.02 (0.49) 
Range 0.01, 9.93 0.01, 9.93 0.01, 9.03 
Relative humidity (%)    
Median (IQR) 70 (58, 82) 71 (59, 82) 67 (57, 79) 
Mean (SD) 70 (14) 70 (14) 68 (14) 
Range 25, 99 25, 99 31, 98 
Unknown 6 6 0 
Temperature (C)    
Median (IQR) 21.1 (20.0, 25.0) 21.1 (20.0, 

25.9) 
20.8 (19.9, 
22.5) 

Mean (SD) 22.9 (5.2) 23.1 (5.2) 22.3 (4.9) 
Range 5.9, 44.6 5.9, 44.5 7.2, 44.6 
Unknown 6 6 0 

1c(“Median (IQR)”, “Mean (SD)”, “Range”); all gaseous pollutants presented in 
ppb and all particle species in μ/m3 here and throughout the report 
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1.13). Effects of PM2.5 mass were partly confounded by NO2 in the two 
pollutant models, but remained significantly elevated (Fig. 3). For the 
Delta variant-dominant period, results were similar to those from the 
main model for PM2.5 mass (HR = 1.13, 95 % CI 1.07, 1.20). 

Effects for gaseous species were sensitive to co-pollutant adjustment. 
NO2 had a significant association with the risk of death (HR = 1.10, 95 % 
CI 1.04, 1.16), while ozone had positive but insignificant effects (HR =
1.02, 95 % CI 0.96, 1.08). Because the inverse spatial pattern that can 
lead to positive confounding (Quiros et al., 2013), we also ran co- 
pollutant models with ozone and NO2 included. In these models, NO2 
remained significantly elevated, but ozone remained null. PM2.5 
confounded the NO2 effect to null when both were included in the same 
model (Fig. 3). 

Higher temperatures (HR = 0.92, 95 % CI 0.89, 0.95) and higher 
humidity (HR = 0.82, 95 % CI 0.78, 0.86) in the month of diagnosis were 
significantly associated with lower risks for COVID-19 death. 

3.3. Stratification analyses 

All of the subgroup analyses were insignificant based on the Q sta-
tistic shown at the bottom of each table, meaning these variables had no 
significant impact on the air pollution concentration–response associa-
tion with COVID-19 death (see Tables 6–9 for stratification analyses in 
the ODS). 

3.4. Interaction models with meteorological variables 

After determining that temperature and humidity significantly 
modified the effects of air pollution on COVID-19 death, we stratified by 
tertile for these variables to visualize the effect modification for PM2.5 
(see Fig. 4). See ODS Figure 13 for other pollutants. For most of the 
pollutants, elevated risks appear only in the lower two tertiles of tem-
perature. Effect modification was particularly pronounced for humidity, 
with most pollutants showing a graded decline in effects as humidity 
went up. PM0.1 mass and PM2.5 nitrates followed a slightly different 
trend with the largest effect in the middle tertile. Overall, most effects 
were present only in the lowest two tertiles of humidity. 

3.5. Concentration-Response analysis 

Concentration-response curves are shown in the Fig. 5. For 
most of the pollutants, we observed fairly linear curves when sufficient 
data was available to support the spline derivation. Some pollutants 

such as EC and on-road diesel displayed a supra-linear response with a 
steeper response curve at the low exposure levels. This supra-linear 
function has been observed in many air pollution-mortality studies 
(Burnett et al., 2018). Humidity displayed a clear linear negative asso-
ciation with risk of COVID-19 death. Temperature had a U-shape risks 
appear to be higher at lower temperatures, although where there was 
sufficient data to support the spline derivation, the inverse curve 
appeared linear. 

4. Discussion and conclusion 

Here we evaluated whether chronic exposure to air pollution and 
meteorology at the time of diagnosis affected the risk of death in patients 
with a COVID-19-related hospitalization. We found significant associa-
tions between the risk of COVID-19 death following hospitalization and 
PM2.5 mass, PM0.1 mass, and several of the particle species or source 
tracers. Effects for PM2.5 mass were reduced when NO2 was included in 
the model, but remained significantly elevated, while NO2 was 
confounded to null in the two-pollutant model. 

Meteorology has been associated with COVID-19 transmission in 
some studies (Zoran et al., 2022), and recent studies show that meteo-
rology likely affected COVID-19 death rates in Europe (Kifer et al., 
2021). These researchers proposed that humidity can interfere with viral 
defenses of nasal mucosa tissues and with the sputum deeper in the 
airway, which can lead to more severe infection and subsequently 
contribute to a poor prognosis after the virus establishes itself in the 
respiratory tract, particularly in the nose (Kifer et al., 2021; Weaver 
et al., 2022). Temperature and humidity can also affect the size of the 
viral droplets and its persistence in ambient air, but the extent to which 
this would affect severity is unknown (Bourdrel et al., 2021). Significant 
negative effects were present for both temperature and humidity in our 
study. We also found significant effect modification of the air pollution 
associations with lower temperature and humidity being associated 
generally with larger air pollution effects. If the viral defenses are 
influenced by meteorology, both direct effects of humidity and tem-
perature and the effect modification of the pollution effect have bio-
logical plausibility. 

In comparing our results to other mortality studies, (Chen et al., 
2021) investigated the association of air pollution on COVID-19 severity 
and mortality using data from KPSC members with a CALINE dispersion 
model, which estimated traffic exposures as NOx (non-freeway and 
freeway). The odds of intensive care admission were 1.11 (95 % CI: 1.04, 
1.19) and death were 1.10 (95 % CI: 1.03, 1.18) for each SD increase in 

Table 3 
Correlations among pollutants and meteorological variables.   

NO2 O3 (maxi- 
mum) 

PM2.5 

(mass) 
PM2.5 

(nitrates) 
PM2.5 

(organic 
carbon) 

PM0.1 

(mass) 
PM2.5 

(elemental 
carbon) 

On-road 
diesel 
PM2.5 

On-road 
gasoline 
PM2.5 

Biomass 
comb-ustion 
PM2.5 

Relative 
humidity (%) 

Temp- 
erature 
(C) 

NO2  1.000  − 0.255  0.715  0.615  0.843  0.691  0.849  0.731  0.842  0.522  0.232  0.077 
O3 (maximum)  − 0.255  1.000  0.263  0.304  − 0.286  0.090  − 0.066  0.090  − 0.175  − 0.291  − 0.584  0.093 
PM2.5 (mass)  0.715  0.263  1.000  0.898  0.683  0.839  0.885  0.893  0.804  0.253  − 0.021  0.114 
PM2.5 (nitrates)  0.615  0.304  0.898  1.000  0.519  0.659  0.728  0.705  0.693  0.095  − 0.002  0.125 
PM2.5 (organic 

carbon)  
0.843  − 0.286  0.683  0.519  1.000  0.797  0.857  0.742  0.847  0.793  0.248  0.047 

PM0.1 (mass)  0.691  0.090  0.839  0.659  0.797  1.000  0.817  0.751  0.716  0.464  − 0.032  0.062 
PM2.5 (elemental 

carbon)  
0.849  − 0.066  0.885  0.728  0.857  0.817  1.000  0.929  0.933  0.414  0.154  0.089 

On-road diesel 
PM2.5  

0.731  0.090  0.893  0.705  0.742  0.751  0.929  1.000  0.866  0.352  0.046  0.081 

On-road gasoline 
PM2.5  

0.842  − 0.175  0.804  0.693  0.847  0.716  0.933  0.866  1.000  0.449  0.270  0.076 

Biomass 
combustion 
PM2.5  

0.522  − 0.291  0.253  0.095  0.793  0.464  0.414  0.352  0.449  1.000  0.193  − 0.006 

Relative 
humidity (%)  

0.232  − 0.584  − 0.021  − 0.002  0.248  − 0.032  0.154  0.046  0.270  0.193  1.000  0.237 

Temperature (C)  0.077  0.093  0.114  0.125  0.047  0.062  0.089  0.081  0.076  − 0.006  0.237  1.000  
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non-freeway NOx. Several other freeway exposures, however, had pro-
tective effects (Chen et al., 2021). Including regional PM2.5 and NO2 as 
confounders attenuated the effects by 19–26 %, and this adjustment 
caused the freeway NOx to become significantly protective for mortality 
(HR = 0.93, 95 % CI: 0.87–1.0). Possibly, exposure measurement error 
may have been present due to the inability of the CALINE dispersion 
model to deal with complex traffic, terrain, and meteorological condi-
tions, all which exist in Southern California (Jerrett et al., 2005; Dhyani 
et al., 2013). Our findings may have also differed due to the longer 
follow up in the present study (with about 4.5 times as many deaths). 

A follow up to this Chen et al. (2021) study using the same health 
data, but relying on inverse-distance averaging to interpolate from 
government monitors, found significant chronic effects associated with 
PM2.5 exposure and sub-chronic effects from NO2 (Chen et al., 2022). 
This study, however, also had a high probability of exposure 

measurement error given the likely level of spatial variation in these 
pollutants and the sparse data support available from the government 
monitors of which there are relatively few covering thousands of square 
kilometers. 

Another study from the UK relied on the Biobank data and used an 
agnostic exposomic statistical approach to evaluate many factors for risk 
of COVID-19 incidence and death (Elliott et al., 2021). Although mild 
associations were present in univariate models with PM2.5, these were 
eliminated in multivariate models, leading the authors to conclude there 
was little evidence of an independent association between air pollution 
and COVID-19 death. This study, however, had relatively few deaths and 
may have lacked power to detect subtle effects from air pollution. 

A study using data from hospitalized patients in New York City re-
ported an association between PM2.5 and risk of mortality (risk ratio, 
1.11, 95 % CI: 1.02–1.21) per 1 μg/m3 increase) (Bozack et al., 2021). 

Fig. 2. Predicted PM2.5 mass exposure fields during four seasons in the year 2016. All units µg/m− 3(− |-).  
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Evaluated across the reported IQR of 0.7 μg/m3 the rate ratio would be 
~ 1.08. Neither black carbon nor NO2 had a significant association with 
COVID-19 death. This study also found Hispanic ethnicity significantly 
modified the air pollution risk for COVID-19 death, which differs from 
our finding of no significant subgroup interaction. This study lacked 
individual information on some potential risk factors for COVID-19 
death, including obesity and smoking. Consequently, residual con-
founding cannot be ruled out. 

In a large administrative cohort from Rome Italy, significant asso-
ciations with COVID-19 mortality were found with both NO2 and PM2.5 
(Nobile et al., 2022). Associations found in the Rome study were 
somewhat smaller than what we have found here, but the confidence 
intervals for the two studies overlap The range of exposure in Rome was 
much smaller than what we observed in Southern California, which may 
in part explain the smaller effects observed there. 

On limitations, while we did control for several individual con-
founders such as smoking and obesity, the KPSC data did not include 
potentially important confounding variables such as occupational sta-
tus. Nascent research suggests increased risk of mortality in some 
occupational groups in California, particularly in the farming, material 
moving, transportation, and construction sectors, all of which could 
have higher air pollution due to occupational exposures (Cummings 
et al., 2021). While numerous complexities exist in analyzing and 
interpreting COVID-19 mortality risk in different occupations 

(Cummings et al., 2021; Pearce et al., 2021), it is plausible that lack of 
occupational status could have biased our results. 

In addition, a temporal mismatch existed between the exposure fields 
from 2016, which predated the study by some three years; however, 
overall spatial patterns of exposure are unlikely to change during this 
period. Some portions of our study, however, overlapped with the “lock 
down” period when traffic emissions were lower (Liu et al., 2021). 
Cohort members may therefore have experienced lower exposures than 
they would have if normal conditions had prevailed, which would not 
have been accounted for in our exposure or statistical models. The 
impact would have been to overestimate their exposures near-source 
traffic exposures, which may have biased some results toward null. 
The near-road pollutants such as PM2.5 EC, PM0.1 on-road diesel and on- 
road gasoline had risks that were smaller than regionally-varying PM2.5 
and PM2.5 nitrate, which might have been due to the lock down effect 
not captured in our exposure model. Nevertheless, despite this limita-
tion, several near-source pollutants still displayed significant associa-
tions with COVID-19 death. We were also unable to account for acute 
effects, which may have contributed to risks of COVID-19 death. 
Currently, we are extending the CTM exposure modeling to derive 
contemporaneous estimates of acute and chronic exposure. 

Another concern with observational studies of COVID-19 and mor-
tality rests in the different variants that emerged and gained dominance 
through the pandemic. If certain variants were more virulent than others 

Fig. 3. Risk plots showing hazard ratios of all pollutants based on the interquartile range increment.  

Fig. 4. Risk plots showing PM2.5 stratified by tertile maximum temperature and relative humidity during the month of diagnosis. See ODS for stratified risk plots for 
other pollutants. 
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as appears likely (Adjei, 2022) and these emerge coincidentally at times 
when air pollution is high, then associations between air pollution and 
mortality could be confounded by the virulence of the variant. In this 
study, the Delta variant was dominant for the majority of the study 
period. We performed sensitivity tests on the PM2.5 model by restricting 
the analysis period to times when Delta was dominant. The results from 
the restricted analysis were virtually the same as the results from the full 
analysis. Based on this similarity, we conclude that it was unlikely that 
our results are confounded by variants with different virulence. 

We used time-to-event data after hospitalization to avoid having bias 
in our follow up times, which could have varied considerably if we 
began the study at the point of COVID-19 diagnosis. Although necessary 
for unbiased statistical inference, this restriction reduces the generaliz-
ability of the results to hospitalized individuals rather than the general 
population. 

Other environmental variables have also been implicated in the 
spread and severity of COVID-19, including wind speed and ultraviolet 
radiation. Both variables were explicitly included in our CTM exposure 
model. Wind speed in particular has a major impact on ambient con-
centrations of several pollutants, and we were concerned that including 
wind speed as its own variable would induce collinearity into the model. 
In reviewing the literature on wind speed we also found that most of the 
influence of this meteorological parameter affected the spread of 
COVID-19, not the severity of symptoms or risk of death (Weaver et al., 
2022; Bourdrel et al., 2021). 

UVB potentially operates through vitamin D deficiency, which has 
been identified as a risk factor for more extreme COVID-19 outcomes 
(Xu et al., 2020). We visually explored the 1 km UVB fields used as in-
puts in the CTM modeling. UVB levels were higher inland and lower near 
the Pacific Coastline likely due to fog and cloud cover. Recent UVB 
exposure modeling, however, estimates that personal behavior and 
occupation are much more important predictors of UVB exposure than 
ambient levels alone, which often account for little of the explained 
variation in objectively measured UVB (Dadvand et al., 2011; Soueid 
et al., 2022). Thus, the ambient levels are unlikely to be reasonable 
proxies for exposure and subsequent deficiency. 

We also queried our data base to identify patients who were vitamin 
D deficient and run stratification analyses to assess whether air pollution 
contributed to worse outcomes in these patients. Some 4,142 (19.64 %) 

of the hospitalized cohort had a vitamin D lab test within 1 year prior to 
COVID test date and out of that group, 1,524 (7.23 % of total cohort) 
were vitamin D deficient (25-HYDROXYVITAMIN D lab result < 30 ng/ 
mL) based on their most recent vitamin D lab prior to hospitalization. 
Because this is relatively small proportion of the cohort and likely rep-
resents an underestimate that may bias results, we were unable to 
stratify the analysis by vitamin D deficiency. 

Virucidal activity also decreases in the presence of higher UVB ra-
diation (Weaver et al., 2022; Bourdrel et al., 2021), but this would be 
more likely to affect the spread of the virus and not the severity. In 
addition, it is likely that most of the infections occurred from contact in 
the indoor environment where ambient UVB would likely have a mini-
mal impact on the virucidal activity (Weaver et al., 2022). Future 
research is nevertheless needed to assess whether vitamin D deficiency 
modifies air pollution effects on COVID-19 severity. 

Saturation of capacity of the ICU care is another possible factor 
affecting survival that may have acted as a confounder. Internal data and 
consultation with attending physicians indicated that despite this surge 
(see Fig. 1), at no time were the ICU units saturated beyond capacity. 
KPSC did not run out of ventilators or physical space for admitting 
seriously ill COVID-19 patients. An overflow facility that could have 
accepted KPSC patients was never used. Consequently, saturation of the 
ICU is unlikely to confound our results. 

The observational nature of this study precludes causal interpreta-
tion. Based on our results, however, we can conclude that chronic 
exposure to air pollution and meteorology in the month of diagnosis in 
Southern California is associated the risk of death from COVID-19. 

Better knowledge about environmental variables such as air pollu-
tion and meteorology could be used by communities and local govern-
ments to target neighborhoods with higher risks for COVID-19 death. 
Such information could also be brought into healthcare systems to assist 
clinicians with better estimating the likely severity of disease in patients 
from high air pollution areas. Minimizing the spread and reducing the 
severity of COVID-19 through non-pharmaceutical interventions (NPIs) 
such as masking and economic shutdowns remains problematic over the 
longer term (Imai et al., 2020) given the social and economic costs 
involved. In addition, modeling suggests that NPI measures have the 
potential to increase the severity of other respiratory viral outbreaks in 
the future (Baker et al., 2020). Pharmaceutical measures such as 

Fig. 5. Dose-response Functions for Pollutants and Metrological Variables. All pollutant concentrations expressed in μ/m3, temperature in degrees C, and relative 
humidity in percent. 
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vaccines continue to have mixed results in part due to vaccine hesitancy 
in some high prevalence locations and population groups (Sallam, 
2021). In contrast, air pollution is a modifiable environmental risk factor 
that could affect disease severity across the entire population. Reducing 
air pollution may thus provide a more sustainable means of reducing 
COVID-19 severity that would have substantial population benefits. It 
may also reduce the risks for catastrophic outcomes from future pan-
demics fueled by novel viruses, while also having beneficial effects on a 
wide array of other health endpoints. 
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