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An integrated resource for functional
and structural connectivity of the
marmoset brain

Xiaoguang Tian 1 , Yuyan Chen2, Piotr Majka 3,4, Diego Szczupak1,
Yonatan Sanz Perl 5,6, Cecil Chern-Chyi Yen 7, Chuanjun Tong 2, Furui Feng2,
Haiteng Jiang8,9, DanielGlen10, GustavoDeco 5,11,12,13,MarcelloG. P. Rosa 4 ,
Afonso C. Silva 1 , Zhifeng Liang 2,14 & Cirong Liu 2,14,15,16

Comprehensive integration of structural and functional connectivity data is
required tomodel brain functions accurately.While resources for studying the
structural connectivity of non-human primate brains already exist, their inte-
gration with functional connectivity data has remained unavailable. Here we
present a comprehensive resource that integrates the most extensive awake
marmoset resting-state fMRI data available to date (39 marmoset monkeys,
710 runs, 12117 mins) with previously published cellular-level neuronal tra-
cing data (52 marmoset monkeys, 143 injections) and multi-resolution diffu-
sion MRI datasets. The combination of these data allowed us to (1) map the
fine-detailed functional brain networks and cortical parcellations, (2) develop a
deep-learning-based parcellation generator that preserves the topographical
organization of functional connectivity and reflects individual variabilities, and
(3) investigate the structural basis underlying functional connectivity by
computational modeling. This resource will enable modeling structure-
function relationships and facilitate future comparative and translational
studies of primate brains.

Mapping brain architecture is critical for decoding brain functions and
understanding themechanismsof brain diseases1. Non-humanprimate
(NHP) neuroimaging provides a granular view of the evolution of the
brain2 and could overcome the constraints of human neuroimaging by
integration with “ground truth” data from cellular-resolution tracing3.

As one of the few non-invasive imaging techniques capable of
mapping whole-brain functional activity patterns, resting-state fMRI
(rs-fMRI) provides insights into large-scale functional architecture4.
However, data-sharing initiatives of NHP neuroimaging are still at an
early stage, with existing open datasets of rs-fMRI data originating in
different laboratories and collected for different purposes5. This leads
to inconsistent imaging protocols and data quality, which hinder
analyses across datasets. In addition, most presently available rs-fMRI
datasets have been acquired in anesthetized animals, resulting in

difficulties for cross-species studies, particularly relative to awake
human brains6. The final barrier is the practical difficulty of training
large numbers of NHPs to be fully awake during MRI scans7,8. A plat-
form for international collaborative research (PRIMatE RESOURCE
EXCHANGE) was initiated to address these problems and promote
open resource exchange and standards for NHP neuroimaging5,9.

The common marmoset monkey (Callithrix jacchus) has drawn
considerable interest as an NHP species, offering many practical
advantages for neuroscience research, including neuroimaging10–12.
Previous work from our groups has contributed ultra-high-resolution
ex vivo diffusion MRI data13, mesoscale neural tracing data14, and
structural atlases15–17, which have enabled unprecedented precision in
analyses of NHP brain anatomy. However, an essential component for
understanding brain architecture has been missing: integrating these
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anatomical datasets with rs-fMRI. To address this limitation, and in
alignment with a strategic plan developed by the NHP imaging
community8, we developed standardized protocols for imaging awake
marmosets, which were implemented across two institutions, the
National Institutes of Health (NIH), USA, and the Institute of Neu-
roscience (ION), China. This effort resulted in the largest awakeNHP rs-
fMRI dataset to date, which is being made available through an open-
access platform. Furthermore, we integrated neuronal tracing and
different diffusionMRI datasets into the sameMRI space, resulting in a
comprehensive resource that allows us to explore the relationships
between the structural and functional connectomes by computational
modeling.

Results
The resource reported in this paper, summarized in Fig. 1, is supported
by a publicly available standardized dataset. Following the same pro-
tocols for animal training and MRI imaging, including the designs of
the radiofrequency coil and MRI pulse sequences, we acquired an
extensive awake resting-state fMRI dataset to date from 39marmosets
of two research institutes (13 from ION, age 3 ± 1 years old; 26 from
NIH, age 4 ± 2 years old; 12117 mins in total scanning, Supplementary
Table 1 for details). This is also the same range of ages used in our
previous studies of structural connectivity13,14. For test-retest evalua-
tion, we scanned multiple runs (17 mins/run) for each marmoset,
resulting in an essentially similar data quantity of two institutes (346
ION runs and 364 NIH runs) and included two “flagship” marmosets
with many runs (64 runs from the ION and 40 runs from the NIH).
Besides similar quantity, we comprehensively evaluated the data
quality across twodatasets, which is essential for data harmonization18.
We compared different metrics in the SNR, temporal SNR (tSNR),
spatial CNR, and head motions across the sites/scanners (Supple-
mentary Figs. 1–3, Supplementary Table 2). We found no significant
differences between the two datasets.We also compared the similarity
of functional connectivity across subjects (Supplementary Fig. 4A) and
sessions (Supplementary Fig. 4B), which still revealed no significant
differences. The quality assessments and quality control (QA/QC)
measurements demonstrated consistency and interpretability across
datasets, which makes them suitable for further analysis.

Using these datasets, we created a comprehensivemapof resting-
state brain networks and a fine-grained functional cortical parcellation
based on resting-state functional connectivity. Furthermore, we
developed a deep-learning-based approach to map the population-
based functional cortical parcellation onto individual brains. This
allowed investigation of the structural basis underlying functional
connectivity. For this purpose, we sampled the most extensive col-
lection of NHP neuronal tracing data available (52 marmosets and 143
injections) onto the same MRI space at the voxel or vertex level and
integrated it with the same functional MRI data space mentioned
above. In addition, further enhancing the capacity of our resource, we
also integrated extra high-resolution ex vivo diffusion MRI and in vivo
diffusion MRI data obtained at 25 marmosets from the same cohort.
On this basis, we investigated the relationship between structural and
functional connectivity using a whole-brain computational model. To
facilitate the user to explore connectomes reported in this paper and
compare them with other connectomes13–15, we make online con-
nectome viewers (connectome.marmosetbrainmapping.org).

Mapping functional brain networks
Identifying functional networks of areas showing highly correlated
fMRI signals is critical to characterizing the brain architecture.
Using the independent component analysis (ICA), a data-driven
approach for separating independent patterns in multivariate
data, we identified 15 cortical networks from awake resting-state
fMRI data (Fig. 2; Supplementary Figs. 5–6 include the power
spectrum). All specified components showed clear neural-like

patterns spatially (all peaks located in the cortical gray matter) and
temporally (no patterns of artifacts or noises), as shown in Sup-
plementary Fig. 6. We also conducted the ICA separately on each
dataset. We found that both the ION and the NIH data revealed
these components with similar spatial patterns and temporal CNR
(tCNR, Supplementary Fig. 7), demonstrating the reproducibility
of networks and the consistency of the two datasets.

The details of the 15 cortical networks were as follows. Six func-
tional networks were characterized by short-range connectivity,
including the ventral somatomotor (Fig. 2A), the dorsal somatomotor
(Fig. 2B), the premotor (Fig. 2C), the frontopolar (Fig. 2D), the orbi-
tofrontal (Fig. 2E), and the parahippocampal/ temporopolar cortex
(Fig. 2F) networks. The next two components are the auditory and
salience-related networks, the first being primarily located in the
auditory and insular cortices, and weakly coupled with the anterior
cingulate cortex (Fig. 2G), and the second (Fig. 2H) encompassing the
anterior cingulate cortex. In addition, we also identified two trans-
modal networks (Fig. 2I–J), including association areas in the dorso-
lateral prefrontal cortex (dlPFC), rostral premotor cortex, lateral and
medial parietal cortices, and temporal cortex. One of these is most
likely the frontoparietal-like network (Fig. 2I), which has not been
identified in previous studies19,20, and the other is the default-mode
network (DMN, Fig. 2J), which we characterized extensively in a pre-
vious study21. The remaining five networks represent the first complete
mapping of visual-related functional networks of themarmoset cortex
(Fig. 2K–O). Three networks included the primary visual cortex and
parts of extrastriate areas related to far peripheral vision (Fig. 2K),
near-peripheral vision (Fig. 2L), and foveal vision (Fig. 2M). The other
two networks involve hierarchically higher visual areas (Fig. 2N–O),
such as V3, V4, the inferior temporal cortex, the adjacent polysensory
temporal cortex, and vison-related frontal regions.

Based on their spatial overlap patterns and connectivity
strengths (normalized Z scores), we combined the 15 cortical net-
works into network-parcellation maps (Fig. 2P, Q). Due to local
connectivity being stronger than long-range connectivity, the pri-
mary map (Fig. 2P, Q, top rows) is dominated by the short-range
networks (i.e., Fig. 2G, I–L, I, and O). Thus, we created a second
connectivity map (Fig. 2P, Q, bottom rows) to cover the long-range
connectivity not captured by the primary map. The two network-
parcellationmaps characterized the entire cortical networks, and will
likely be of value for future functional connectivity studies of the
marmoset brain.

Mapping functional connectivity boundaries
The brain network maps provided a global view of cortical func-
tional organization. Next, we aimed to characterize the cortex at a
finer local scale. For this, we used a functional connectivity
boundary mapping approach to identify putative borders for the
functional parcels22–24 as an efficient way to map transitions in
functional connectivity. Population boundary maps based on the
ION, the NIH, or combined datasets are visually similar, presenting
clear functional connectivity borders (Fig. 3A), and were highly
reproducible with average Dice’s coefficients for both hemi-
spheres: 0.7 (ION-NIH), 0.71 (ION-Both), and 0.69 (NIH-Both),
respectively (Supplementary Fig. 8). However, although consistent
at the population level, boundary maps indicate variability across
individuals (Fig. 3B), with an average Dice’s coefficient of 0.3842
for both hemispheres (Fig. 3C, D), which is significantly lower than
those for the population. We also found across-session variability
in the same individual, but more scanning runs efficiently
enhanced the reproducibility (Fig. 3E). Therefore, these results
suggest that both individual and across-session variability con-
tribute to the low consistency of individual boundary maps and
that using test-retest data is essential for improving the reliability
of maps.
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Generation of functional connectivity parcels (Marmoset Brain
Mapping Atlas Version 4, MBMv4)
Because the population boundary maps are more reproducible than
individual maps, we used the combined ION-NIHpopulation boundary
map to generate cortical functional connectivity parcels. By the

detection of the local-minima22, “watershed-flood” region growing25,
and semi-manual optimization of parcel boundaries (Fig. 4A), we
obtained 96parcels per hemisphere (Fig. 4B). Sinceweprocessed each
hemisphere independently, we compared the similarity of the parcel-
lations of the two hemispheres. The hemispherical parcellations are

Fig. 1 | Outline ofMarmoset Brain Mapping resource. The resource provides the
awake test-retest resting-state fMRI data, in vivo diffusion MRI data from the same
marmoset cohorts, and the neuronal tracing datamappedonto the sameMRI space
at the voxel/vertex level. In addition to the datasets, it also supports the study of
whole-brain functional networks and computational modelings, as well as

functional connectivity-based parcellation of the cortex (Marmoset Brain Mapping
Atlas Version 4) using a deep neural network for accurate individual mapping. As a
comprehensivemultimodal resource formarmoset brain research, we also provide
an online platform to explore the relationship between structural and functional
connectivity. This functionality is embodied in online interactive viewers.
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similar in the parcel sizes (Supplementary Fig. 9A; Wilcoxon paired
signed-rank test, N = 96, p =0.7981; Supplementary Fig. 9C for the size
comparison in the subject’s native space) and functional connectivity
patterns between vertices within the same parcel (Supplementary
Fig. 9B; Wilcoxon paired signed-rank test, N = 96, p =0.411). For
continuity with previously released resources13,15,16, we named this
functional connectivity-based parcellation of the cortex “Marmoset
Brain Mapping Atlas Version 4”. We also provide an online viewer to
visualize parcellations, including previous versions (atlasviewer.
marmosetbrainmapping.org).

To estimate the validity of the generated functional parcels, we
used the distance-controlled boundary coefficient (DCBC)26. The basic
idea of DCBC is that when a boundary divides two functionally
homogenous regions, for any equal distance on the cortical surface,
the functional connectivity pattern between vertices within the same
parcel should be higher than that between vertices in different parcels
(Fig. 4C). In other words, a higher DCBC (within-between) means
higher within-parcel homogeneity and higher between-parcel hetero-
geneity. We calculated the DCBC between the vertex pairs using a
range of spatial bins (0–4mm) with a 0.5-mm step (the spatial reso-
lution of the rs-fMRI data). Here, we compared the fit of the functional
map represented by MBMv4 with existing structural cortical parcella-
tions, including MBMv1 atlas15, the digital reconstruction of the Pax-
inos atlas15,27, and the RIKEN atlas28. The result of DCBC in Fig. 4C
demonstrates that MBMv4 has the best performance for the pre-
sentation of functional connectivity (the average DCBC values were
0.0186, 0.0135, 0.0177, 0.0330 for RIKEN, MBMv1, Paxinos, and
MBMv4 atlas; multiple comparisons for One-Way ANOVA
F(3,8556) = 22.44, p = 1.81x10-14).

Mapping MBMv4 in individual brains by deep neural networks
To overcome the limitation of variable individual boundary maps
(see Fig. 3C–E), we employed a deep-learning approach for the
individual Mapping from MBMv4 (Fig. 5A). First, based on the
population-level whole-brain functional connectivity, we trained a
deep neural network classifier for each parcel to learn the associated
fingerprint of functional connectivity. Then, the trained networks
distinguished the goal parcel for every marmoset based on the cor-
responding functional connectivity of the searching area, consisting
of the goal parcel and its neighbors. Due to the overlap of searching

areas, vertices could belong to multiple parcels. Therefore, we only
kept these vertices attributed to a single parcel as the seeds for
regional growth by the “watershed” algorithm. This iterative region-
growing procedure would assign all vertices to a parcel, resulting in
an individual cortical parcellation.

Since individual parcellations should be close to the population
definition29,30, we compared the population-basedMBMv4parcellation
and the automatically generated individual parcellations. By calculat-
ing the percentage of vertices sharing the same labels from both
hemispheres (a metric of concordance), we found that the individual
parcellations fromallmarmosets are similar toMBMv4with an average
of 90% concordance (Fig. 5B, the violin/box plot on the left, the
examples on the right). Using the test-retest dataset, we revealed the
consistency of the individual parcellations across different sessions
(Fig. 5C, the violin/boxplot on the left, and examples on the right). The
across-session analysis yielded an average of 86.7% concordance,
lower than the average value of 91.3% across-individual similarities.
Furthermore, we observed that the lateral prefrontal cortex and
occipital-temporal cortex had higher across-individual and across-
session mapping variabilities (Supplementary Fig. 10), consistent with
previous findings in humans22,31. Thus, the deep-learning approach
efficiently adjusts the parcel borders to reflect the individual vari-
abilities while maintaining high consistency with the population
parcellation.

We also used the DCBC to evaluate whether the border adjust-
ment of the individual parcellation captured the specific features of
individual functional connectivity patterns.We assumed that the deep-
learning-basedmethod (DNN-reg) should result in a higher DCBC than
the direct spatial registration of MBMv4 (Spatial-reg). Figure 5D (Top
panel) presents the functional connectivity for the pairs of vertices
within the same parcel (average correlation values within the same
surface length 0–4mm were 0.8331 and 0.8172 for DNN-reg and Spa-
tial-reg) and between different parcels (average correlation values
were 0.8256 and 0.8171 for DNN-reg and Spatial-reg). Thus, the DNN-
reg had higher DCBC (within-between) than the Spatial-reg (Fig. 5D,
bottom panel; the average DCBC values were 0.0167 and 0.0085 for
the DNN-reg and the Spatial-reg, respectively; multiple comparisons
for one-way ANOVA F(1,2512) = 20.35, p = 6.74 × 10−6). In sum, the border
adjustment by the proposed deep-learning network reflects individual
functional connectivity patterns.

A

Z-score
+

B C D E

F G H I J

K L M N O

P Q

Left Right

-

Fig. 2 | Functional cortical networks and their parcellationmaps. The identified
networks include: A the ventral somatomotor, B the dorsal somatomotor, C the
premotor,D the frontal pole, E the orbital frontal cortex, F the parahippocampus,
and temporal pole, G–H the auditory and salience-related network, I–J two trans-
modal networks, including a putative frontoparietal network and the default-mode-

network, andK–O visual-related networks from the primary visual cortex to higher-
order functional regions. These networks were combined to form two network-
parcellation maps (P–Q), which are dominated by the networks with short-range
connectivity (P–Q, top rows) andwith long-range connectivity (P–Q, bottom rows),
respectively.
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MBMv4 reflects accurate functional and topographical
organizations
As evaluated from functional connectivity, MBMv4 provides a more
accurate reflection of the MRI-based functional parcellation of the
cortex than current histology-based atlases. To further verify this
reliability, we took a task-activation map during the presentation of
movie32 which encompassed 10 deg × 8 deg of the visual field. This
activation map was then registered onto the same individual MBMv4
map and the histology-based Paxinos atlas to examine the spatial
overlap between the activations and functional parcels. As a result, we
found that the MBMv4 has a good correspondence with task activa-
tions by visual inspection, such as the co-activation of foveal areas V1
and MT, and the temporal parcels (Fig. 6A, flat maps). Additionally, by
measuring the shortest distances from every vertex in the boundary of
the activation map to the atlas boundaries (MBMv4 or Paxinos
boundaries), we found that the parcel borders of MBMv4 have higher
consistency with the activationmap than the Paxinos atlas (Fig. 6A, the
scatterplots; Wilcoxon paired signed-rank test: Monkey ID 25, N = 878,
p = 3.07 × 10−40 for the left hemisphere; N = 816, p = 6.11 × 10−26 for the
right hemisphere. Monkey ID 15, N = 826, p = 2.22 × 10−25 for the left
hemisphere; N = 850, p = 2.95 × 10−53 for the right hemisphere). Thus,
MBMv4 reflects functional differences that cytoarchitectonics does
not capture, possibly because the latter contains the full visual field
representations. Thus, the MBMv4 may provide functional-related
contrast that can help enhance the precision of cross-species studies33.

Besides the clear functional boundaries, MBMv4 also preserved
the topographical organization of the functional connectivity. Recent
methodological developments have allowed complex brain features to

bemapped to the low-dimensional representations as gradients34, and
these gradients characterized the topographical organization of the
functional brain connectome from unimodal to transmodal networks.
If the atlas complies with this topographical organization, it should be
able to identify such gradients. As shown in Fig. 6B left panel, MBMv4
results in a pattern of gradient spectrum for functional connectivity. In
contrast, we did not find a gradient pattern based on the Paxinos et al.
(2012) atlas (right panel in Fig. 6B). Therefore, MBMv4 offers an
alternative view to understanding the functional connectome of the
marmoset brain by reflecting the characteristics of functional
connectivity.

MBMv4 is an essential linkbetween the functional and structural
connectivity
Since MBMv4 offers a more comprehensive scheme to study the
functional connectome, it is worth linking it to structural information
to investigate the relationships between structural and functional
connectivity. We have also provided online viewers to facilitate the
comparison between them (connectome.marmosetbrainmapping.
org). Furthermore, we used a whole-brain computational model35–37

to explore structural and functional connectivity relationships. The
processing procedure is shown in Fig. 7A. First, we established
structural connectivity values using the in vivo diffusion MRI, the
ex vivo ultra-high-resolution diffusion MRI, or the neuronal tracing
datasets fitted to either the MBMv4 or the Paxinos et al.14 atlas par-
cellations. Then, we used a Hopf bifurcation hemodynamic model36

to simulate the functional connectivity of every brain parcel or
region based on their structural connectivity and compare it with the

Fig. 3 | The functional connectivity boundary maps. A The population-based
boundarymaps from the ION, the NIH, and the combined datasets. Thesemaps are
highly consistent, with an average Dice coefficient of 0.7. B Boundary maps in the
left hemisphere from four exemplar marmosets (two from the NIH cohort and two

from the ION, including the flagship marmosets). C,D The heatmap of the average
Dice’s coefficients for both hemispheres between individuals and its distribution
histogram. E The average Dice’s coefficients change for both hemispheres with the
number of runs in the same individuals.
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empirical functional connectivity from the actual resting-state fMRI
data. We used Pearson’s correlation to measure the similarity
between the simulated and the empirical functional connectivity.
Additionally, we used group-average functional connectivity as an
empirical observation for the ex vivo diffusion MRI and neuronal
tracing dataset and individual functional connectivity for the indivi-
dual in vivo diffusion MRI.

The modeling results in Fig. 7B, C demonstrate that: (1) the
MBMv4 parcellation provides the best fitting value (R = 0.721) com-
pared to the Paxinos atlas (R = 0.638) for the extra high-resolution
ex vivo diffusion MRI dataset (the polygon in Fig. 7B and results in
Fig. 7C); (2) the MBMv4 parcellation fits the in vivo diffusion MRI
datasets better than the Paxinos atlas in a variety of individual simu-
lations (all circles in Fig. 7B: the average fitting values from 25 animals
were R =0.4707 for MBMv4 and R =0.3659 for Paxinos atlas); and (3)
both parcellations performed equally (R = 0.525 for MBMv4 and
R = 0.472 for Paxinos atlas) fitting the cellular connectivity data from
the aggregated neuronal tracing (the star in Fig. 7B and results in
Fig. 7C). However, no matter which structural data was used for esti-
mating functional connectivity, we found that the modeling predicted
by MBMv4 fits the empirical functional connectivity data better than
the Paxinos atlas (Fig. 7B; Wilcoxon paired signed-rank test: N = 27,
p =0.002947).

Due to its inherent limitation for tracking long connections, the
diffusion tractography was more affected by distance, with longer
connections having lower FC fitting values (Fig. 7D, blue lines). Based
on studies demonstrating that cellular-resolution connections follow
an exponential distribution of projection lengths38–40, we introduced
an exponential distance rule (EDR) to ourmodel to compensate for the
distance effect (Fig. 7D, redlines). Notably, the EDR fully corrected the
distance effect in neural tracing data (Fig. 7D), suggesting that the
neural tracing data might be a more reliable bridge to link structural
and functional connectivity of long-range connections. Still, as shown
in Fig. 7E, F, the EDR-constrained modeling based on MBMv4 fits the
empirical functional data better than the Paxinos atlas (Wilcoxon
paired signed-rank test: N = 27, p = 0.01947), similar to the modeling
without EDR (Fig. 7B), showing that MBMv4 is better suited for
investigating the relationship between structural and functional
connectivity.

Discussion
There are challenges in adapting well-established approaches for
human neuroimaging to NHP neuroimaging5. The present study used
effective and practical animal training and imaging protocols to scan a
large cohort ofmarmosets. Despite the differentMRI scanners (7T and
9.4T) in two institutions (ION and NIH), the protocol produced similar
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(0–4mm in steps of 0.5mm). Data are presented in mean± s.e.m.
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data quality, suggesting the compatibility of our approach (see
Methods for details, Supplementary Figs. S1–S4). Therefore, wepooled
the in vivo resting-state fMRI datasets fromboth institutions (details in
Supplementary Table 1) to create the most comprehensive functional
connectivity dataset of the NHP brain to date. We integrated this
dataset with in vivo diffusion MRI of the same cohort, high-resolution

ex vivo diffusion MRI13, and the most extensive mesoscale retrograde
neuronal tracing data14. This resource expedites the mapping of mar-
moset brains and will allow cross-species comparisons.

Like the human cortex, the marmoset cerebral cortex comprises
large-scale functional networks. However, the first awake resting-state
fMRI study of the marmosets19 found only 12 functional networks

Fig. 5 | Mapping individual functional connectivity parcellation. A An overview
of individual Mapping based on the deep neural network approach. B MBMv4
Mapping of each individual. Left panel: the concordance between the population
MBMv4 and individual parcellations (N = 78, all hemispheres from 39 subjects).
Data are presented by the violin and the box plots (the 25th percentile: 0.9068; the
75 percentile: 0.92448), inwhich thewhite point represents the average value 0.915
(the maximum value: 0.931; minimum 0.900); Right panel: three examples of
individual parcellations. The underlay (color-coded) presents the population
MBMv4, and the overlay (black border) shows the individual parcellations.
C Mapping of MBMv4 per session. Left panel: The concordance between every
individual parcellation and the corresponding parcellation using one session data
(N = 78, all hemispheres from 39 subjects). Data are presented by the violin and the

box plots (the 25th percentile 0.865; the 75 percentile 0.877), in which the white
point represents the average value 0.874 (the maximum: 0.878; the minimum
0.859); Right panel: representative parcellations of three sessions from one mar-
moset. The color-codedunderlay represents individualparcellation,while the black
border overlay shows the session-based parcellation. D The distance-controlled
boundary coefficient (DCBC) for the individual parcellation generated by the spa-
tial registration (Spatial-reg, blue) and the deep neural network (DNN-reg, red). Top
panel: the functional connectivity for all pairs of verticeswithin the sameparcel and
between parcels for DNN-reg and Spatial-reg, respectively. Bottom panel: the
comparison of DNN-reg and Spatial-reg by DCBC. Data are presented in
mean ± s.e.m.
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(10 cortical networks), and another ICA-based study described 8 brain
networks, possibly due to the influence of anesthesia20. Based on a
more extensive awake rs-fMRI dataset, the present study mapped the
large-scale functional networks and built the first network-based par-
cellation, providing a more comprehensive description of functional
networks in the marmoset brain, including a total of 15 cortical net-
works.Moreover, basedon functional connectivity boundarymaps,we
created a population-based cortical parcellation on a fine scale
(MBMv4; Fig. 4) with 192 distinct parcels (96 per hemisphere). We
further verified hemispheric symmetry by warping the standard aver-
age surfaces to every subject’s native space in Supplementary Fig. 9C.
A previous study of the human cerebral cortex identified 422 discrete
functional connectivity parcels using the same approach, 206 in the
left hemisphere and 216 in the right hemisphere22. Therefore, our
results may reflect that the asymmetry in marmosets may be smaller
than in humans, as expected from previous analyses based on anato-
mical measurements41 and the evidence that the number of cortex
subdivisions increases with brain volume42.

It is important to emphasize that our functional parcels do not
correspond to the traditional cytoarchitectonic definition of the cor-
tical areas43,44. Consistent with many brain parcellations generated by
non-invasive neuroimaging22,29,45–47, our functional parcels most likely
reflect a different type of computational sub-units, agreeing with the
idea that the brain is organized in multiple scales48,49. Therefore,
compared with other available structural atlases, MBMv4 captures the
organization of functional connectivity accurately. For example,

MBMv4 achieved better task correspondence (Fig. 6A) due to a strong
link between task-fMRI and rs-fMRI50–52. Another piece of evidence for
the accuracy of the MBMv4 parcellation is the topographical gradient
organization of functional connectivity (Fig. 6B). Finally, MBMv4 bet-
ter links the structural and functional connectivity, as demonstratedby
our modeling simulation (see Fig. 7).

Consistent with previous findings in humans22,29,47, the parcels
defined in MBMv4 do not follow the boundaries of cytoarchitectonic
areas, thus demonstrating an essential difference between anatomical
features and functional connectivity. For example, the somatomotor
cortex is parcellated into subregions that appear to correspond to
representations of the face, forelimbs, hindlimbs, and trunk muscu-
latures across multiple areas, and areas such as V1 and V2 are sub-
divided into several functional parcels according to the representation
of eccentricity in visual field representation, which is contiguous
across areas53 but may include discontinuities54. Previous studies
revealed that some topographically organized cytoarchitectonic areas
could be dissociated from the resting-state functional responses55,56.
Therefore, the present MBMv4 should be considered a functional
connectivity description, providing complementary information
about a type of organization that cannot be observed via classical
anatomy.

An essential goal of this study was to reflect individual char-
acteristics by creating parcels from each individual’s data. Although
the boundary map-derived parcels could be used for individual ana-
lysis, we found that the subject boundary maps had significant
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variations and that the reproducibility became lower than the group-
level map (Fig. 3). This finding emphasizes the need to acquire large
amounts of data for the reliable test-retest of the individual boundary
map.Accordingly, wedeveloped adeepneural network tomap reliable
population-level MBMv4 into every individual nonlinearly. As a result,

we demonstrated good reliability in the test-retest dataset (across
sessions from the same individual; see Fig. 5C) and the applications of
task-fMRI activation mapping from the same individuals (Fig. 6A).
Importantly, the locations of themost variable functional parcels are in
the lateral prefrontal cortex and lateral temporal-occipital cortex (see
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Supplementary Fig. 10), corresponding to previously reported excep-
tionally high inter-subject variability resting-state functional con-
nectivity patterns31. Moreover, these regions co-locate, expanding
preferentially in primate evolution57 and maturing later in postnatal
development58. As resting-state functional connectivity can be altered
by many biological features, including behavioral context during
development associated with phenotypic correlations, a better
understanding of the causes of inter-subject parcel variation will be an
important focus for our future work.

In addition to the functional connectomemapping, we integrated
all currently available structural connectome datasets, including the
in vivo diffusion MRI, the ex vivo high-resolution diffusion MRI13, and
the mesoscale tracing dataset14. Using multimodal data allowed us to
investigate the relationship between functional and structural con-
nectivity with unprecedented detail. Using whole-brain modeling36,37,
we observed that the structural connectivity simulated functional
connectivity based on MBMv4 had a high coherence with empirical
data, no matter which types of structural connectivity were used
(Fig. 7B, C and examples Fig. 7E, F). The finding corroborates the
conclusion that MBMv4 reflects meaningful computational sub-units
from the view of whole-brain functional connectivity. Meanwhile, we
also found room formodeling performance improvement through the
detailed estimation of structural connectivity. For example, compared
with in vivo diffusion MRI data, the ultra-high-resolution ex vivo dif-
fusion MRI data from a brain sample could provide more thorough
structural information. Notably, we should also be careful about the
influence of the distancewhenweuse the diffusion dataset to simulate
functional connectivity because the diffusion tract may generate the
fiber cut and so on in the long-distance tract (Fig. 7D, blue curves). To
overcome this shortcoming, we introduced a correction factor for
structural connectivity based on the EDR (Fig. 7D, red curves).
Nevertheless, the simulation results in Fig. 7B, E demonstrated the best
fitting by the present MBMv4, no matter which datasets were used.
Furthermore, since our modeling is simple, with only two parameters
that avoid overfitting simulation (see our method description), the
whole-brainmodel couldbe anefficient toolwith broad applications to
link structure and function for future studies.

Although we provided the most comprehensive multimodal data
resource for mapping the marmoset connectome, our current study
still faced limitations that need to be addressed by future work, which
is essential for both experimenters and users of non-human primate
neuroimaging. First is the data collection. The population used to
generate theMBMv4was sex-biased (31males vs. 8 females) due to the
priority of colony expansion worldwide. The neuronal tracing data
were also limited, not covering all cortical regions and missing sub-
cortical information. Including neuronal-tracing data is critical for
accuratelymapping the future fully structural connectome. Finally, our
parcellation only used the resting-state functional connectivity infor-
mation, as in many human studies22,45. Therefore, multimodal brain
parcellation incorporated structural contrasts, especially the T1w/T2w
myelinmap,multiple task-fMRI data, gene expression data, etc., will be
necessary to fully capture the anatomical and functional architectures
of the marmoset brain.

Methods
Data collection and preprocessing
Animals and MRI scanning. Experimental procedures followed poli-
cies established by the Chinese Laboratory Animal – Guideline for
Ethical Review of Animal Welfare (ION data) or the US Public Health
Service Policy on Humane Care and Use of Laboratory Animals (NIH
data). All procedures were approved by the Animal Care and Use
Committee (ACUC) of the Institute of Neuroscience, Chinese Academy
of Sciences (ION data), or the ACUC of the National Institute of Neu-
rological Disorders andStroke,National Institutes ofHealth (NIHdata).
The respective ACUC-approved protocols specify group size numbers

based on a power analysis to detect differences between animals to
ensure rigor and reproducibility of the results while minimizing the
number of animals used in the study. Our studies are powered to
detect inter-individual differences. The experimental designs are
typically two or 3-factor ANOVAs. Values of p < 0.05 are considered
statistically significant. The number of animals used is the minimum
necessary to provide reliable estimates of inter-individual effects
based on power considerations. Typically, sample size estimates are
based on the number of animals needed to achieve a power of 0.80 for
moderate effect size and 0.99 for large effect size. Both marmoset
colonies are socially housed to ensure psychosocial well-being and are
offered a varied diet that includes food treats. In addition, dedicated
husbandry and veterinary teams interact with the animals daily as part
of the psychological enrichment plans approved by the ACUCs of both
institutions.

The data acquisition procedure from both centers followed the
same animal training protocol, 8-element radiofrequency (RF) coil
design59, and MRI scanning protocols. Thirteen marmosets (12 males
and 1 female) were recruited from the ION cohort, from which we
generated 62 awake resting fMRI sessions and 349 runs (17 min per
run). As three of the 349 runs had extensive head motions (>10% time
points were motion censored based on the preprocessed pipeline
described below), we excluded the three runs from the analysis,
resulting in a total of 346 runs (see Supplementary Table 2 for the
summary of the head-motion per run). Twenty-six marmosets (19
males and 7 females)were recruited from theNIH cohort to produce 51
awake resting-state fMRI sessions and 364 runs. Therefore, theNIHand
ION data had a comparable number of valid runs. The two datasets
included 39 marmosets with 113 sessions, 710 valid fMRI runs, and
12117 mins of total scan time. Detailed demographic information is
provided in Supplementary Table 1. All marmosets underwent a 3–4-
week acclimatization protocol as previously described60. After com-
pleting the training, all marmosets were properly acclimated to laying
in the sphinx position in an MRI-compatible cradle. Their heads were
comfortably restrained with 3D-printed anatomically conforming hel-
mets that allowed the resting-state fMRI (rs-fMRI) data acquisition as
the animals lay relaxed in their natural resting position.

All 39 marmosets were imaged using identical rs-fMRI protocols
and pulse sequences, except for a minor adjustment in the echo time
(TE) to accommodate hardware differences between the ION and the
NIH gradient sets. The ION marmosets were scanned in a 9.4T/30 cm
horizontal MRI scanner (Bruker, Billerica, USA) equipped with a 20-cm
gradient set capable of 300mT/m gradient strength and an 8-channel
phased-array RF coil59 custom-built for marmosets (Fine Instrument
Technology, Brazil). Multiple runs of rs-fMRI data were collected in
ParaVision 6.0.1 software using a 2D gradient-echo (GE) EPI sequence
with the following parameters: TR = 2 s, TE = 18ms, flip angle = 70.4°,
FOV = 28 × 36mm, matrix size = 56 × 72, 38 axial slices, slice thick-
ness = 0.5mm, 512 volumes (17min) per run. The GE-EPI fMRI data
were collected using two opposite phase-encoding directions (LR and
RL) to compensate for EPI distortions and signal dropouts. Two sets of
spin-echo EPI with opposite phase-encoding directions (LR and RL)
were also collected for EPI-distortion correction (TR = 3000ms, TE =
37.69ms, flip angle = 90°, FOV = 28× 36mm, matrix size = 56 × 72, 38
axial slices, slice thickness = 0.5mm, 8 volumes for each set). After
each rs-fMRI session, a T2-weighted structural image (TR = 8000ms,
TE = 10ms, flip angle = 90°, FOV = 28 × 36mm, matrix size = 112 × 144,
38 axial slices, slice thickness = 0.5mm) was scanned for co-
registration purposes.

The NIH marmosets were scanned in a 7T/30 cm horizontal MRI
(Bruker, Billerica, USA) equipped with a 15 cm customized gradient set
capable of 450mT/m gradient strength (Resonance Research Inc.,
Billerica, USA) and an 8-channel phased-array RF coil custom-built for
marmosets59 with identical coil geometry to the one used by ION.
Multiple runs of rs-fMRI data were collected during each scanning
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session in ParaVision 6.0.1. software using a 2D gradient-echo (GE) EPI
sequence with the following parameters: TR = 2s, TE = 22.2ms, flip
angle = 70.4°, FOV = 28 × 36mm, matrix size = 56 × 72, 38 axial slices,
slice thickness = 0.5mm,512 volumes (17min) per run. TheGE-EPI fMRI
data were collected using two opposite phase-encoding directions (LR
and RL) to compensate for EPI distortions and signal dropouts. Two
sets of spin-echo EPI with opposite phase-encoding directions (LR and
RL) were also collected for EPI-distortion correction (TR = 3000ms,
TE = 36ms, flip angle = 90°, FOV = 28 × 36mm,matrix size = 56× 72, 38
axial slices, slice thickness = 0.5mm, eight volumes for each set). After
each rs-fMRI session, a T2-weighted structural image (TR = 6000ms,
TE = 9ms, flip angle = 90°, FOV = 28 × 36mm, matrix size = 112 × 144,
38 axis slices, slice thickness = 0.5mm)was scanned for co-registration
purposes. Furthermore, multishell diffusion MRI (DTI) datasets were
collected using a 2D diffusion-weighted spin-echo EPI sequence with
the following parameters: TR = 5.1 s, TE = 38ms, a number of seg-
ments = 88, FOV = 36 × 28mm, matrix size = 72 × 56, slice thickness =
0.5mm, a total of 400 DWI images for two-phase encodings (blip-up
and blip-down) and each has 3 b values (8 b =0, 64 b = 2400, and 128
b = 4800), and the scanning duration was ~34min. The multishell
gradient sampling scheme was generated using the Q-shell sampling
method61.

Data preprocessing. The rs-fMRI datasets were preprocessed by the
customized script involving AFNI62, FSL63, ANTs64, and Connectome
Workbench65. In brief, the rs-fMRI datawere slice-timing-corrected and
motion-corrected by the “3dTshift” and “3dvolreg” commands of AFNI
and corrected for EPI distortions by the “top-up” command of FSL (see
our examples in Supplementary Fig. 11). The rs-fMRI datasets were
further preprocessed by regressing linear and quadratic trends,
motion parameters and their derivatives, and motion-sensor regres-
sors (any TRs and the previous TRs were censored if the detection
motion was >0.2mm and temporal outlier >0.1). Note that, for the
motion measurements, we calculated the weighted euclidean norm of
six motion parameters with a 0.25 weight for the three rotation
degrees (yaw, pitch, and roll) according to the relative head radius of
the marmosets compared to humans. White matter and cerebrospinal
fluid signals were removed, and the rs-fMRI datasets were bandpass
filtered (0.01–0.1 Hz). The above nuisance signal regression and
bandpassing filtering were carried out by the “3dDeconvolve” and
“3dTproject” commands in AFNI. Next, the preprocessed data were
spatially normalized to the template space of ourMarmoset BrainAtlas
Version-3 (MBMv3) by the “antsRegistration” routine of ANTs16. The
spatial normalization concatenated multiple transformations, includ-
ing (1) rigid-body transformation of each fMRI run to the T2-weighted
image acquired at the end of each session, (2) rigid-body transforma-
tion of T2-weighted images from each session to a cross-session
averaged T2-weighted image from each animal, (3) affine and non-
linear transformation of the averaged T2-weighted image from each
animal to the T2w template of our MBMv3 space. Finally, all pre-
processed data weremapped to 3D brain surfaces of theMBMv3 using
the Connectome Workbench (wb_command -volume-to-surface-map-
ping function and ribbon constrainedmapping algorithm), normalized
(subtract mean and divide by standard deviation) and concatenated
per session before the boundary mapping described below. The
preprocessed data were smoothed with 1mm FWHM using 3dBlur-
InMask (for volume data) and wb_command -cifti-smoothing (for sur-
face data), respectively, before the network analysis and cortical
parcellation.

The in vivo diffusion MRI dataset was preprocessed by the
DIFF_PREP, DR_BUDDI, and DR_TAMAS pipelines of TORTOISE66. The
DIFF_PREP and DR_BUDDI routines incorporated correction for eddy-
currents- and EPI-induced distortions using pairs of diffusion data
acquired with opposite phase encoding (blip-up and blip-down) and
the T2-weighted image and merging the preprocessed pairs into one

dataset. The nonlinear spatial registration from the individual space to
the DTI template of our MBMv3 space16 was carried out using the
DR_TAMAS routine of TORTOISE. The registration information was
then used to transform multiple atlases into the individual space for
diffusion tractography.

All diffusion trackingswere performedusing the iFOD2methodof
the software Mrtrix367. The response function of each preprocessed
diffusion MRI data was calculated by the “dhollander” method of the
“dwi2response” command, and then the fiber orientation distributions
(FOD) were estimated using spherical deconvolution by the multishell
multi-tissue CSD method of the “dwi2fod” command. Finally, region-
to-region tractography was performed using the iFOD2method of the
“tckgen” command. For each pair of cortical regions, diffusion trac-
tographywas conducted by using one region as the seed and the other
as the target, and vice-versa. Thus, each pair of regions generated two
sets of tracking probability maps, which were normalized by the total
streamlines selected, and the twoprobabilitymapswere averaged into
a single map to represent the final map of the connection between the
two regions. Finally, all pairs of connections formed the whole cortical
structural connectome for computational modeling.

The neuronal tracing data weremapped onto the histological NM
template from our previous study17. The NM template is a population-
based 3D cortical template generated fromNissl-stained serial sections
of 20 marmosets. Since the NM template only covers the cortex and
has Nissl-stain contrast and a 75µm isotropic high spatial resolution, its
direct spatial transformation to our in vivo MBMv3 template is inac-
curate. Thus, we modified the 80µm isotropic ultra-high-resolution
MTR template of our Marmoset Brain Atlas Version-2 (MBMv2) atlas13

to remove the parts of the brain that were not covered in the NM
template, including the cerebellum, brainstem, and parts of sub-
cortical structures. This step increased the accuracy of registration
between the NM template and theMBMv2 template. Then, the ex vivo
MTR template of the MBMv2 was transformed into the in vivo myelin-
map template of our MBMv3. By concatenating the two transforma-
tions (the NM-to-MBMv2 and the MBMv2-to-MBMv3), we accurately
converted the neuronal tracing data from the NM template to the MRI
template. We thenmapped the neuronal tracing data onto theMBMv3
cortical surfaces. For the above registrations, we used the CC similarity
metric as the cost functions and three-stage alignments (rigid align-
ment, affine alignment, and nonlinear SyN transformations), which
were also the default options antsRegistrationSyN.sh. An example of
registration results is shown in Supplementary Fig. 12.

The instruction and example code for the data preprocessing
pipeline is provided via the resource webpage https://
marmosetbrainmapping.org/data.html (ReadMe and Codes sections),
allowing the user to replicate our protocols.

Data harmonization across NIH and ION datasets. We calculated a
series of indices to test the data harmonization across different data-
sets (NIH and ION). They included the single time points SNR, mean
images (average across time for one fMRI run), SNR, tSNR (from one
fMRI run), Contrast to Noise Ratio (CNR, the mean of the gray matter
intensity values minus the mean of the white matter intensity values
divided by the standard deviation of the values outside the brain),
temporal contrast to Noise Ratio (tCNR, the variance of optimal
resting-state fMRI components after ICA contrast to the noisy com-
ponent), the Fiber (Foreground to Background Energy Ratio: the var-
iance of voxels inside the brain divided by the variance of voxels
outside the brain), head motion and the whole-brain functional con-
nectivity across subjects and sessions.

Functional networks, cortical parcellation and network
modeling
Brain network identification by the Group-ICA. ICA was performed
by the Group-ICA routine of the GIFTI software (https://trendscenter.
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org/software/gift/) to identify the brain networks using a number of
different component settings. First, preprocessed data without band-
passing and regression of nuisance covariates were group-ICA ana-
lyzed with increasing numbers of ICA components from 20 to 80 in a
step of 10.We tested the reliability of different ICAmethods, including
the default “Infomax” ICA algorithm or “ICASSO” group-ICA method,
on different datasets (the NIH dataset, the ION dataset, or combined
both datasets) and obtained consistent results regardless of the ICA
setting or dataset used. Finally, every resulting component from
Group-ICA analyses was visually inspected and sorted according to its
neuroanatomical features. Since the sorted elements were highly
consistent across different settings of ICA-component numbers, we
selected the best component to represent every labeled network. We
also did manual correction before creating the final network parcel-
lation; for example, when the left and right parts of the same network
were separated into two components, we merged them into one net-
work by averaging their maps. We identified 15 cortical resting-state
networks from the group-ICA analysis (Fig. 2A–O and Supplemen-
tary Fig. 5).

We combined the 15 cortical networks from Fig. 2A–O according
to their normalized Z scores from ICA to create a cortical-network
parcellation. The details included (1) the combination of networks
according to their spatial locations; (2) if they had spatial overlapping,
we took the highest value according to their normalized Z scores from
ICA; (3) short-range (local) connectivity is usually stronger than long-
range connectivity, so the single map cannot cover long-range con-
nectivity due to the spatial overlapping. Therefore, we created a sec-
ond map to cover the components with long-range connectivity that
were missed in the first map. We repeated the above step but only
applied to networks with long-range connections (such as Fig. 2I–K) to
obtain the second map. The primary map (Fig. 2P, Q, top rows) was
mostly contributed by the short-range networks (i.e., Fig. 1G, L, I, O),
and the second one (Fig. 2P, Q, bottom rows) was to cover the long-
range connectivity that was not captured by the primary map.

Since the human connectome project released a pipeline for
denoising by ICA-FIX, it has recently been applied to some animal
research studies. Therefore, we also explored whether adopting this
processing would affect the identification of brain networks. Before
using ICA-FIX, we had to create a training dataset as a standard. For
this, we ran first-level ICA on each fMRI run, randomly selected 24 runs
from24 animals (12 runs fromthe IONdataset and 12 runs from theNIH
dataset), andmanually classified the noise components based on their
spatial patterns and power spectrums. Since the recommendations for
the use of ICA-FIX suggest a training dataset of at least 10, we created a
total of 24 datasets (trainingMBMv4.RData) to improve significantly
our ICA-FIX classifier, which included both the ION dataset (trai-
ningION.RData, using 12 ION training datasets) and the NIH (trai-
ningNIH.RData, using 12 NIH training datasets) respectively. Then, a
trained-weighted file (trainingMBMv4.RData) was used to clean all
fMRIdata basedon three sensible-value thresholds (5, 10, and20) since
ICA-FIX recommends a threshold in the range of 5–20. Thus, we cre-
ated three different versions of ICA-FIX cleaned datasets. In addition,
we provided the mask files to allow ICA-FIX to work on the marmoset
data since ICA-FIX had several steps that use human-default settings
and files incompatible with the marmoset data. Regardless of which
training dataset was used, we still obtained the same functional net-
work results shown in Fig. 2A–O.

Boundary map generation. Following similar procedures to those
described previously in a human imaging study22, the boundary map-
ping of resting-state functional connectivity data was implemented in
the Connectome Workbench and using customized Matlab codes
(Mathworks, Natick, USA, Version 2019b; see the scripts in our open
resource). First, the time course of every surface vertex for each brain
hemisphere of each subject was correlated with every other surface

vertex to make a correlation map. Then, a similarity map was created
for every vertex by calculating pairwise spatial correlations between all
correlationmaps. Thirdly, thefirst spatial derivativewas applied on the
similarity map by the Connectome Workbench’s function “cifti-gra-
dient” to generate gradient maps for each brain hemisphere of each
subject. Next, the gradient maps were averaged across subjects to
produce the group gradient maps for each brain hemisphere. Lastly,
the “watershed by flooding” algorithm was applied to identify
boundaries in the gradient maps.

Test-retest evaluation of the boundary map. To compare the relia-
bility of the boundary maps between the ION and the NIH datasets
(Fig. 3A andSupplementary Fig. 8), between the individuals (Fig. 3C–E),
and between runs from the same individual (Fig. 3E), we first thre-
sholded two resulting boundary maps for each hemisphere to retain
the cortical verticesmost likely to be boundaries (i.e., retaining the top
quartile of boundary values for a cumulative probability of 0.75) and
assessed the overlap of the two thresholded boundaries by calculating
the Dice’s coefficient. The Dice’s similarity coefficient of two thre-
sholded boundaries, A and B, is expressed as:

dice A,Bð Þ=2 � intersection A,Bð Þ
∣A∣+ ∣B∣

����
���� ð1Þ

The average Dice’s similarity coefficient is the mean of Dice’s
similarity coefficients across hemispheres.

Cortical parcellation based on the population-level boundarymap.
The creation of parcels was implemented by the customized Matlab
scripts (see our open resource). Firstly, based on the vertices with
values smaller than their neighbors that were <5 vertices away, we
identified all localminimaof vertices on the boundarymap as seeds for
parcel creation. Then, the parcels were grown from these seeds using
the “watershed algorithm” procedure as above, allowing them to
expand outward from the seed until they met other parcels. Because
thewholeprocessdepends on the number of seeds for parcel creation,
this might result in a large number of parcels. Therefore, according to
the performance, we manually defined a threshold for merging adja-
cent parcels, which is the 60th percentile of the values in the boundary
map22. It means that any two adjacent parcels with an average value
below this threshold were considered not sufficiently dissimilar and
should bemerged. Finally, according to the population-level boundary
map, we visually examined the remaining parcels to identify those
needing further adjustment, including eliminating vertices and spatial
smoothing. Thedetailedmanual processings for the post-optimization
included (1) manually adjusting the parcel borders, (2) manually cor-
recting wrong areal attributions of the region growing, and (3) spatial
smoothing of the parcel borders by 8-neighbor vertices. We finally
found the resulting cortical parcellation with 96 functional parcels in
each hemisphere as our MBMv4 in Fig. 4B.

Evaluation of cortical parcellation by the DCBC. Following a pre-
vious study26, we used the DCBC as a metric to evaluate functional
boundaries between our parcels. The rationale for this method is that
any twopoints belonging to any given parcel should havemore similar
functional profiles than those belonging to different parcels. Further-
more, because the functional organization varies smoothly, the cor-
relation between two points will weaken with increasing spatial
distance. Thus,we calculated the correlation coefficients for all pairs of
points separated by a specific surface Euclidean distance, using 0.5-
mm spatial bins (same as fMRI imaging spatial resolution) ranging
from 0 to 4mm for pairs of points residing within parcels or across
different parcels (between). The DCBC defines the difference between
the within-parcel and between-parcel pair correlations. A higher DCBC
reflects that pairs within the same region are more functional, serving
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as a global parcellation measure. For the group comparison across
atlases (Fig. 4C), theDCBCmetricswere calculated for eachparticipant
in each spatial bin and then averaged. For the same participant com-
parison across atlases (Fig. 5D), the DCBC metrics were calculated for
each session in each spatial bin and then averaged.

Comparison with alternative atlases. We compared our parcellation
against alternative digital parcellations created by various approaches.
These alternative parcellations included: (1) Paxinos atlas68, the most
commonly used atlas in marmoset brain research, which is cytoarchi-
tectonic characterization by immunohistochemical sections, and here
we used its 3D digital version;15,27 (2) RIKEN atlas:28 The atlas is
cytoarchitecture based on Nissl-staining contrast. (3) The first atlas
version of Marmoset Brain Mapping (MBMv1):15 The borders were
delineated based on the high-resolution diffusion MRI contrast and
parcellated by a structural connectivity-based approach.

Deep-learning-based individual parcellation generator. The group-
average parcellation described in the preceding sections is desir-
able for generating parcellations of individual animals. Although
applying our group-level parcellation to individual animals is fea-
sible, as demonstrated in a previous human study22, we still found
misalignments between individuals and cannot be highly con-
sistent with the tendency of the group-average parcellation
(MBMv4) when the scanning runs are limited (Fig. 3D, E). Therefore,
inspired by previous works29,30, we trained a multi-layer deep
learning network to classify parcels based on the fingerprints from
MBMv4. There were two assumptions for this approach: (1) We
assumed that individual cortical parcels were close to the group
definition after the feature-based surface registration; (2) We
assumed that every identified cortical parcel should be in a single
class which was the combination of the target parcel and its spa-
tially adjacent parcels (the “searchlight” for the candidate parcel).
Thus, the setup of the classifier network was straightforward. Its
architecture was as follows (for the graphic reference, see Fig. 5A):
for each of the 96 parcels in each hemisphere, a multi-layer deep
neural network was designed, which comprised three layers (one
input, five hidden, and one output) and 384 hidden neurons (a
reasonable compromise between accuracy and training speed for
the classification). The whole-brain fingerprint of the candidate
parcel from the MBMv4 worked as the training set for the network
to classify whether or not each vertex in an individual ROI con-
tained the parcel plus all of its neighbor parcels. Because of the
spatial overlap of the “searchlight,” we excluded the vertices
belonging to multiple parcels. Then, we applied the same proce-
dure of parcel creation as above, meaning that the borders of each
identified parcel became the seeds to expand outward until they
met other parcels using the “watershed by flooding” procedure.
The whole process of individual parcellation was automatic and
implemented using customizedMATLAB codes (example codes are
shared via www.marmosetbrainmapping.org/data.html) combined
with the MATLAB Deep Learning Network toolbox.

Evaluation by task-activation pattern. We examined the functional
relevance of the borders by evaluating the parcels contained within
the fMRI activation pattern to a visual-task (Fig. 6A) from our pre-
vious study32. A subset of animals from the NIH dataset participated
in the visual-choice task, which consisted of watching 20-s-long
movies (visual field was 10 deg × 8 deg) and 16s resting periods (206
trials for marmoset-ID15 and 280 trials for marmoset-ID25). We
performed a contrast comparison between the movie-presentation
blocks and the resting blocks to generate visual-task-activation
statistical maps for each session. A mixed-effects analysis was then
applied to all statistical maps across sessions by the 3dMEMA
command of AFNI to obtain a final statistical map. The map was

thresholded at a voxel-wise threshold of p < 0.05 and a cluster-wise
threshold of p < 0.05 for multiple comparison corrections. To
compare the similarity of the activationmap and the parcellations in
each hemisphere (for results, see the flat maps in Fig. 6A) we cal-
culated the shortest Euclidean distance of every vertex/voxel in the
boundary of the activation map to the vertexes/voxels in the
boundary of parcels/regions from different parcellations. We con-
sidered the parcellation with the overall shortest distances of every
vertex/voxel in the boundary of the activation map as the best
border consistency (for results, see the scatterplots in Fig. 6A).

Evaluation by functional connectivity gradient spectrum. It is
widely accepted that the cerebral cortex of multiple species,
including both human and macaque primates, is organized along
principal functional gradients that provide a spatial framework for
the co-existence of multiple large-scale networks operating in a
spectrum from unimodal to transmodal functional activity34,69.
Therefore, if the MBMv4 parcellation created here accurately
represents the functional organization of the marmoset cortex, we
can presume that it will also reveal these principal functional gra-
dients. Thus, as in previous studies34,70, we followed a workflow for
gradient identification: we first computed the rs-fMRI functional
connectivity (RSFC) based on MBMv4. Next, the RSFC matrix Mx,y

with the same size as the atlas was made sparse (to a 10% sparsity),
and a similarity matrix Ax,y with the normalized angle was computed
according to the following equation:

A x,yð Þ= 1� cos�1 cossim x,yð Þð Þ
π

ð2Þ

Next, the similarity matrix was decomposed via Laplacian trans-
formation into a set of principal eigenvectors describing the axes of
most significant variance using the following equation:

Lg = λDg ð3Þ

Where Dx,y =
P

y Aðx,yÞ, L is the graph Laplacian matrix, and the
eigenvectors gwhich corresponds to them smallest eigenvalues λk are
used to build the new low-dimensional representation:

ςLE = ½g1,g2, . . . ,gm� ð4Þ

Finally, the first two axes g1,g2 of each parcel were plotted in 2D
space. Meanwhile, we used the scores g1 to sort the functional con-
nectivity matrix (for results, see the heatmaps in Fig. 6B).

The whole-brain modeling for the link between structural con-
nectivity and functional connectivity. As we know, structural con-
nectivity and functional connectivity are closely related to each other.
Therefore, the lack of structural evidence generally implies biological
implausibility for functional connections. Testing whether the cortical
parcels created above MBMv4 are accurate representations of the
functional areas in the cerebral cortex requires investigation of the
underlying structural connectivity. A computational model is a pow-
erful approach to bridge structural and functional connectivity69,71–74.
In the present study, we implemented a whole-brain model with only
two free parameters fromprevious studies35,36, as outlined below (for a
graphic reference, see Fig. 7A, note that the fMRIdata for themodeling
part is frequently unfiltered, so the model used the full band of
frequency):

According to thewhole cortical parcellations (192 total parcels, 96
per hemisphere from MBMv4 or 232 total regions, 116 regions per
hemisphere from the Paxinos atlas), the structural connectivity
between parcels/regions Ci,j was estimated from the structural data-
sets (see examples in Fig. 7B, C, E, F), either DTI data (in vivo or ex vivo)
or the neuronal tracing data. Then, the local dynamics for everyparcel/
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region j can be properly approximated to the normal form of a Hopf
bifurcation:

dzj
dt

= aj + iwj

h i
zj + zj∣zj∣

2 ð5Þ

In this equation, zj is a complex-valued variable zj = xj + yj, and wj

is the intrinsic signal frequency of parcel/region j, which ranged from
0.04–0.07Hz and was determined by the averaged peak frequency of
the bandpass-filtered fMRI signals of the parcel/region j36,75–78. aj is a
bifurcation free parameter controlling the dynamics of the parcel/
region j. For aj <0, the phase space presents a unique stable and is
governedbynoise. For aj >0, the phase space presents the stable state,
giving rise to a self-sustained oscillation. For aj ≈0 the phase presents
an unstable state, switching back and forth and giving rise to amixture
of oscillation and noise.

The coordinated dynamics of the resting-state activity for parcel/
region j could be modeled by coupling determined by the above
structural connectivity Ci,j. To ensure the oscillatory dynamics for
aj > 0, the structural connectivity Ci,j should be normalized and scaled
to 0.2 in a weak coupling condition before starting the simulation. The
coupled differential equations of the model are the following:

dxj
dt

= aj � x2j � y2j
h i

xj �wjyj +G
X
i

Ci,j xi � xj
� �

βηj tð Þ ð6Þ

dyj
dt

= aj � x2j � y2j
h i

yj +wjxj +G
X
i

Ci,j yi � yj
� �

βηj tð Þ ð7Þ

In this equation, G is another free parameter representing the
fixed global coupling factor that scales structural connectivity Ci,j. ηj

represents additive Gaussian noise in each parcel/region and is scaled
by a factor β fixed at 0.04 according to previous studies36. Euler-
Maruyama algorithm integrated these equations with a time step of
0.1 seconds to accelerate simulation79.

The free bifurcation parameter aj for parcel/region j could be
locally optimized based on fitting the spectral information of the
empirical BOLD signals. To achieve this, we filtered raw empirical
BOLD data in the 0.04–0.25Hz band and calculated the power spec-
trum pj fð Þ for each parcel j as below:

pj =

R 0:07
0:04 pjðfÞdfR 0:25
0:04 pjðfÞdf

ð8Þ

and updated the local bifurcation parameter aj by a gradient descen-
dent strategy:

aj = aj +η pempirical
j � psimulated

j

� �
ð9Þ

We applied the above optimization process to receive the best
bifurcation parameters aj of every parcel/region defined in the parcella-
tions. Once we found the optimized set of bifurcation parameters aj, we
adjusted the free parameter G within the range of 0–8 in steps of 0.1
according to a reasonable compromise from previous studies36,79 to
simulate the same number of sessions for each animal and the same
number of animals. To compare the performance in different atlases, we
just needed to compare fitting (similarity) metrics, Pearson’s correlation
coefficient between the simulated functional connectivity and the one
used for theempiricaldata,whenwefixed thesamevalueofparameterG.

Since the distributions of the optimal bifurcation parameter a are
identical in different parcellations MBMv4 or Paxinos atlas (see Sup-
plementary Fig. 13, one-way ANOVA F(1,11986) = 9.09, p =0.26), we
selected the best free parameter G from the Paxinos atlas for com-
parison performance with our MBMv4 (see results in Fig. 7B, E,
examples in Fig. 7C, F).Moreover, we also selected the group-averaged

functional connectivity fromall individuals as the empirical observable
for the ultra-high-resolution diffusion MRI and neuronal tracing data-
sets and the individual functional connectivity for the corresponding
in vivo diffusion MRI.

The resulting simulation of functional connectivity demon-
strated the influence of the distance, especially for the diffusion MRI
(see Fig. 7D). To decrease this impact, we added an EDR for a more
accurate estimation of structural connectivity before the simulation,
which can be implemented as follows: we first normalized the
structural connectivity estimated by diffusion tractography to 0–1,
then calculated the probability of structural connectivity according
to the EDR rule (p(d) = ce−λd, λ≈0.3, c≈0.94 where d is the distance40)
and normalized to 0–1. Finally, we transformed the normalized
structural connectivity to match the probability of structural con-
nectivity. For simplicity to help us to identify abnormal values, we
defined a threshold as the Median Absolute Deviation for the nor-
malized structural connectivity

σ̂=
Medianð∣Xi � eX∣Þ

0:6745
ð10Þ

Where Xi = each value, eX = average value
If any values were larger than this threshold, we considered them

abnormal values, and the corresponding probability of structural
connectivity would replace them to reduce the impact of distance.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All of our datasets, including raw and preprocessed NIH and ION
resting-state fMRI, diffusion MRI, and neuronal tracing datasets, are
available on our specific webpage of the Marmoset Brain Mapping
Project (www.marmosetbrainmapping.org/data.html). The volume
data are in NIFTI format, and the surface data are in CIFTI format. The
raw MRI data without processing is provided in the standard BIDS
format for cross-platform sharing. The MBMv4 parcellations are also
provided on the same webpage (www.marmosetbrainmapping.org/
data.html), and the MBMv1 and Paxinos parcellations on our MRI
template space are a part of the MBMv3 resource (marmoset-
brainmapping.org/v3.html). The high-resolution ex vivo diffusion MRI
data are a part of the MBMv2 resource (marmosetbrainmapping.org/
atlas.html#v2). The raw neuronal tracing data are from Marmoset
Brain Connectivity project (https://www.marmosetbrain.org/
reference). Note that the MBMv4 datasets are only available for sci-
entific purposes and are licensed under Creative Commons
Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0). Source
data are provided with this paper.

Code availability
The codes for analyzing pipelines used in this study could be available
on our webpage (www.marmosetbrainmapping.org/data.html). The
codes package with examples includes the generation of cortical
functional boundary maps, functional parcellation, and their evalua-
tion metrics, as well as computational modeling which could link with
structural imaging and neuronal tracing. Note that the codes and
analyzing pipelines are only available for scientific purposes and are
licensed under Creative Commons Attribution-NonCommercial-
ShareAlike (CC BY-NC-SA 4.0).
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