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A unified computational framework for
single-cell data integration with optimal
transport

Kai Cao 1,2,5, Qiyu Gong3,5, Yiguang Hong 4 & Lin Wan 1,2

Single-cell data integration can provide a comprehensive molecular view of
cells. However, how to integrate heterogeneous single-cell multi-omics as well
as spatially resolved transcriptomic data remains a major challenge. Here we
introduce uniPort, a unified single-cell data integration framework that com-
bines a coupled variational autoencoder (coupled-VAE) and minibatch unba-
lanced optimal transport (Minibatch-UOT). It leverages both highly variable
common and dataset-specific genes for integration to handle the hetero-
geneity across datasets, and it is scalable to large-scale datasets. uniPort jointly
embeds heterogeneous single-cell multi-omics datasets into a shared latent
space. It can further construct a reference atlas for gene imputation across
datasets. Meanwhile, uniPort provides a flexible label transfer framework to
deconvolute heterogeneous spatial transcriptomic data using an optimal
transport plan, instead of embedding latent space. We demonstrate the cap-
ability of uniPort by applying it to integrate a variety of datasets, including
single-cell transcriptomics, chromatin accessibility, and spatially resolved
transcriptomic data.

The latest developments in high-throughput single-cell multi-omics
sequencing technologies, e.g., single-cell RNA-sequencing (scRNA) and
single-cell Assay for Transposase-Accessible Chromatin using
sequencing (scATAC), enable comprehensive studies of hetero-
geneous cell populations that make up tissues, the dynamics of
developmental processes, and the underlying regulatory mechanisms
that control cellular functions. The computational integration of
single-cell datasets is drawing heavy attention toward making
advancements in machine learning and data science1–3.

Among existing single-cell integration methods, tremendous
efforts4–7 have been devoted to integrating multiple datasets simulta-
neously profiled from the same cells (e.g., paired-cell datasets gener-
ated by the cellular indexing of transcriptomes and epitopes by
sequencing (CITE-seq)8). However, these paired datasets are techni-
cally challenging and costly to obtain. Therefore, a vast number of

integrative methods have been developed for data profiled from dif-
ferent cells taken from the same, or similar, populations. For example,
the celebrated platform Seurat9 projected feature space into a com-
mon subspace using canonical correlation analysis (CCA), which
maximizes inter-dataset correlation. LIGER10 and DC311 employed non-
negative matrix factorization to find the shared low-dimension factors
of the common features to match single-cell omics datasets.
Harmony12 iterated between maximum diversity clustering and a
mixturemodel-based linear batch correction, providing a latent space
in which batch effects are removed. However, these methods rely on
linear operation, thus lacking the ability to handle nonlinear defor-
mations across cellular modalities. In addition, they only leverage fil-
tered common genes, while ignoring the importance of dataset-
specific genes for the identification of cell populations, which usually
capture cell-type heterogeneity not present in common genes13.
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To address these shortcomings, manifold alignment methods are
emerging and have achieved promising results in integrating single-
cell multi-omics datasets14–17. However, manifold alignment methods
are limited by relatively high computational complexity, and they are
not scalable to large-scale datasets.

With the development of deep learning,many autoencoder-based
approaches have been proposed and demonstrated their power in
data integration across modalities. However, most of them require
paired datasets profiled from the same cells, such as DCCA18 and
Cobolt19, to utilize cell-paring information. When cell-paring informa-
tion is unavailable, the alternative is simultaneous training of different
autoencoders and aligning cells across different modalities in a latent
space. However, this option still makes computation a challenging
exercise. Recently, an emerging number of methods have been
developed to account for unpaired data. For example, methods like
scDART20 and cross-modal autoencoders21 attempted to learn a latent
space by autoencoders and align latent representations via kernel-
based or discriminator-based discrepancy. However, these methods
require global alignment which is often too restrictive for integrate
heterogeneous cellular populations. In addition, the transfer learning-
basedmethods were also developed to establish a source atlas via one
modality for knowledge (e.g., cell labels) transfer to another modality
by learning a modality-invariant latent space22,23. Although having
achieved encouraging results, these methods are restricted to using
source modality with annotated cell labels.

Recently published methods for single-cell genomics integration
such as scMC24 and SCALEX25 showed state-of-the-art performance on
batch effect correction of one modality, but they have not been

benchmarked on single-cell multi-omics data integration. GLUE26,
another state-of-the-art method for single-cell multi-omics (e.g., scA-
TAC, scRNA) integration and integrative regulatory inference, based its
development on advanced graph autoencoders. Meanwhile, many
other methods are proposed for integrative analysis of spatial tran-
scriptomics (ST) and scRNA data. Among these methods, gimVI27 and
Tangram28 achieved the most advanced performance29. However, to
the best of our knowledge, no method has been developed for a uni-
fied integration of single-cell multi-omics as well as spatially resolved
transcriptomic data.

To address this gap, we herein advance the field by developing
uniPort, an accurate, robust, and efficient computational platform
for integrating heterogeneous single-cell datasets with optimal
transport (OT). To overcome the limitation thwarting conventional
VAE for single-cell heterogeneous and/or unpaired data integration,
we propose a unified computational framework by combining a
coupled variational autoencoder (coupled-VAE) and Minibatch
Unbalanced OT (Minibatch-UOT)30 (Fig. 1). This framework allows
leveraging both highly variable common and dataset-specific genes
for integration in order to handle the heterogeneity across datasets.
Experimental results show that uniPort can accurately and robustly
integrates scATAC and scRNA datasets profiled from peripheral
blood mononuclear cells (PBMC) and mouse spleen. It can also
accurately impute unmeasured spatially resolved multiplexed error
robust fluorescence in situ hybridization (MERFISH)31 genes
through scRNA data. Moreover, with an output OT plan, we
demonstrate that uniPort can accurately decipher canonical struc-
tures of the mouse brain and assist in locating tertiary lymphoid

Fig. 1 | Overview of uniPort algorithm. uniPort integrates single-cell data by
combining a coupled-VAE and Minibatch-UOT. uniPort takes as input a highly
variable common gene set of single-cell datasets across different modalities or
technologies. a uniPort projects input datasets into a cell-embedding latent space
through a shared probabilistic encoder. Then uniPort minimizes a Minibatch-UOT
loss between cell embeddings across different datasets. Finally, uniPort

reconstructs two terms. The first consists of input datasets by a decoder with
different DSBN layers. The second consists of highly variable gene sets corre-
sponding to each dataset by dataset-specific decoders. b uniPort outputs a shared
latent space and an optimal transport plan that can be used for downstream ana-
lysis, such as visualization, gene imputation and spots deconvolution.
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structures (TLS) in the breast cancer region, as well as reveal cancer
heterogeneity in microarray-based spatial data.

Results
uniPort embeds and integrates datasets by coupled-VAE and
Minibatch-UOT
As input, uniPort takes diverse and heterogeneous single-cell datasets
across different modalities or technologies. uniPort is based on a
coupled variational auto-encoder (coupled-VAE) and employs a
dataset-free encoder to project highly variable common gene sets of
different datasets into a generalized cell-embedding latent space. Then
uniPort reconstructs two terms. One is input by a dataset-free decoder
with dataset-specific batch normalization (DSBN)25,32 layers. The other
is a highly variable gene set through a dataset-specific decoder cor-
responding to each dataset (Fig. 1 and Supplementary Fig. 1). Some
overlapping genes are often found between the two terms as some
common genes are also highly variable in each dataset. However, with
slight abuse of ‘specific’, we still name the second term a dataset-
specific gene set in the following context. During integration, uniPort
minimizes aMinibatch-UOT loss between cell embeddings in the latent
space from different datasets. It is necessary to introduce the loss as it
feeds back a gradient to the encoder to achieve a better alignment
result, especially when dataset-specific decoders are considered that
increase the heterogeneity across datasets in the latent space. Mean-
while, the minibatch strategy substantially improves the computa-
tional efficiency of OT, making it scalable to large datasets, and the
unbalanced OT makes it more suitable for heterogeneous data
integration.

We employed a series of scores to assess the performance of
single-cell data integration. To quantify dataset mixing and cell-type
separation, we computed two scores used by SCALEX: the Batch
Entropy score33 to evaluate the extent of mixing cells across datasets
and the Silhouette coefficient34 to evaluate the separation of biological
distinctions. To benchmark annotation clustering accuracy, we adop-
ted the adjusted rand index (ARI), the normalized mutual information
(NMI), and the F1 scores using cell-type annotations (Methods). Then,
for paired datasets, we employed the average fraction of samples
closer than the true match (FOSCTTM)14 to measure the preservation
of cell–cell correspondence across datasets.

uniPort integrates scATAC and scRNA data
We benchmarked uniPort against current state-of-the-art single-cell
genomics integrationmethods9,10,12,13,15,17,24–26,35 on one dataset of paired
scATAC and scRNA (the paired PBMC dataset36) and two datasets of
unpaired scATAC and scRNA (the microfluidic-based PBMC dataset37

and the mouse spleen dataset13). We employed Uniform Manifold
Approximation and Projection (UMAP)38 to visualize the integration
results.

We first applied uniPort to integrate the paired PBMC dataset
(Fig. 2). The pairing information was only used for performance
evaluation. We found that uniPort and GLUE achieved the best per-
formance with comparable results (Fig. 2c–e). Specifically, uniPort
achieved the highest Silhouette coefficient of 0.64, while GLUE had
the second highest Silhouette coefficient of 0.621; uniPort had the
second best average FOSCTTM of 0.0694, a total score of ARI, NMI
and F1 of 2.321, and the third highest Batch Entropy score of 0.64,
slightly below GLUE (average FOSCTTM of 0.0441, total score of
2.514 and Batch Entropy score of 0.677). Among all compared
methods, uniPort, Seurat, Harmony, SCOT, and GLUE accurately
integrated most cell types in two modalities (Fig. 2b and Supple-
mentary Fig. 2).

In addition to integrating the paired PBMC dataset, we further
evaluated uniPort on an unpaired microfluidic-based PBMC dataset
(Supplementary Fig. 3). As a result, uniPort accurately integrated the
scATAC and scRNA data with competitive performance comparable to

that of GLUE, MultiMAP and Harmony. For example, uniPort aligned
most cell types well in two modalities (Supplementary Fig. 3a, b),
demonstrating Silhouette coefficient and Batch Entropy score of 0.68
and 0.623 (Supplementary Fig. 3c, d), which were similar to GLUE
(0.682 and 0.638, respectively), MultiMAP (0.648 and 0.623, respec-
tively), and Harmony (0.636 and 0.626, respectively), but surpassing
other compared methods.

We also tested uniPort on another unpaired scATAC and scRNA
profiled from the mouse spleen dataset (Fig. 3). uniPort, scMC, Har-
mony, and Seurat achieved the highest performance. Specifically,
uniPort achieved the highest Silhouette coefficient of 0.709, slightly
higher than scMC (0.704), Harmony (0.704), and Seurat (0.699);
Harmony ranked first in Batch Entropy score of 0.676, higher than
uniPort (0.632) and Seurat (0.671); scMC had the highest total score of
ARI, NMI and F1 of 2.466, while uniPort (2.436), Harmony (2.416), and
Seurat (2.437) followed close behind with a total score for each higher
than 2.4, slightly below that of scMC.

In summary, among all methods, uniPort performed favorably
when compared with recently published state-of-the-art methods,
showing accurate and robust results across both paired and unpaired
datasets.

uniPort performs unbalanced matching tasks of heterogeneous
datasets
uniPort minimizes a Minibatch-UOT loss, which is suitable for
unbalanced matching and provides a strong guarantee for hetero-
geneous data integration. To evaluate the performance of uniPort
on heterogeneous data integration, we conducted two unbalanced
matching tasks by removing some cell types from scATAC or scRNA
ofmouse spleen, separately. First, we removed “DC”, “Granulocyte”,
“Macrophage” and “NK” types from scATAC data, while keeping
scRNA data unchanged, and denoted the integration task as ATAC
unbalanced matching (“UBM-ATAC”). Second, we removed the
same cell types from scRNA data, while keeping scATAC data
unchanged, and denoted the integration task as RNA unbalanced
matching (“UBM-RNA”). For comparison, we also defined the inte-
gration of complete mouse spleen data as balanced match-
ing (“BM”).

uniPort accurately identified and separated the cells of “DC”,
“Granulocyte”, “Macrophage” and “NK” fromother cell types in the two
unbalanced matching cases, while still aligning modality-shared cell
types well (Fig. 4a, b). We compared uniPort with GLUE, Harmony,
Seurat, MultiMAP, and scMC, all of which achieved high accurate
performance on the “BM” task. Among all methods, only uniPort and
Seurat achieved stable performance in all three cases (Fig. 4c, d).
uniPort had the highest total score of 2.225 and Silhouette coefficient
of 0.676, in the case of “UBM-ATAC”, and the second highest total
score of 2.191 and the third highest Silhouette coefficient of 0.688, in
the case of “UBM-RNA”. Therefore, compared with the case of “BM”,
uniPort is more robust than the other methods when heterogeneity is
presented in the datasets.

uniPort integrates MERFISH and scRNA data
We further considered the integrationof ST and scRNAdata. Twomain
types of ST sequencing technologies are high-plex RNA imaging-based
and barcoding-based. High-plex RNA imaging-based spatial sequen-
cing has the advantage of single-cell precision with greater depth, but
it is restricted to partial measurement with lower coverage. To test the
performance of uniPort over high-plex RNA imaging-based data, we
applied uniPort to integrate MERFISH and scRNA data31.

Among 155 genes in the MERFISH data, we used 153 common
genes in both scRNA and MERFISH for integration. We applied UMAP
to visualize the integration results of cell embeddings by uniPort,
Harmony, Seurat, SCALEX, scVI, gimVI27 and MultiMAP (Fig. 5a, b and
Supplementary Fig. 4). As shown in the figures, uniPort and scVI

Article https://doi.org/10.1038/s41467-022-35094-8

Nature Communications |         (2022) 13:7419 3



Fig. 3 | uniPort integrates unpaired scATAC and scRNA of the mouse spleen
data. a UMAP visualization of mouse spleen data before integration colored by
omics and cell annotations. b UMAP visualization of mouse spleen data after

uniPort integration. c Comparison of Batch Entropy scores and Silhouette coeffi-
cients of different methods. d Comparison of total scores of ARI, NMI and F1 of
different methods.

Fig. 2 | uniPort integratespaired scATACand scRNAof the PBMCdata from10×
Genomics. aUMAP visualizationof PBMCdata before integration colored by omics
and cell annotations. b UMAP visualization of PBMC data after uniPort integration.

c Comparison of total scores of ARI, NMI and F1 of different methods.
d Comparison of Batch Entropy scores and Silhouette coefficients of different
methods. e Comparison of average FOSCTTM of different methods.
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outperformed other methods in identifying and separating OD
Immature cells from other cell types. Besides, uniPort accurately
identified ependymal cells as a MERFISH-specific cell type and sepa-
rated them from other cell types in the scRNA embeddings. We again
benchmarked uniPort’s integration performance against other
methods9,12,13,25,27,35 by the Silhouette coefficient and the total score
(Fig. 5c, d). We found that uniPort outperformed other methods with
the highest Silhouette coefficient of 0.706 and the highest total score
of 2.404 for ARI, NMI and F1, while scVI achieved the second highest
Silhouette coefficient of 0.688, and MultiMAP ranked second in the
total score of 2.37.

uniPort imputes genes for MERFISH data
uniPort trained an encoder network toproject cellswith commongenes
across datasets into a common cell-embedding latent space and a
decoder network to reconstruct cells with both common and specific
genes. Therefore, once the coupled-VAE is trained well, it can be
regarded as a reference atlas, in turn allowing uniPort to impute both
common and specific genes in one dataset through common genes in
another dataset by the atlas (Supplementary Fig. 5). The imputed genes
can be used to enhance the resolution of spatial transcriptomics39,40.

To explore uniPort’s ability for gene imputation, we followed the
scheme of gimVI27 to impute missing genes in MERFISH from scRNA.
To be specific, we first randomly selected 80% (i.e., 122/153)
genes in MERFISH as training genes and reserved the remaining 20%
(i.e., 31/153) genes as testing genes. We repeated the above steps
twelve times and obtained 12 training and testing gene sets. After-
wards, we trained the uniPort networkwith each training gene set, and
then imputed the corresponding testing gene set. We compared our
results with two state-of-the-art gene-imputingmethods29: gimVI27 and
Tangram28. We applied uniPort, gimVI and Tangram to impute testing
genes, and used UMAP to visualize both training and testing genes
(Fig. 5e). With an imputation framework like that of gimVI, we also
excepted imputed values of uniPort to carry gene-specific biases from
scRNA genes27. Therefore, for performance evaluation, we followed
gimVI and reported the median and average Spearman correlation
coefficients (mSCC and aSCC), as well as the median and average
Pearson correlation coefficients (mPCC and aPCC) over imputed and

ground truth testing genes. uniPort provided a significant improve-
ment over the two compared methods on the MERFISH dataset. For
example, uniPort separated different cell types in the UMAP visuali-
zation of imputed genes with a better result (Fig. 5e), and demon-
strated the highest mSCC (0.259), aSCC (0.26), mPCC (0.249), and
aPCC (0.294), significantly above those of gimVI (mSCC of 0.221, aSCC
of 0.24, mPCC of 0.201, and aPCC of 0.242) and Tangram (mSCC of
0.188, aSCC of 0.206, mPCC of 0.202, and aPCC of 0.231) (Fig. 5f).

We further explored uniPort’s ability for online imputation by
training a model of scRNA and MERFISH data profiled frommouse #1,
as a reference atlas, and imputing scRNA genes through MERFISH
profiled from mouse #2. The result showed that the same genes in
MERFISH and predicted scRNA were also significantly correlated,
demonstrating the ability of uniPort to impute genes in an online
manner (Supplementary Discussion 1 and Supplementary Fig. 6).

uniPort deconvolutes synthetic STARmap data
Barcoding-based ST is more accessible to transcripts and achieves
higher coverage, while it is limited to the mixing spots with lower
resolution41. We next considered the deconvolution of barcoding-
based ST data through transferring labels from scRNA data to spots.
uniPort can provide an OT plan, which represents a cell-to-spot
probabilistic correspondence between scRNA and ST data, allowing us
to deconvolute the proportion of single-cell clusters for ST data
according to cell annotations in scRNA data (Supplementary
Method 2). Here, we first applied uniPort to deconvolute synthetic
STARmap data29. To evulate performance, we benchmarked uniPort
against two state-of-the-art cell-type deconvolution methods,
Tangram28 and SpaOTsc42. Tangram is a global matrix optimization
method, which aims to find a mapping matrix from which to project
scRNA-seq data to spots. SpaOTsc is an OT-based method that applies
unbalanced and structuredGromov-WassersteinOT to find amatching
matrix between scRNA-seq data and spots.

We benchmarked the results of uniPort, Tangram, and SpaOTsc
with four scores: Pearson correlation coefficient (PCC), structural
similarity index (SSIM), root mean square error (RMSE), and Jensen-
Shannon divergence (JSD) introduced by a recent paper that bench-
marked spatial and single-cell transcriptomics integration methods29.

Fig. 4 | uniPort integrates the cell-type unbalancedmouse spleen data. aUMAP
visualization of the case of “UBM-ATAC” after uniPort integration colored by omics
and cell annotations. b UMAP visualization of the case of “UBM-RNA” after uniPort

integration. cComparison of total scores of ARI, NMI and F1 of differentmethods in
the three cases. d Comparison of Batch Entropy scores and Silhouette coefficients
of different methods in the three cases.
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Higher PCC and SSIM and lower RMSE and JSD, indicate better per-
formance. We adopted the results of Tangram and SpaOTsc directly
from the benchmarking paper29. Overall, uniPort performed compe-
titively with the two methods: uniPort performed favorably with PCC

of 0.449, RMSE of 0.157, and JSD of 0.569, which is below Tangram
(PCC of 0.619, RMSE of 0.147, and JSD of 0.524) while above SpaOTsc
(PCC of 0.409, RMSE of 0.197, and JSD of 0.573) (Supplemen-
tary Fig. 7).

Fig. 5 | uniPort imputes MERFISH genes through scRNA data. a UMAP visuali-
zation of MERFISH and scRNA data before integration. b UMAP visualization of
MERFISH and scRNA data after uniPort integration. c Comparison of Batch Entropy
scores and Silhouette coefficients of different methods. d Comparison of total
scores of ARI, NMI and F1 of different methods. e UMAP visualization of imputed
MERFISH genes of Tangram, gimVI and uniPort. f Boxplots of average and median

Pearson correlation coefficients (aPCCandmPCC) (n = 12, no statisticalmethodwas
used to predetermine sample size), and average and median Spearman correlation
coefficients (aSCCandmSCC) (n = 12) between real and imputedMERFISHgenes. In
the boxplots, the center line, box limits andwhiskers denote themedian, upper and
lower quartiles and 1.5× interquartile range, respectively.
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uniPort deciphers canonical structures of mouse brain
We then applied uniPort to deconvolute real-world barcoding-based
ST examples. To estimate cell-type composition for each captured
spot and decipher typical organizational structures, we first integrated
the anterior slice of adult mouse brain ST data (10× Visium)43.

As clear-cut boundaries exhibited, uniPort accurately recon-
structed the well-structured layers and deconvoluted 28 cell types
(Fig. 6a). The proportion and position of representative clusters, e.g.,
multiple cortical layers and region-specific cell types, are highly con-
sistent with those of previous studies43,44. Despite the complexity of its
anatomy, uniPort accurately remodeled and arranged the L2/3-
L6 subclusters extending from the boundary to the central area
(Fig. 6b). In addition, subpopulations of the L6 layer were separated
with clear limits, revealing the sensitivity of our method to near-
imperceptible signals. The non-neuronal neuroglia cells that provide
neurons with support and protection, including astrocytes and
oligodendrocytes45, had corresponding sites paired with their marker
genes (e.g., Olig1 and Olig2 of cluster Oligo; Atp1b2 and Slc1a2 of
cluster Astro;DcnandOsr1of cluster vascular and leptomeningeal cells
(VLMCs)) (Supplementary Fig. 8). Moreover, VLMCs that form pro-
tective sections around the pia membranes of the brain also lie in the
border of the slice in harmonywith anatomical structures46. Therefore,
our mapping is robust, as demonstrated by either expression of mar-
ker genes or anatomy of the brain, and can establish an agreement
between gene expression-based clustering and anatomical annotation,
providing a more thorough and comprehensive understanding than
can be achieved through visual inspection.

uniPort assists in locating TLS in breast cancer region
Thegenesis andprogressionof cancer are generally influencedby their
association with the heterogeneous tumor microenvironment (TME)47

for which ST can provide biological insights. To further demonstrate
its flexible utility, we used uniPort to deconvolute spatial data ofHER2-
positive breast cancer, containing diffusely infiltrating cells that make
it more difficult to deconvolute spots. As shown in Fig. 6c, nine main
clusters were assigned on spatial images, primarily involving T cells
and cancer epithelial cells. Moreover, we found that representative
clusters scattered in their centralized enrichment region coincided
with the area indicated by the expression of their marker genes
(Fig. 6d). For example, T and B cells, which establish crucial adaptive
immunity through protective immunological memory, were matched
well with canonicalmarker genes, such asCD3D andMS4A1 (Fig. 6d, e).
Myeloid cells, as an innate part of the immune system, also displayed a
distribution concordant with the expression of CD6848. Furthermore,
cancer epithelial cells protruded along the invasive ductal carcinoma
region, corresponding with the expression of ERBB2 as well. Overall,
the above results reach concordance between pathological annotation
and data-motivated labeling.

Massive researchhas demonstrated that an increased infiltration of
immune cells is highly related to favorable breast cancer prognosis49.
TLS, a kind of ectopic lymph-like organ recently discovered at sites of
tumor or inflammation, are considered as a prognostic and predictive
factor for cancer patients. Although TLS are inhabited by multiple cell
types, themajor residents areT andB cells, implicating theTMEby their
joint colocalization50. Through decomposing cell-type proportion of
each spot, we identified TLS signals via colocalization of T and B cells,
rendering an identical expression intensity with T and B cells (Fig. 6f). In
general, our approach can harmonize diverse modalities and cater to
both high-resolution mapping and recognition of representative archi-
tectures across tissues and diseases.

uniPort reveals cancer heterogeneity in microarray-based
spatial data
The area of Visium-based ST data is limited to a 55μm diameter for
each captured spot, which reaches a moderate resolution that

translates to 3–30 cells41. Latent integration challenges may arise,
along with the decrease of spot resolution, as an increased mix of
ingredients bringsmorenoise. To examine the performance of uniPort
in this case, we employed microarray-based ST data of pancreatic
ductal adenocarcinoma (PDAC) tissues for integration, the diameter of
which stretches for 100μm51. Cell-type deconvolution was applied on
428 spots paired with 1926 single cells, measuring 19,736 genes
respectively.

We decomposed 15 main clusters, which exhibit a discrete
enrichment and complexity of both normal and tumor composition
(Fig. 7a). In detail, normal pancreatic cell typeswere classified as ductal
and acinar cells consistent with the results of previous studies52, pre-
serving dramatically different distributions and genetic characteristics
against those of cancer cells. As for malignant pancreatic cells, we
grouped them as cancer clone A and B clusters based on genetic dif-
ferences. Once again, histological annotations of normal and cancer-
ous regions were, overall, in line with their data-driven labels (Fig. 7b),
and essential constituents of the TME were indicated by their marker
genes (Fig. 7c, d).

To gain further insight into the heterogeneity of cancer subtypes,
we confirmed their identity, accounting for the maximum proportion
of each spot (Fig. 7e). Top enrichment KEGG pathways isolated them
into distinct functional assemblies (Fig. 7f). Cancer clone A is sus-
pected to be an invasive phenotype attributed to the high enrichment
of platelet activation and leukocyte transendothelial migration path-
way. Lumps of data have proved that platelets are closely related to a
high risk of metastasis in patients with pancreatic cancer53. Further-
more, the proportion of hematogenous cells, including red blood cells
(RBCs), T cells, and natural killer (NK) cells, in cancer clone A sig-
nificantly increased (Fig. 7g), which is consistent with the results of
functional analysis. Tight junction plays a critical regulatory role in the
physiologic secretion of the pancreas, and its disruption contributes to
the pathogenesis of progressive pancreatic cancer54. Furthermore,
PI3K signaling can potentially modify the TME to dictate the outcome,
which must be considered to have therapeutic opportunities for tar-
geting PDAC55. All these beneficial signals were enriched in the cancer
clone B region where endothelial cells showed a significant presence,
suggesting a less malignant cluster in contrast with cancer clone A. In
sum, then, our method can manipulate an extensive application
spectrum of varying resolutions, revealing the subtle
heterogeneous TME.

Discussion
We introduce a unified deep learning method named uniPort for
single-cell data integration and apply it to integrate transcriptomic,
epigenomic, spatially resolved high-plex RNA imaging- and barcoding-
based single-cell genomics. uniPort combines a coupled-VAE and
Minibatch-UOT and leverages both highly variable common and
dataset-specific genes for integration. It is a nonlinear method that
projects all datasets into a common latent space and outputs their
latent representations between datasets, enabling both visualization
and downstream analysis.

Generally, uniPort tackles several computational challenges,
starting with removing the constraint of paired cells required by other
autoencoder-based models by the employment of Minibatch-UOT.
Different from existing methods that only consider common genes
across datasets, we also take advantage of genes unique to each
dataset, typically capturing cell-type heterogeneity not present in
common genes (Supplementary Discussion 2 and Supplementary
Figs. 9, 10). Besides, uniPort shows its power and potential for gene
imputation by constructing a reference atlas owing to the general-
ization ability of coupled-VAE. It is relevant to point out that uniPort
can even impute unique genes in one dataset through common genes
in another dataset without having to train from scratch. Moreover,
uniPort can output an OT plan for downstream analysis, such as
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Fig. 6 | uniPort identifies iconic structures in spatial transcriptomic data (10×
Visium). a Results of mapping spatial data to single-cell data using the optimal
transport plan. Spatial scatter pie plot displays the well-structured cluster com-
position in adult mouse brain anterior slice. b Lists of canonical cerebral cortical
neuron types with scaled proportion. c Spatial deconvolution result of the

HER2-positive breast cancer. d Proportion of typical clusters in tumor micro-
environment. e Expression of marker genes corresponding to clusters in d.
f Tertiary Lymphoid Structure (TLS) scores inferred from summing the proportion
of T cells and B cells together with their colocalization.
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flexible label transfer learning, for deconvolution of spatial
heterogeneous data.

Although many mechanisms are involved, uniPort is still com-
putationally efficient and scalable to integrate large-scale and het-
erogeneous datasets, which could be computationally prohibitive
for other OT-based methods. To the best of our knowledge, pre-
valent OT-basedmethods for single-cell analysis are based on global
optimal transport, e.g., SCOT15 and Pamona17 for single-cell multi-
omics data integration, SpaOTsc42 and novoSpaRc56 for spatial
positions reconstruction, and Waddington-OT57 for trajectory

inference. Global optimal transport makes the computation very
expensive. To resolve this drawback, our uniPort introduces a
Minibatch-UOT into a VAE-based framework for single-cell geno-
mics analysis, which only needs to solve a mini-batch transport plan
at each iteration, thus significantly reducing the computational
cost. Therefore, it is scalable to large datasets (Supplementary
Discussion 3, Supplementary Figs. 11 and 12). Additionally, in gen-
eral, our coupled-VAE and Minibatch-UOT-based uniPort is more
accurate than other OT-basedmethods, such as SCOT, Pamona, and
SpaOTsc in different tasks.

Fig. 7 | uniPort identifies distinct cancer subtypes in microarray-based spatial
data. a Spatial deconvolution result of pancreatic ductal adenocarcinoma (PDAC).
b Three manually segmented annotation of PDAC tumor cryosection on one ST
slide. The red line circles the ductal epithelium region (left), and the yellow line
circles the cancer region (right). c Proportion and distribution of typical clusters in
PDAC. d Expression of marker genes corresponding to clusters in c. e Distribution

of cancer clone subtypes. f Top enriched KEGG terms of distinct cancer subtypes.
g Boxplots of significant differences of cluster composition between the cancer
clone A (n = 36) and cancer clone B (n = 41) regions (two-sided t-test). In the box-
plots, the center line, box limits and whiskers denote the median, upper and lower
quartiles and 1.5 × interquartile range, respectively.
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Given that our integration of scATAC is based on gene activity
score, we also tested uniPort’s performancewhengene activity score is
calculated in different approaches.We employed twomethods to form
the gene activity score introduced by Signac58 and MAESTRO37,
respectively. Signac defines gene activity score for scATAC as the read
count in the gene body and promoter region. MAESTRO calculates
gene activity score as a weighted sum of nearby cis-regulatory ele-
ments (REs), where the weight is an exponentially decreasing function
of distances of REs and target genes. The integration result showed
that uniPort achieved better performanceon the gene activity score by
MAESTRO with all evaluated scores higher than that by Signac (Sup-
plementary Fig. 13), which demonstrated the importance of modeling
the gene activity score. It is worth noting that, GLUE26, which is
developed based on a sophisticated knowledge-based graph that
explicitly and accurately models regulatory signals of scATAC, instead
of using gene activity score, provides an important technique for
analyzing scATAC data.

We demonstrate that uniPort consistently performs favorably
when compared with recently published state-of-the-art methods, and
successfully deconvolutes spatial heterogeneous data using the OT
plan. With the rapid development of paired datasets and various het-
erogeneous modalities, we also demonstrate the generalizability of
uniPort to other types of single-cell data by integrating paired datasets
using CITE-seq data6,8 and SNARE-seq data59 (Supplementary Discus-
sion 4, Supplementary Figs. 14, 15) or datasets without aligned com-
mon genes (Supplementary Discussion 5, Supplementary Fig. 16b).
With no inherent reliance on any prior information, our framework
offers the flexibility necessary to match prior information, e.g., cell-
type annotations or cell-cell correspondence, when available (Sup-
plementary Method 3, Supplementary Fig. 16c). We will keep updating
and improving the framework in anticipation that uniPort will find a
wide range of applications in the area of integrative single-cell multi-
omics data analysis.

Methods
uniPort framework
uniPort inputs each dataset though a coupled variational autoencoder
(coupled-VAE) framework and learns its K-dimensional features. Given
a sample x, the corresponding K-dimensional latent vector z can be
obtained by a variational posterior p(z∣x) approximated by a prob-
abilistic encoder ψ(z∣x). Conversely, a probabilistic decoder ϕ(x∣z)
produces a distribution over the possible corresponding values of x
given z. The coupled-VAE jointly learns ψ and ϕ to maximize the evi-
dence lower bound (ELBO) with a balanced parameter λ:

LELBO =Eψðz∣xÞ½logϕðx∣zÞ� � λDKLðψðz∣xÞ k pðzÞÞ: ð1Þ

The ELBO consists of a reconstruction term that encourages the
output data to be similar to the input data, in addition to a Kullback-
Leibeler divergence regularization term which regularizes the varia-
tional posterior to follow the prior distribution p(z). We set the prior
distribution to be the centered isotropic multivariate Gaussian
pðzÞ=N ðz;0, IÞ and the variational posterior to be a multivariate
Gaussian with a diagonal covariance structure ψðz∣xÞ=N ðz; μ,σ2IÞ,
where the mean vector μ and standard deviation vector σ are outputs
of the encoder. Then, the latent vector z can be obtained through
reparameterization by z =μ + σ × ν, where ν is sampled from N ð0, IÞ.

Here, we formulate ourmethod for the case of twodatasets, while
it can be easily generated for cases of multiple single-cell datasets.
Suppose there are two single-cell datasetsX= fx1, . . . ,xnx

gwith nx cells
and dx genes, and Y= fy1, . . . ,yny

g with ny cells and dy genes. We first
select the top khighly variable commongenes in both datasets to form
Xc andYc, and the top kx and ky highly variable genes inX andY to form
Xs and Ys, individually. We project both Xc and Yc into a generalized
cell-embedding latent space using a dataset-free probabilistic encoder

ψ and a decoder ϕ with two Dataset-Specific Batch Normalization
(DSBN) layers32 corresponding to twomodalities. Then, to leverage the
information of dataset-specific highly variable genes, we also intro-
duce two decoders,ϕx and ϕy, to reconstructXs and Ys from the latent
variables, as well. Overall, the modified ELBO* loss for coupled-VAE is
given by

LELBO* =Eψðz∣xÞ logϕðx∣zÞ+ λs logϕxðxs∣zÞ+ logϕyðys∣zÞ
� �n o

� λDKLðψðz∣xÞ k pðzÞÞ,
ð2Þ

wherex∈Xc∪Yc, xs∈Xs, ys∈Ys, and λs, λ are balanced parameters. To
better integrate heterogeneous single-cell datasets in the latent space,
we design an alignment term for different datasets using Minibatch
Unbalanced Optimal Transport (Minibatch-UOT)30. uniPort computes
the Minibatch-UOT loss between datasets X and Y described as
follows. For twoK-dimensional Gaussian distributions pxi

=N ðμxi
,σ2

xi
IÞ

and pyj
=N ðμyj

,σ2
yj
IÞ corresponding to cell xi and yj, where μxi

,μyj
2

RK and σxi
,σyj
2 RK

+ represent the output mean and standard
deviation vectors by encoder ψ, respectively, the Minibatch-UOT cost
between cell xi and yj is defined as (Supplementary Method 1):

Cij = kμxi
� μyj
k2 + kσxi

� σyj
k2: ð3Þ

We then compute the following optimal Minibatch-UOT plan30

with batch size Bx and By:

T* = argmin
T2RBx ×By

+

<C,T>� ϵHðTÞ+ ρDKLðT1By
kaÞ+ρDKLðT>1Bx

kbÞ, ð4Þ

where <C,T > =∑i,jCijTij, entropy regularization term HðTÞ=
�Pi,jTijðlogTij � 1Þ, and a= 1

Bx
1Bx

,b = 1
By
1By

. ϵ and ρ are balanced
parameters.We set ρ = 1 for all experiments in this paper, but uniPort is
robust to different choices of ρ (Supplementary Fig. 17c). Eq. (4) is a
strictly convex optimization problem and canbe solved via an efficient
inexact proximal point method (IPOT)60 as

αðl + 1Þ =
a

GβðlÞ

 ! ρ
ρ + ϵ

,βðl + 1Þ =
b

G>αðlÞ

� � ρ
ρ + ϵ

, ð5Þ

starting fromβð0Þ = 1
Bx
1Bx

, whereGij =T
ðlÞ
ij e
�Cij=ϵ. TheoptimalMinibatch-

UOT plan T*
ij =αiGijβj . Therefore, the Minibatch-UOT loss is given by

LUOT* =
X
i,j

Cij ×T
*
ij : ð6Þ

The total loss function minimized by uniPort is formulated as

LuniPort = �LELBO* + γLUOT* : ð7Þ

Once T* is obtained, we provide users an option to output an OT
plan T for tasks which need cell-to-cell probabilistic correspondence.
Specifically, we first initialize T= 1

nxny
1nxny

. After each calculation of
optimal Minibatch-UOT plan T*, we update T by replacing rows and
columns by T* which is sampled by the minibatch strategy. Note that
storing a dense matrix T needs more memory. Therefore, computing
capacity with respect to memory should be ascertained before using
this option. We also provide an option for user-guided sample weights
if cells are not uniformlymatched. In this case, we set vectorsa andb in
Minibatch-UOT as weighted vectors specified by users, instead of
uniform vectors (Supplementary Method 4).
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uniPort algorithm
uniPort integrates two single-cell datasets X = fx1, . . . ,xnx

g
and Y= fy1, . . . ,yny

g.
Input: the top k highly variable common genes in X and Y, for-

mulated as Xc and Yc, top kx and ky highly variable genes in X and Y,
formulated as Xs and Ys.

Output: aligned latent vectors zx and zy, and an optimal transport
plan T.

uniPort performs the following steps:
1. Initialize coupled-VAE encoder ψ and decoders ϕ,ϕx,ϕy, and an

OT plan T= 1
nxny

1nxny
(optional).

2. For m← 1,⋯ ,M do the following
a. Randomly sample an integer index set I = ði1, � � � ,iBx

Þ 2 ½½nx ��Bx

for dataset X and J = ðj1, � � � ,jBy
Þ 2 ½½ny��By for dataset Y

without replacement, respectively.
b. Initialize Minibatch-UOT plan TB 2 RBx×By by sampling rows

and columns of T, corresponding to I and J , or uniform
distribution when T is not specified.

c. Input both Xc
I and Yc

J through the shared probabilistic enco-
derψ to obtain (μx, σx) and (μy, σy), and then reparameterize
zx and zy by zx =μx + σx × ν and zy =μy + σy × ν;

d. Reconstruct X̂
c
I and Ŷ

c
J by decoder ϕ, and X̂

s
I and Ŷ

s
J by

decoders ϕx and ϕy, from zx and zy.
e. Compute minibatch transport cost C via Eq. (3) and obtain

optimal Minibatch-UOT plan T*
B via Eq. (4).

f. Fix T*
B and update ψ,ϕ,ϕx and ϕy through back propagation

via minimizing LUOT* and �LELBO*.
g. UpdateTwith rows and columns asT*

B, corresponding to I and
J (optional).

Training details
uniPort consists of one encoder and three decoders for the integration
of two datasets. The encoder is a two-layer neural network (1024–128)
with the ReLU activation function. The decoders have no hidden layer,
but directly connect the 16-dimensional latent variables to the output
layerswith the Sigmoid activation function. The Adamoptimizer with a
5e-4 weight decay is used tomaximize the ELBO. Minibatch size is 256.
We set all the training with learning rate to 2e-4 and optimal transport
entropy regularization parameter ϵ to 0.1. We chose parameters for
training coupled-VAE and Minibatch-UOT from λ∈ {0.5, 1.0, 5.0}, γ∈
{0.5, 1.0}, and λs∈ {0.5, 1.0} for all datasets. uniPort is robust to dif-
ferent choices of λ, λs and γ (Supplementary Fig. 17a). It is also robust to
the number of selected common and dataset-specific highly variable
genes (HVGs) within a certain range (Supplementary Discussion 6 and
Supplementary Fig. 17b). The default maximum number of training
iterations is 30,000, and an early stopping is triggered when no
improvement has occurred for 30 epochs. Our experimental envir-
onment includes two AMD EPYC 7302 16-Core Processors, 128GB
DDR4 memory, and a Tesla T4 NVIDIA GPU with 16GB memory.

Data preprocessing

• Human PBMC multi-omics dataset. The paired multi-omics
PBMC dataset measuring both DNA accessibility and gene
expression data were downloaded from the publicly available
10× Genomic datasets36. The raw gene expression data were
processed using the Seurat package (v4.1.0)9. Cells and genes
were filtered under default parameters. SCTransform was
used for normalization. For paired scATAC-seq data, the
fragment files were qualified using Signac (v1.5.0)58 under
default parameters. Peaks were called with MACS261. Then
latent semantic indexing (LSI) was used for dimensionality
reduction, resulting in the binary cell-by-bin accessibility as
input for TF-IDF weighting. Consequent dimensionality
reduction used Singular Value Decomposition (SVD). The

gene activity count matrices were derived using MAESTRO37.
Cell types were arranged by transferring labels from an
annotated PBMC reference dataset6 using Seurat. Finally,
11,259 cells with 28,307 features in scATAC and 11,942 genes
in scRNA were used for the integrative analysis.

• microfluidic-based PBMC dataset. The unpaired microfluidic-
based PBMC dataset was obtained from MAESTRO37, includ-
ing 1919 cells with 28307 genes in gene activity score of
scATAC and 1985 cells with 1477 genes in scRNA. The gene
activity score was processed by MAESTRO.

• Mouse spleen dataset. The processed and annotated scRNA
data of mouse spleen was directly obtained fromMultiMAP13,
containing 4382 cells with 13,575 genes. The gene activity
score of scATAC62 was processed by SnapATAC63, containing
3166 cells across 19,410 genes.

• Synthetic STARmap dataset. The synthetic STARmap dataset
was obtained from the benchmarking paper29, containing
14249 cells with 34041 genes in scRNA data and 189 cells with
882 genes in the spot data.

• Brain scRNA and MERFISH dataset. The scRNA-seq (10×)
dataset from the preoptic region of the hypothalamus in six
mice was obtained from NCBI GEO accession number
GSE11357664. The MERFISH data and annotations were down-
loaded fromDryad repositories [https://datadryad.org/stash/
dataset/doi:10.5061/dryad.8t8s248]. Naive female mouse #1
in the MERFISH data was chosen for integration, and the
mouse #2 was extracted to validate the result of online
imputation. All cells labeled as ‘Ambiguous’or ‘Unstable’were
removed from both datasets. scRNA data were qualified and
processed using Seurat as above.

• 10× Visium dataset and reference. The series of 10× Visium
spatial datasets, including sagittal mouse brain slice
(2696 spots with 48,721 genes) and human breast cancer
(2518 spots with 17,943 genes), were obtained from 10×
Genomic datasets36. Spaceranger outputs were obtained and
processed with Seurat to generate the standard gene
expression matrix. For the mouse brain dataset, the anno-
tated scRNA dataset from adultmouse cortical cell taxonomy
from the Allen Institute was chosen as reference, and the
subset used was extracted from SPOTlight tutorial43. The
processed and labeled scRNA reference for breast cancer
slice came from65.

• Pancreatic ductal adenocarcinoma dataset. The microarray-
based spatial transcriptomic dataset of pancreatic ductal
adenocarcinoma (PDAC) was acquired from NCBI GEO
accession number GSE11167251. The spatial dataset of batch
A was adopted together with scRNA-seq generated from the
same sample. Cell types in the scRNA reference had already
been assigned. These two expression profiles were set as
input for uniPort.

• uniPort preprocessing steps. uniPort preprocessed data as
follows: (1) We filtered out cells with fewer than 200 genes
andfiltered out genes observed in fewer than 3 cells for PBMC
data. No cells or genes were filtered out for other data. (2) We
normalized total counts of each cell using the scanpy.pp.-
normalize_total function in the scanpy package66 in Python.
(3) We performed log-normalization of all datasets with an
offset of 1 using the scanpy.pp.log1p function. (4) We
identified k = 2000 highly variable common genes across
cells of all datasets, and identified kx = ky = 2000 highly
variable genes for each dataset using sc.pp.highly_variable_-
genes function, respectively. (5)Wenormalized values of each
gene to the range of 0-1 within each dataset by the
MaxAbsScaler function in the scikit-learn package in Python.
The processed matrix was used as input for uniPort.
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Settings used in comparing methods
For the integration among scATAC-seq, scRNA-seq and spatial tran-
scriptomic datasets, we benchmarked the performance of uniPort
(v1.1.1) against the followingmethods: Seurat (v4.1), Liger (v1.0.0), and
Harmony (v1.0) in R environment (v4.0.2), SCALEX (v0.2.0), MultiMAP
(v0.0.1), scVI (v0.17.1), scMC (v1.0.0), GLUE (v0.2.3), SCOT (v1.0),
Pamona (v0.1.0), and Tangram (v1.0.3) in Python environment
(v3.8.13). We compared their co-embedding UMAP visualization with
parameters n_neighbors=15 and min_dist=0.1. All methods adopted
gene activity matrices derived from the above data preprocessing
steps as input for scATAC-seq. Detailed parameters used in each
method are as follows.

• Seurat. The Seurat package (v4.1.0) was used for all datasets.
The raw gene expression profile and unnormalized gene
activity matrix were set as input. The matched matrices were
log-normalized using the NormalizeData function in Seurat
with scaling at 10000 for cell-level normalization separately.
Then the FindVariableFeatures function was used to pick the
top 2000 HVGs for scRNA. The anchors between scRNA and
scATAC were acquired using the FindTransferAnchors func-
tion, where ‘cca’ was set as the reduction method with
features from HVGs in the scRNA dataset. The imputed
scATAC data used the TransferData function, where anchors
were weighted by latent semantic indexing. Then scRNA and
imputed scATAC datasets were merged and reduced using
PCA with the RunPCA function under default 50 principal
components (PCs). UMAP was adopted for visualization at 30
PCs using the RunUMAP function. For MERFISH data, the
FindIntegrationAnchors and IntegrateData functions were
used for integration after common feature selection with
the SelectIntegrationFeatures function. Then the integrated
matrix was scaled using the ScaleData function, and PCA and
UMAP were applied to all at 30 PCs. For the 10X Visium
datasets, the cell-type assigning probabilities of spots were
derived using the FindTransferAnchors and TransferData
functions, where spatial datasets were reduced using PCA
at 30 PCs.

• Liger. The R package rliger (v1.0.0) was used for integrating
scATAC and MERFISH data with scRNA data. The normal-
ization and selection of HVGs are the same as above steps in
Seurat. For all datasets, the number of factors was set to 20 at
default in the optimizeALS function,whichwasdonebycalling
the RunOptimizeALS function in the SeuratWrappers package
(v0.3), and then building a shared factor neighborhood graph
and quantile normalization of corresponding clusters applied
through the RunQuantileNorm function.

• Harmony.The R package harmony (v1.0) was used for integrat-
ing scATAC and MERFISH data with scRNA data. The nor-
malization and selection of HVGs are the same as above steps
in Seurat. Then PCA was performed using the RunPCA func-
tion in Seurat at 50PCs. Harmony refined the results of PCA at
top 30 PCs.

• SCALEX. The Python package scalex (v0.2.0) was used for inte-
grating scATAC andMERFISH data with scRNA data. The data
preprocessing steps are the same in uniPort and SCALEX.
Therefore, we input the same preprocessed data without
common genes as those in uniPort. Embedded preprocessing
of the scalex package was ignored. We ran SCALEX using the
SCALEX function with parameters set as default.

• MultiMAP. The Python package MultiMAP (v0.0.1) was used for
integrating scATAC and MERFISH data with scRNA data. We
followed the tutorials of MultiMAP on GitHub. We first
applied the sc.pp.normalize_total and sc.pp.log1p functions to
raw counts without scaling. We then processed data with the

MultiMAP.TFIDF_LSI function for dimensionality reduction of
ATAC peaks, sc.pp.scale and sc.pp.pca functions in Python
package scanpy for dimensionality reduction of scRNA and
MERFISH data, and the MultiMAP.Integration function for
integration with all parameters set as default, as suggested in
the pipeline in the GitHub repository.

• scVI. The Python package scvi-tools (v0.17.1) was used for
integrating scATAC and MERFISH data with scRNA-seq data.
We followed the tutorials of scVI on GitHub. We first
performed sc.pp.normalize_total and sc.pp.log1p functions
for input data. Then we selected the top 2000 highly variable
genes using the sc.pp.highly_variable_genes functions with
flavor="seurat_v3". After that, scvi.model.SCVI and scvi.mo-
del.SCVI.setup_anndata functions were used for model
initialization.

• scMC. The R package scMC (v1.0.0) was used for integrating
scATAC-seq and scRNA-seq data. The normalization and
selection of HVGs are the same as the above steps in Seurat.
Then we scaled data by ScaleData function and performed
scMC through RunscMC function. We searched parameter
similarity.cutoff of RunscMC function within {0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9} for the best integration result. All other
parameters were set as default.

• GLUE. The Python package scglue (v0.2.3) was used for inte-
grating PBMC and mouse spleen examples. We followed the
tutorials of GLUE on GitHub. We first performed sc.pp.nor-
malize_total, sc.pp.log1p and sc.pp.scale functions for input
data with default parameters for scRNA data. Then we used
sc.tl.pca function with n_comps=100 and scglue.data.lsi func-
tion with n_components=100 for scRNA and scATAC data,
respectively. We chose prob_model=‘ZINB’ for the PBMC
example and prob_model=‘Normal’ for mouse spleen example
in scglue.models.configure_dataset function. All other para-
meters were set as default.

• SCOT. We downloaded SCOT (v1.0) from https://github.com/
rsinghlab/SCOTfor integrating scATAC-seq with scRNA-seq
data. Because SCOT did not provide a data preprocessing
tutorial, we compared different approaches and used the one
with the best result. To be specific, we performed uniport.T-
FIDF_LSI function with default parameters for ATAC peaks,
which reduced the dimension to 49. Then we performed
sc.pp.normalize_total, sc.pp.log1p and sc.pp.pca functionswith
default parameters for RNA data. We set all parameters as
default in scot.align function.

• Pamona. The Python package pamona (v0.1.0) was used for
integrating scATAC-seq and scRNA-seq data. All data
preprocessing was performed in the same manner
as SCOT.

• Tangram. The Python package tangram-sc (v1.0.3) was used for
imputingMERFISH through scRNA-seq data. We followed the
tutorial of Tangram on GitHub. First, tg.pp_adatas function
was applied to pre-process both trainingMERFISH and scRNA
data. Then, we performed tg.project_genes function to find the
project matrix, which was used to impute MERFISH test
genes. All parameters were set as default.

• gimVI. The model gimVI in the Python package scvi-tools
(v0.17.1) was used for imputing MERFISH through scRNA-seq
data. We followed the tutorial of scvi-tools in GitHub, and
used GIMVI.train function to train the model in 200 epochs.
All parameters were set as default.

Evaluation metrics
The accuracy of cell-type assigning was quantified by the adjusted
Rand Index (ARI), Normalized Mutual Information (NMI) and F1 score.
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To be specific, we trained a k-Nearest-Neighbor (kNN) classifier by the
sklearn.neighbors.KNeighborsClassifier function based on cell-type
annotations and UMAP coordinates of reference data (e.g., scRNA)
embeddings in the common latent space. Then, we applied the well-
trained kNN classifier to predict cell-type annotations of query dataset
(e.g., scATAC/MERFISH) embeddings, and calculated the ARI, NMI and
F1 scores by real and predicted query cell type annotations. All results
are based on UMAP visualization with parameters n_neighbors=15 and
min_dist=0.1.

• Adjusted Rand Index. Adjusted Rand Index (ARI) is introduced
to determinewhether real andpredicted cell-type clusters are
like each other. The Rand Index (RI) computes the similarity
by taking all points identified within the same cell-type
cluster. The Adjusted RI (ARI) is the chance-corrected version
of the Rand index and calculated with RI as

ARI =
RI� expectedRI

maxðRIÞ � expectedRI
:

The ARI value ranges from 0 to 1, with 0 for random labeling
and 1 for perfect matching.

• Normalized Mutual Information. Normalized Mutual Infor-
mation (NMI) is a variant of a common measure in informa-
tion theory called Mutual Information. It is calculated as

NMIðU, VÞ= 2× IðU; VÞ
HðUÞ, HðVÞ ,

where U and V are categorical distribution for the real and
predicted cell-type annotations, I is the mutual entropy
function and H is the Shannon entropy function.

• F1. The F1 score combines the precision and recall of a classifier
into a single metric by taking their harmonic mean. It is cal-
culated as

F1 =
2 ×P*R
P+R

,

where P is the precision and R is the recall of the k-NN
classifier.

To assess the separation of clusters and batch mixing, the Sil-
houette coefficient and Batch Entropy score were adopted. Fur-
thermore, we employed average FOSCTTM15 to assess cell-to-cell
neighborhood preservation for paired datasets profiled from the
same cells. All these systematic benchmarks were applied in scRNA-
seq, scATAC-seq and MERFISH datasets. All results are based on
UMAP visualization with parameters n_neighbors=15 and
min_dist=0.1.

• Silhouette coefficient. The Silhouette coefficient is calculated
using the mean intra-cluster distance (a) and the mean
nearest-cluster distance (b) for each sample. The Silhouette
coefficient for a sample is calculated as

Silhouette =
b� a

maxða,bÞ :

By default, we scale the score between 0 and 1 by

Silhouette ðSilhouette + 1Þ=2,

• Batch Entropy score. It was derived from SCALAX25 inspired by
“entropy of batch mixing”33. It evaluates the sum of regional
mixing entropies at the location of randomly chosen cells

from different datasets where a high score indicates cells
from various datasets mixing well. This can be calculated as

p0i =
pi=PiPn
i= 1 pi=Pi

,

E =
Xn

i = 1

p0i logðp0iÞ,

where Pi is the proportion of cell numbers in each batch to the
total cell numbers, and pi is the proportion of cells frombatch i
in a given region. We calculated the Batch Entropy score only
based on cells from cell types that are common in different
batches.

• average FOSCTTM. FOSCTTM refers to “fraction of samples
closer than the true match”. It was used to evaluate the rela-
tionship preservation of cell-to-cell pairings’ neighborhood. It
was calculated on two datasets with known cell-to-cell
correspondence information. The average FOSCTTM is
calculated as

average FOSCTTM=
1
2n

FOSCTTM,

FOSCTTM=
Xn

i = 1

si

n
+
Xn

i = 1

ti

n
,

si = ∣fj∣dðzxj , zyi Þ<dðzxi , zyi Þg∣

ti = ∣fj∣dðzxi , zyj Þ<dðzxi , zyi Þg∣

where n is the number of both datasetX and Y, zxi and zyi are
paired cells, si and ti are the number of cells closer to the i-th
cell in a dataset than its true match in another dataset. The
average FOSCTTM ranges from 0 to 1, and lower values
indicate higher accuracy.

Statistics & reproducibility
All statistical calculations were implemented in R (v4.0.2; https://cran.
r-project.org/). Thedetailed statistical testswere indicated infigures or
associated legends where applicable. No statistical method was used
to predetermine sample size. No data were excluded from the ana-
lyses. Complete randomization was performed for allocating groups.
Our study does not involve group allocation that requires blinding.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data analyzed in this article are publicly available through online
sources. We present links to all data sources in Supplementary Data 1.
Source data are provided as a Source Data file. Source data are pro-
vided with this paper.

Code availability
The uniPort framework was implemented in the ‘uniport’ Python
package, which can be installed through PyPI [https://pypi.org/
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project/uniport/], and its open-source code is maintained at https://
github.com/caokai1073/uniPort.
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