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Pituitary neuroendocrine tumor (PitNET) is one of the most common intracranial tumors. Due to its extensive tumor heterogeneity
and the lack of high-quality tissues for biomarker discovery, the causative molecular mechanisms are far from being fully defined.
Therefore, more studies are needed to improve the current clinicopathological classification system, and advanced treatment
strategies such as targeted therapy and immunotherapy are yet to be explored. Here, we performed the largest integrative
genomics, transcriptomics, proteomics, and phosphoproteomics analysis reported to date for a cohort of 200 PitNET patients.
Genomics data indicate that GNAS copy number gain can serve as a reliable diagnostic marker for hyperproliferation of the PIT1
lineage. Proteomics-based classification of PitNETs identified 7 clusters, among which, tumors overexpressing epithelial-
mesenchymal transition (EMT) markers clustered into a more invasive subgroup. Further analysis identified potential therapeutic
targets, including CDK6, TWIST1, EGFR, and VEGFR2, for different clusters. Immune subtyping to explore the potential for application
of immunotherapy in PitNET identified an association between alterations in the JAK1-STAT1-PDL1 axis and immune exhaustion,
and between changes in the JAK3-STAT6-FOS/JUN axis and immune infiltration. These identified molecular markers and
alternations in various clusters/subtypes were further confirmed in an independent cohort of 750 PitNET patients. This
proteogenomic analysis across traditional histological boundaries improves our current understanding of PitNET pathophysiology
and suggests novel therapeutic targets and strategies.
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INTRODUCTION
Pituitary neuroendocrine tumor (PitNET, also known as pituitary
adenoma) is one of the most common intracranial tumors, with an
incidence of approximately 70‒90 cases per 100,000 people.1,2

PitNET shows a series of clinical manifestations driven by excessive
hormonal secretion and invasion of surrounding structures (e.g.,
II~V cranial nerves, hypothalamus, and internal carotid).3 Although
mostly considered benign, over 40% of PitNETs are invasive at the
time of surgery. It is challenging to treat PitNETs due to the
difficulty of complete surgical resection and the limited availability
of chemotherapy and radiotherapy options.4

The 2017 classification by the World Health Organization
(WHO)5 highlighted three main differentiating transcription
factors (TFs), including POU1F1 (also known as PIT1) for
differentiation of somatotrophs (GH), lactotrophs (PRL) and
thyrotrophs (TSH); TBX19 (also known as TPIT) for differentiation
of corticotrophs (ACTH); and NR5A1 (also known as SF1) for

differentiation of gonadotrophs (GN). In addition, clinically silent
adenomas, which do not show hormone hypersecretion and are
considered non-functioning, may also express one of three
specific TFs, including silent PIT1, silent TPIT, and silent SF1.5,6

Null-cell adenomas (NULL) are also clinically silent, although the
TFs remain unknown. Plurihormonal PitNETs produce two or
more hormones, and thus cannot be well defined by cell
lineages.7,8 The present classification of PitNET is summarized in
Supplementary information, Fig. S1a. This classification also
indicates several specific tumor variants that have a higher rate
of recurrence, including sparsely granulated somatotroph ade-
noma, lactotroph adenoma in men, silent corticotroph adenoma,
crooke cell adenoma, and plurihormonal PIT1 positive
adenoma.5,9

Medical treatment options for PitNETs are limited. At present,
surgery represents the first-line treatment for PitNETs, while
pharmacological interventions are available for two specific PitNET
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subtypes, i.e., dopamine agonists for PRL PitNETs, somatostatin
analogs for GH PitNETs.2,10 However, overall response rates to
both medications are moderate, and no other agents have shown
significant effects against other PitNET subtypes. Although several
promising molecular targets have been identified, such as EGFR
for ACTH PitNETs,11 more druggable targets are needed for
developing effective therapies.
Genetic studies have disclosed several variants involved in

tumorigenesis, such as GNAS, MEN1, NR3C1 and AIP.12 Since 2015,
our group has identified other causative mutations of PitNET in a
growing list of genes that include USP8, KIF5A, GRB10 and
CDH23.13–15 Among these, mutations in GNAS and USP8 are the
major causative factors (i.e., present in 40%‒60%) of GH and ACTH
PitNETs, respectively.13,16,17 However, the biological mechanism
connecting copy number alterations (CNAs) and tumorigenesis
remains unclear. Only three TFs (PIT1, TPIT and SF1) are currently
used to delineate the major PitNET cell lineages, although patients
exhibit diverse hormone secretion profiles and varying clinical
prognosis, which together suggest that additional TFs may
participate in tumorigenesis. While the large majority of published
studies are genomic or transcriptomic analyses, an integrated
multi-omics analysis can provide the comprehensive perspective
necessary to identify robust pathogenesis, prognostic, and
therapeutic markers for different PitNET lineages.18,19

Advances in integrative multi-omics strategies, such as those
encompassing proteomics and phosphoproteomics profiling, in
conjunction with genomic analysis, have driven therapeutic
development for several different tumor types.20–22 In this regard,
comprehensive characterization of the proteogenomic landscape
is essential for progress in developing therapeutic strategies. To
this end, we analyzed genomics, transcriptomics, proteomics, and
phosphoproteomics datasets from 200 PitNETs and 7 anterior
pituitary glands (APGs) as controls. We established a novel,
molecularly unbiased classification of PitNET subtypes to under-
stand their pathophysiological mechanisms and explore potential
actionable targets for each subtype. Moreover, the data generated
for these analyses will serve as an essential resource for further
biological and functional investigation, as well as drug discovery
for PitNET.

RESULTS
Proteogenomic analyses of PitNET specimens
To obtain the proteogenomic landscape of PitNET, whole-exome
sequencing (WES), transcriptomics, proteomics, and phosphopro-
teomics datasets were collected from 200 fresh-frozen tumors and
7 APGs as controls, based on pathological criteria (see Materials
and methods). Clinicopathological features, including TF lineage,
clinicopathological subtypes, surgery invasion status, patient
gender, tumor diameter, and KNOSP grade are summarized in
Supplementary information, Table S1. Figure 1a illustrates the
sample distribution across the three TF lineages and NULL, which
were further divided into 10 clinicopathological subtypes: PIT1
lineage (n= 101, including 21 GH, 23 PRL, 15 TSH, 22 silent PIT1,
and 20 plurihormonal), TPIT lineage (n= 46, including 21 ACTH,
and 25 silent TPIT), SF1 (n= 31, including 12 GN and 19 silent SF1),
and NULL (n= 22) (Supplementary information, Fig. S1b).
WES was conducted on 200 tumor tissues and paired peripheral

blood mononuclear cells (PBMCs) to identify possible genetic
variants in the cancer genome. RNA sequencing (RNA-seq) was
carried out for 194 tumors and 7 APGs. A mass spectrometry (MS)-
based label-free quantitative (LFQ) method was used to char-
acterize the proteomes of the 200 tumors and 7 APGs. A Fe-NTA-
enrichment-based strategy was employed for phosphoproteomics
profiling of 194 tumors and 7 APGs (Fig. 1a; Supplementary
information, Fig. S1b).

Overview of the proteogenomic landscape of PitNET
WES data analysis revealed 7333 mutated genes, including 11,092
non-silent point mutations and 419 small insertions or deletions
(indels) (Fig. 1b; Supplementary information, Table S1). In the 200
patients, we observed several significantly mutated genes (SMGs,
q < 0.1) associated with PitNET functions, including GNAS (11%),
KRT76 (8%), TCHH (6%), ZMIZ2 (6%), DGKZ (6%), KRTAP9-2 (5%), and
USP8 (4%) (Fig. 1b). Examination of the proportion of somatic base
changes revealed that PitNET patients carried a high proportion of
C > A transitions compared to the other five substitution types
(Fig. 1b). A comparison with previous studies using The Cancer
Genome Atlas (TCGA)23 indicated that, in this study, the tumor
mutation burden (TMB) in the PitNET cohort remained a lower-
middle level among the 33 cancer types (Fig. 1c).
We next compared the variant allele frequencies (VAFs) of the

SMGs and found that USP8 mutation (median: 0.45) ranked first,
followed by GNAS mutation (median: 0.36) (Fig. 1d). All nucleotide
variants in these two genes detected in PitNET patients were
previously reported.15,19 Enrichment analysis using Fisher’s exact
test to identify mutations associated with clinicopathological
subtype showed that USP8 mutations were enriched in the ACTH
subtype (P= 3.12e‒8), while GNAS mutations were enriched in the
plurihormonal subtype (plurihormonal subtype vs remaining
samples, P= 0.002) and GH subtype (GH subtype vs remaining
samples, P= 0.00059) (Fig. 1e). Somatic CNA analysis identified
arm-level amplifications (Chr 5, 7, 8, 9, 12q, 14q, 19, 20, 21p) and
deletions (Chr 1p, 2q, 11) (Fig. 1f). Focal peaks included
amplifications of 5p15.33, 7p14.1, 12p13.2, 13q12.12, 14q11.2
and 16p13.13 and deletions of 1q21.3, 11q11, 17q24.3 and
22q11.23, among others (see Materials and methods; Fig. 1g;
Supplementary information, Table S2).
Our transcriptomics, proteomics, and phosphoproteomics

datasets exhibited a unimodal distribution and passed the quality
control (QC) procedure (Supplementary information, Fig. S1c).
RNA-seq identified 18,397 genes with fragments per kilobase of
transcript per million fragments mapped (FPKM) values over 1,
providing an opportunity to explore the relationship between
transcriptome and proteome. For proteomics analysis, whole-cell
extracts of human embryonic kidney-derived HEK293T cells were
used as controls for quality. Quantitative MS analysis of
HEK293T cells confirmed the robustness and consistency of the
MS data, indicated by a high Spearman’s correlation coefficient of
0.91 among the proteomes of QC samples (Supplementary
information, Fig. S1d). Moreover, the dataset used in this study
provided in-depth coverage of the human proteome. A total of
10,011 proteins (with ≥ 2 unique peptides per protein) were
identified in the 200 tumors and 7 APGs, while a total of 29,219
phosphosites were detected, corresponding to 5483 phosphopro-
teins. Among them, 6160 proteins and 9905 phosphosites from
3276 phosphoproteins were selected for downstream analysis
based on their presence in more than 50% of cases of at least one
clinicopathological tumor subtype.
Principal component analysis (PCA) of our multi-omics data

revealed a significant separation between the PIT1 lineage (GH,
PRL, TSH, silent PIT1, and plurihormonal subtypes) and the APG,
ACTH, silent TPIT, and other PitNETs at the proteomics level,
whereas the PIT1 lineage showed higher similarity to the APG
group at the transcriptomics and phosphoproteomics levels
(Fig. 1h; Supplementary information, Fig. S1e, f). Transcriptomics
and proteomics data further indicated that lineage-specific TFs
(PIT1, TPIT, and SF1) and hormone-related genes (GH1, PRL, TSHB,
POMC, LHB, and FSHB) were expressed in specific clinicopatholo-
gical subtypes (Supplementary information, Fig. S1g). These
cumulative results thus provide a multi-omics landscape to
improve our understanding of the molecular mechanisms of
PitNETs.
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Impact of genomic alterations on the transcriptome,
proteome, and phosphoproteome
Correlation analysis of the paired transcriptomics and proteomics
datasets showed that 92.95% of 6115 mRNA-protein pairs were
positively correlated in tumor samples. Genes with strong

correlations were enriched in several pathways related to neuronal
system, epithelial-mesenchymal transition (EMT), and hormone
metabolic process, which indicate that these pathways are
overrepresented in PitNETs (Fig. 2a). In addition, the global
mRNA-protein correlation was moderate with sample-wise median
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spearman correlations of 0.45 and the correlation of each
clinicopathological subtypes ranged from 0.42 to 0.46 (Supple-
mentary information, Fig. S2a, b), which were consistent with
previous reports.21,24

We examined the regulatory effects of 23,109 somatic CNAs on
mRNA, protein, and phosphoprotein abundances of genes at the
same loci (cis effects) and genes at other loci in the genome (trans
effects) (see Materials and methods; Fig. 2b; Supplementary
information, Fig. S2c and Table S2). We observed cis effects for
6545 and 684 CNAs affecting mRNAs and proteins, respectively.
Among them, 502 significant cis effect events overlapped (Spear-
man’s correlation, FDR < 0.05) (Fig. 2c; Supplementary information,
Table S2); these 502 genes were enriched in pathways related to
post-translational protein modification, NAD+ biosynthesis, and
metabolism (Fig. 2d). We then assessed how CNA events
influenced mRNA, protein and phosphoprotein abundances of
cancer-associated genes (CAGs) via either cis or trans effects,
focusing on alterations in 593 previously described genes
(Supplementary information, Table S2).25 We found that CNAs
have cis effects on both mRNA and protein abundances of 15
CAGs, while 6 CAGs showed significant overlapped CNA cis effects
(FDR < 0.1) at the mRNA and phosphoprotein levels (Fig. 2e).
Figure 2f shows the annotations of these 21 CAGs. The cis or trans
effects of these 21 genetic alterations were also comprehensively
investigated (Supplementary information, Fig. S2d, e). In particular,
we observed that GNAS copy number had cis effects on GNAS, and
trans effects on EEF2, ELL, and RAB8A at the mRNA and protein
levels (Supplementary information, Fig. S2d).

Impact of GNAS mutation and GNAS copy number gain in the
PIT1 lineage
In our cohort, GNAS, enriched in the PIT1 lineage, was the most
frequently mutated gene, harboring two mutation hotspots,
R186C/G/L/H and Q212L (Figs. 1b, 3a). GNAS copy number gain,
as a CAG with cis effect (Fig. 2f; Supplementary information,
Fig. S2d), had particularly strong impacts on the PIT1 lineage
(Spearman’s correlation in 101 PIT1 lineage vs all 200 PitNETs:
R= 0.38, P= 0.0001, vs R= 0.19, P= 0.0071 at the mRNA level;
R= 0.41, P= 2.29e‒05 vs R= 0.21, P= 0.0024 at the protein level)
(Fig. 3b). Samples with either GNAS mutations (VAF > 5%) or GNAS
copy number gain were significantly enriched in the PIT1 lineage
(Fig. 3c). Thus, by integrating WES data, we could further divide
the PIT1 lineage into three subgroups, including wild-type (WT),
GNAS copy number gain, and GNAS mutant. Compared with the
WT group, samples carrying GNAS mutation showed reduced
GNAS protein levels (Wilcoxon rank-sum test, P= 7.6e‒7), while
those with GNAS copy number gain showed increased GNAS at
both mRNA and protein levels (Wilcoxon rank-sum test, P= 0.014
and P= 0.021) (Fig. 3d; Supplementary information, Fig. S3a, b).
GNAS mutations in PitNET patients have been linked to a

gain of function in G protein-coupled receptor (GPCR) signaling
pathways,26 although the specific downstream impacts remain
unknown. Compared with the WT group, we found that genes
involved in growth hormone (GH) synthesis, secretion, and action
pathways (e.g., GH1 and GH2) were upregulated at the mRNA,

protein, and phosphorylation levels (q < 0.05) in the GNAS mutant
group (Fig. 3e, f; Supplementary information, Fig. S3c, d and
Table S3). More specifically, we identified the upregulation and
phosphorylation (ADCY5_S666 and ADCY6_S576) of adenylate
cyclase (AC), along with the expression of PKAs in the GNAS
mutant PIT1 lineage tumors. We further focused on the
components in the GNAS-PKA downstream pathways. Combining
with the known mechanism, we speculated that PKAs might
promote the phosphorylation of CREBBP and subsequent
accumulation of the CREB complex (CREB1 and ATF2), ultimately
leading to hypersecretion of GH through PIT1 activation. Likewise,
we also infer that the hypersecretion of GH in these samples might
affect the levels of SHC (i.e., SHC1 and SHC3) and STAT5B, as well
as AKT1 and PKC protein activities (i.e., PRKCA and PRKCB), which
are known to promote cell growth and metabolism.
Amplification of 20q has been reported in PitNET,27 while the

cis and trans effects of 20q amplification and GNAS CNA (located
at 20q) remain unclear. Gene set enrichment analysis (GSEA) of
transcriptomics/proteomics datasets by Spearman’s correlation
showed upregulation in proliferation-related pathways, such as
cell cycle and DNA replication pathways, in patients with GNAS
copy number gain (FDR < 0.05) (Fig. 3h; Supplementary informa-
tion, Fig. S3e, f and Table S3). Furthermore, the GNAS copy
number gain group had higher multigene proliferation score
(MGPS) and clinical tumor volume as compared with the WT
group (Wilcoxon test, P < 0.05) (Fig. 3i). However, the correlation
was non-significant in tests with GH PitNETs alone.28 To
determine the proliferation characteristics of the PIT1 lineage
driven by GNAS copy number gain, we systematically character-
ized the signal cascade related to cell cycle and DNA synthesis.
Among cell cycle-related molecules, PRKDC and CDK6 were the
top two proteins positively correlated with GNAS copy number
(Fig. 3j; Supplementary information, Fig. S3g). Chemical inhibi-
tion or knockdown of GNAS has been shown to decrease the
expression of cyclin proteins such as cyclin D, which is closely
related to CDK6.29,30 This combined evidence suggested that
CDK6 could contribute to the enhanced proliferation rate of PIT1
PitNETs as a result of GNAS copy number gain. It was also
noteworthy that Rb mRNA level was positively correlated with
GNAS copy number, mRNA and protein levels (Spearman’s
correlation: GNAS copy number, R= 0.26, *P < 0.05; GNAS mRNA,
R= 0.30, **P < 0.01; GNAS protein, R= 0.26, **P < 0.01) (Supple-
mentary information, Fig. S3h). In addition, Rb phosphorylation
levels at the RB1_S37 site were significantly correlated with
GNAS at the mRNA and protein levels (Spearman’s correlation:
GNAS mRNA, R= 0.23, *P < 0.05; GNAS protein, R= 0.33,
***P < 0.001). Finally, our data showed that E2F and CDK2 were
downregulated, which might lead to the upregulation of ORC
family members. The upregulation of the ORC family, RFC family,
and PCNA in patients with GNAS copy number gain likely led to
the elevated DNA biosynthesis and the enhanced tumor cell
proliferation (Fig. 3j).
To further confirm the impacts of GNAS copy number gain, we

performed immunohistochemistry (IHC) for GNAS and CDK6 and
calculated IHC staining scores (H-scores). H-scores of GNAS and

Fig. 1 Proteogenomic landscape of PitNETs. a Top panel, pie charts of clinical indicators. Bottom panel, sample numbers and multi-omics
datasets of the cohort. b Genomic profile and associated clinical features of patients with PitNETs. SMGs in this dataset identified by MutSigCV
and OncodriveCLUST (q value < 0.1) are shown. Right panel, percentage of samples affected. Top panel, number of mutations per sample.
Middle panel, distribution of significant mutations across sequenced samples, color coded by mutation type. Bottom panel, percentage of
somatic base changes per sample. c Comparison of the TMB of our PitNETs cohort and 33 cancer types in TCGA studies. d Boxplot showing the
VAF of the top 20 SMGs. e Bar plot showing the genes with significantly different mutation frequencies based on Fisher’s exact test by
clinicopathological subtype (Fisher’s exact test, P value < 0.01). The numbers listed on the right side of the barplot represented the mutation
frequencies in the indicated clinicopathological subtype tumors. The numbers listed on the left side of the barplot represented the mutation
frequencies in the rest tumors. f, g Arm-level and focal-level amplifications and deletions. GISTIC analysis was performed to determine
significant regions and genes included in the recurrent CNAs identified in patients with PitNETs. h PCA analysis of proteomics data from 200
PitNETs and 7 APGs based on clinicopathological subtypes.
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CDK6 were divided into high and low H-score groups based on
the median score, respectively. As expected, the proportion of
CDK6 high H-score cells was greater in the GNAS high H-score
group than in the GNAS low H-score group in both the PIT1
lineage PitNETs and all PitNETs (Fisher’s exact test: PIT1 lineage

PitNETs, P= 0.026; all PitNETs, P= 0.031) (Fig. 3k, l; Supplementary
information, Fig. S3i).
In conclusion, these findings illustrate the diverse impacts of

genomic events in the GNAS gene, such as mutations that drive
hormone hypersecretion. Moreover, the finding that GNAS copy
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number gain can markedly enhance tumor cell proliferation
implied that an inhibitor therapy targeting CDK6 may be effective
for PIT1 lineage patients harboring GNAS copy number gain.

Multi-omics classification of PitNETs
To comprehensively explore the phenotypic and genotypic PitNET
diversity in this cohort, classification by consensus clustering31

was performed with the combined transcriptomics, proteomics,
and phosphoproteomics data. This analysis identified seven
proteomic (Supplementary information, Fig. S4a), five transcrip-
tomic (Supplementary information, Fig. S4b), and seven phospho-
proteomic (Supplementary information, Fig. S4c) clusters among
the PitNETs (Supplementary information, Table S4), which were
subsequently named according to their similarities to clinico-
pathological subtypes and predominant pathway associations.
At the protein level, the seven proteomic clusters included

GHenrich, EMTPRO, PRLenrich, TSH/silent PIT1enrich, ACTHenrich, silent
TPITenrich, and SF1/NULLenrich (Fig. 4a). Pathway enrichment
analysis (see Materials and methods; Supplementary information,
Table S4) showed that the Hedgehog signaling pathway was
differentially upregulated in GHenrich, and MYC targets v1 was
upregulated in PRLenrich (Fig. 4a). TSH and silent PIT1 were co-
clustered and enriched for pathways such as interferon-ɑ
response, and antigen processing and presentation. In addition,
the SF1 lineage and NULL PitNETs clustered together, forming the
SF1/NULLenrich cluster, which showed upregulation in metabolism-
related pathways, including fatty acid metabolism and the citrate
cycle. Moreover, males were more prevalent (78.3%), average age
was higher (> 60, 39.1%), and tumor diameter was larger (≥
40mm, 23.9%) in the SF1/NULLenrich cluster compared to other
clusters (Fig. 4b). Notably, the TPIT lineage was divided into two
smaller clusters, ACTHenrich and silent TPITenrich, at the protein
level, which was consistent with clinicopathological subtypes
(Supplementary information, Fig. S4d, e). The ACTHenrich cluster
was enriched for USP8 mutations and both ACTHenrich and silent
TPITenrich had an extremely high proportion of females (90.5% and
90.9%, respectively) (Fig. 4b). In addition, ACTHenrich, silent
TPITenrich, and SF1/NULLenrich clusters were all associated with
higher MGPS (Kruskal-Wallis test, P= 7.4e‒06) (see Materials and
methods; Supplementary information, Fig. S4f), which was aligned
well with the upregulation of proliferation and energy metabolism
pathways in these three clusters.
To further characterize the proteogenomic classification of

PitNETs, we performed integrative analysis of the ten clinico-
pathological subtypes, three TF lineages and NULL, five transcrip-
tomic clusters, seven proteomic clusters, and seven
phosphoproteomic clusters for PitNETs. Interestingly, the

ACTHenrich, silent TPITenrich, and SF1/NULLenrich clusters identified
using proteomics data were highly consistent with clusters
identified using transcriptomics and phosphoproteomics data
(Fig. 4c). Furthermore, a cluster of PitNETs was also identified with
clear EMT characteristics at the transcriptomics, proteomics and
phosphoproteomics levels.

An invasive cluster characterized by EMT was identified within
the PIT1 lineage
At the protein level, we found that hemostasis-related and EMT-
related molecules,32–34 including GP1BB, FGB, MMP8, FN1, and
ITGB3, were highly expressed in EMTPRO, compared with other
proteomic clusters (Supplementary information, Table S4). The
pathways related to EMT, TNFA signaling via NFκB, and cytokine‒
cytokine receptor interaction were all upregulated in the EMTPRO

cluster (Fig. 4a), which covered eight of the ten clinicopatholo-
gical subtypes, excluding ACTH and silent SF1 (Supplementary
information, Fig. S4d). Strikingly, EMTPRO showed strong inva-
siveness (Fig. 4b), with a high level of KNOSP (grade= 4, 37.9%),
surgery invasion (69%), and tumor diameter (≥ 40 mm, 17.2%).
Given the non-negligible role of EMT in cancer metastasis,35,36

we next used the ESTIMATE algorithm37 to deconvolute the
contribution of stromal cells in the tumors based on transcrip-
tomics data (Stromal score_RNA) and proteomics data (Stromal
score_Protein). EMTPRO showed overall higher stromal scores in
both Stromal score_RNA (Kruskal-Wallis test, P= 9.9e‒06) and
Stromal score_Protein (Kruskal-Wallis test, P= 3.6e‒04) (Fig. 4d).
Hematoxylin and eosin (HE) staining was also processed to
evaluate the proportion of tumor cells that featured stromal
morphology with quantification by QuPath bioimage analysis
(Stromal feature percentage_ML, see Materials and methods) and
confirmed that the EMTPRO cluster had the highest proportion of
cells with a stromal phenotype (Kruskal-Wallis test, P= 0.04)
among all the proteomic clusters (Fig. 4e; Supplementary
information, Fig. S4g). To further investigate the EMT status of
tumor cells in each of the seven proteomic clusters, immuno-
fluorescence (IF) co-staining was performed to detect the
epithelial marker, pan-cytokeratin (panCK), and mesenchymal
marker, fibronectin1 (FN1), in a large subset of tumors. The IF
results showed significantly higher percentage of areas with co-
staining of panCK and FN1 in EMTPRO cluster than in other clusters
(Fig. 4f; Supplementary information, Fig. S4h). All these pieces of
evidence supported that EMTPRO cluster was characterized by
tumor cells with EMT status.
EMT-inducing transcription factors (EMT-TFs)38 are those con-

firmed as key drivers of the EMT-phenotype. We compared TF
mRNA expression level between the two transcriptomic clusters in

Fig. 3 Impact of GNAS mutation and GNAS copy number gain in the PIT1 lineage. a Lollipop plot and boxplot showing the position and
tumor VAF of the GNAS mutation in the PIT1 lineage. b Spearman’s correlation of chromosome 20q and the copy number, mRNA expression
and protein abundance of GNAS in all PitNET samples and PIT1 lineage samples. Spearman’s correlation, *P < 0.05, **P < 0.01, ***P < 0.001.
c Distribution of GNAS altered samples in different categories among the PIT1 lineage and other lineages (Fisher’s exact test, **P < 0.01,
***P < 0.001). d Heatmap visualizing multi-omics profiles of the levels of GNAS copy number, mRNA expression and protein abundance.
e Volcano plots displaying the differentially expressed proteins in GNAS mutant and GNAS WT patients after applying a two-fold change in
expression with P < 0.05 (Wilcoxon rank-sum test). Proteins significantly enriched in the GNAS mutant and GNAS WT patients are represented
as red/blue-filled dots. f Pathways enriched for the differentially expressed mRNAs and proteins. Pathways that were significantly upregulated/
downregulated in the GNASmutants are represented as red/blue-filled dots. g Heatmap of multi-omics features of GH secretion-related genes.
The pathway diagram on the right depicts how the features included in the heatmap regulate GH synthesis, secretion and activity. Red boxes
indicate upregulated genes and blue boxes indicate downregulated genes. Green rectangles indicate kinases and orange circles indicate
phosphorylated proteins. Bar chart next to the heatmap shows the fold changes of GNAS mutant/WT (*P < 0.05, **P < 0.01, ***P < 0.001).
h GSEA plots for proliferation-related pathways based on the rank of GNAS copy number-mRNA (bottom) or protein (upper) abundance
correlations. i Boxplots showing the difference of MGPS and tumor volume between WT and GNAS copy number gain group. The significance
was calculated by Wilcoxon test. j Heatmap of multi-omics features of proliferation-related genes. The pathway diagram on the left depicts
how the features included in the heatmap regulate cell cycle S-phase and DNA biosynthesis. Red boxes indicate upregulated genes and blue
boxes indicate downregulated genes. Green rectangles indicate kinases and orange circles indicate phosphorylated protein. Bar chart next to
the heatmap shows the Spearman’s correlation coefficient between GNAS copy number and proliferation-related genes (*P < 0.05, **P < 0.01,
***P < 0.001). k, l Bar plots showing the proportion of CDK6 high H-score cells between GNAS high H-score group and GNAS low H-score
group in all PitNETs and PIT1 lineage PitNETs. The significance was calculated by Fisher’s exact test.
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the PIT1 lineage (Fig. 4g), which confirmed that five EMT-TFs were
significantly upregulated in EMTRNA including: SNAI1 (FC= 1.97,
FDR= 0.000074), SNAI2 (FC= 6.63, FDR= 2.3e‒06), ZEB2 (FC=
3.04, FDR= 2.1e‒06), TWIST1 (FC= 5.3, FDR= 5.93e‒05), and
TWIST2 (FC= 17, FDR= 2.02e‒05). The remaining PIT1 lineage

cluster was designated Hormone due to upregulation of hormone
secretion proteins. Furthermore, the mRNA expression patterns of
the five EMT-TFs were significantly positively correlated in both
the EMTRNA (Spearman’s correlation, R= 0.55‒0.74, P < 0.01) and
EMTPRO (Spearman’s correlation, R= 0.70‒0.76, P < 0.01) clusters
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(Fig. 4h). Notably, the levels of transcriptional activity of the five
EMT-TFs were higher in the EMTRNA cluster compared with those
in the Hormone cluster (Fig. 4i). Similarly, EMT-related
molecules35,39 including CDH2, VIM, CD44, FN1, and ITGB1
(mesenchymal markers) were upregulated in the EMTRNA cluster,
while CDH1, KRT8, and KRT18 (epithelial markers) were down-
regulated in the transcriptomics and proteomics datasets (Fig. 4i)
further confirming the EMT status of this cluster.
In addition, IHC staining of TWIST1 and ZEB2 in our cohort

verified that EMT-TFs were activated in EMTRNA (Supplementary
information, Fig. S4i). There were significant positive correlations
between the H-scores of TWIST1 and ZEB2 and their correspond-
ing tumor volumes (Spearman’s correlation: TWIST1, R= 0.33,
P= 0.037; ZEB2, R= 0.34, P= 0.034), and the high H-scores of
TWIST1 and ZEB2 were associated with surgery invasion (Wilcoxon
rank-sum test, TWIST1: P= 0.0083; ZEB2: P= 0.025) in the PIT1
lineage (Fig. 4j).
In summary, integrated proteogenomic characterization of

PitNETs identified a previously unrecognized, highly invasive
cluster defined by EMT in PitNETs, primarily containing PIT1
lineage tumors (Fig. 4k).

Proteogenomics data revealed three modes of EGFR
activation in the TPIT lineage
EGFR is associated with a variety of human cancers, including
head and neck squamous cell carcinoma and lung adenocarci-
noma,40–42 and has been proposed as a therapeutic target in
ACTH PitNETs.11,43 Here, we found that the levels of EGFR mRNA
expression, protein abundance, and phosphorylation modifica-
tions were higher in the TPIT lineage than in other tumors
(Supplementary information, Fig. S5a‒c), which expanded the
previous perception that EGFR was highly expressed in ACTH
PitNETs.11 Subsequent analysis of EGFR-related pathways defined
three groups that showed diverse mechanisms of EGFR activa-
tion, including ACTH tumors with USP8 mutation (ACTH_USP8
mutant), ACTH tumors without USP8 mutation (ACTH_ USP8 WT),
and silent TPIT tumors (Supplementary information, Fig. S5b,
Table S5). In the ACTH_USP8 mutant group, our data supported
the known mechanism that USP8 gain-of-function mutations
rescue EGFR from ubiquitination, leading to the enhanced EGFR
activity, and further promoting POMC biosynthesis (Supplemen-
tary information, Fig. S5c, d).15,16 In the ACTH_ USP8 WT group,
the average mRNA expression of EGFR ligands (i.e., AREG, TGFA,
EGF, BTC, EPGN, HBEGF, and NRG4) was significantly higher than

in other groups (Kruskal-Wallis test, P= 0.009) (Supplementary
information, Fig. S5e) and positively correlated with peptide
hormone biosynthesis (Spearman’s correlation, R= 0.4,
P= 0.0079) and serum ACTH level (Spearman’s correlation,
R= 0.34, P= 0.026) (Supplementary information, Fig. S5f, g). In
silent TPIT tumors, EGFR T693 phosphorylation showed a
significant enrichment (Kruskal-Wallis test, P= 0.0087), and EGFR
downstream pathways or components, including PI3K-AKT-mTOR
(Spearman’s correlation, R= 0.38, P= 0.0093), MAPK (Spearman’s
correlation, R= 0.33, P= 0.023) and the cell cycle pathways were
also enriched (Spearman’s correlation, R= 0.19, P= 0.2) (Supple-
mentary information, Fig. S5h‒j), suggesting that EGFR T693
phosphorylation may lead to activation of these pathways.
Furthermore, IHC staining of EGFR revealed that its expression
was higher in the TPIT lineage than in non-TPIT lineages, and a
higher positive staining rate of EGFR T693 phosphorylation was
found in silent TPIT tumors as compared with ACTH tumors
(Supplementary information, Fig. S5k). Based on these results, we
summarized the potential therapeutic options for each of the
three modes (Supplementary information, Fig. S5l).
In addition to the finding of the effects of EGFR on POMC

biosynthesis, we also explored whether and which TFs were
involved in the biological features of ACTH vs silent TPIT subtype.
Based on mRNA levels and the predicted transcriptional activity,
we identified four TFs, ASCL1, AHRR, CUX2, and KLF15, that were
potentially involved in POMC biosynthesis or ACTH secretion using
multi-omics data (Supplementary information, Fig. S6a, b). Among
them, ASCL1 overexpression and activation was reported to lead
to excessive ACTH secretion.44 However, further study is necessary
to fully understand the different mechanisms of EGFR/ASCL1-
POMC in ACTH and EGFR-PI3K-AKT-mTOR in silent TPIT.
To sum up, these analyses suggested three potential modes of

EGFR activation in TPIT lineage PitNETs which could result in
different molecular characteristics. In addition, four TFs were
identified that may be involved in ACTH secretion and regulation,
and could possibly serve as novel therapeutic targets.

VEGF and hypoxia signaling were activated in the SF1 lineage
and NULL tumors
In light of our above multi-omics-based subtyping results that the
SF1 lineage and NULL tumors showed similar expression patterns,
especially for glycolysis and mitochondrial citrate cycle enzymes
(e.g., IDH1, IDH2, IDH3A, IDH3B and IDH3G) (Supplementary
information, Fig. S7a), which leads to their reassignment as the

Fig. 4 Molecular subtypes of PitNETs based on proteogenomic analysis and association studies. a Heatmap illustrating the
characterization of seven proteomic clusters. Each column represents a patient sample and rows indicate proteins. The color of each cell
shows the z score of the protein in that sample. PitNET classification, hormone secretion status, invasion status, clinical features, and mutation
status annotations are shown above the heatmap. The chi-square test was used to evaluate the association of proteomic clusters with the 9
variables on the heatmap (*P < 0.05, **P < 0.01, ***P < 0.001). Single-sample Gene Set Enrichment Analysis (ssGSEA) based on proteomics data
was also applied to identify the dominant pathway signatures in each proteomic cluster. b Summary of the variables with significant
differences among the seven proteomic clusters. The percentage represents the proportion of the population. c Sankey diagram depicting the
result of integrative multi-omics analysis, showing the flow of cluster assignments across multiple classification of PitNETs. d Boxplots
depicting the distribution of stromal scores inferred by ESTIMATE based on the RNA data (left) and protein data (right) among tumors of the
seven proteomic clusters. Kruskal-Wallis test was used to test if any of the differences among the subgroups were statistically significant. The
Wilcoxon rank-sum test was used to estimate the difference between two subgroups, *P < 0.05, **P < 0.01, ***P < 0.001. e Boxplot depicting
the distribution of stromal scores based on stromal feature percentage_ML among tumors of the seven proteomic clusters. Kruskal-Wallis test
was used to test whether any of the differences among the subgroups were statistically significant. Wilcoxon rank-sum test was used to
estimate the difference between two subgroups, *P < 0.05, **P < 0.01, ***P < 0.001. f Representative IF staining of pan-cytokeratin (panCK) and
fibronectin1 (FN1) in EMTPRO and non-EMTPRO clusters. Scale bar, 50 μm. g Volcano plot showing differential mRNA expression of TFs between
EMTRNA and Hormone clusters (the horizontal axis is log2(fold change), and the vertical axis is –log10 FDR). The upregulated TFs in EMTRNA are
highlighted in red and EMT-TFs are highlighted in green. h Correlation heatmaps showing the correlation among the mRNA expression of five
EMT-TFs in EMTRNA and EMTPRO clusters. Spearman’s correlation, **P < 0.01, ***P < 0.001. i Taking POU1F1 as the positive control, heatmap
showing the molecules significantly differentially expressed between EMTRNA and Hormone clusters at the mRNA, protein, and TF activity
levels, including EMT-TFs and EMT-related markers. j IHC staining validated the correlation between EMT-TFs and tumor invasion. Scatterplots
showing the correlation of H-scores of TWIST1 and ZEB2 with tumor volume (Spearman’s correlation). The boxplots show the association of
H-scores of TWIST1 and ZEB2 with surgery invasion status (Wilcoxon rank-sum test). k Summary of the multi-omics classification of the PIT1
lineage.
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SF1/NULLenrich cluster, we next conducted enrichment analysis
based on PROGENy scores to assess whether 14 well-established
cancer-relevant pathways (as defined by Schubert et al. and
Holland et al.)45,46 were activated in our cohort of 200 PitNETs
(Supplementary information, Fig. S7b and Table S6). The results
showed that the hypoxia (Kruskal-Wallis test, P= 0.00021) and
VEGF (Kruskal-Wallis test, P= 2.1e‒11) pathways were enriched in
both the SF1 lineage and NULL tumors compared with other
PitNETs (Supplementary information, Fig. S7c). Furthermore, we
observed that signature genes of hypoxia (HIF1A and HIF1B) and
angiogenesis (VEGFA, VEGFR2 and PECAM1) were overexpressed
in the SF1 lineage and NULL tumors (Supplementary information,
Fig. S7d). Interestingly, the mRNA expression levels of VEGFA and
VEGFR2 were significantly positively correlated with inferred VEGF
pathway activity (Spearman’s correlation: VEGFA, R= 0.30,
P= 0.027; VEGFR2, R= 0.35, P= 0.011) (Supplementary informa-
tion, Fig. S7e). To advance our understanding of the biological
mechanisms of these tumors, VEGF signaling and angiogenesis-
related genes were analyzed in the multi-omics datasets
(Supplementary information, Table S6). We found that down-
stream pathways of VEGF signaling, e.g. RAS/RAF/MEK/ERK and
PI3K-AKT, were activated in both the SF1 lineage and NULL tumors
at the mRNA, protein, and phosphoprotein levels (Supplementary
information, Fig. S7d, f).
Consistent with the results obtained from multi-omics data, IHC

staining of VEGFR2 showed its higher expression in the SF1
lineage (GN and silent SF1) and NULL tumors than in other PitNETs
(Kruskal-Wallis test, VEGFR2 H-score among TF lineages,
P= 0.00012; VEGFR2 H-score among clinicopathological subtypes,
P= 0.0021) (Supplementary information, Fig. S7g, h). These
collective results implied that the SF1 lineage and NULL tumors
have similar molecular features and can be clustered together.
Taken together, the above data show that hypoxia and VEGF

signaling pathways are uniquely upregulated in both the SF1
lineage and NULL tumors, suggesting that angiogenesis inhibitors
targeting VEGFR2 may serve as effective therapeutic approaches
for these patients.

Characterization of immune infiltration in PitNETs
We next performed cell type deconvolution using xCell47 analysis
of transcriptomics data to infer the proportion of different cell
types in the tumor microenvironment (Fig. 5a; Supplementary
information, Table S7). Consensus clustering based on inferred cell
proportions identified four sets of tumors with distinct immune
and stromal features: Immune-exhausted, CD4+ T cell infiltration,
Endothelial, and CD8+ T cell infiltration (Fig. 5a).
The CD8+ T cell infiltration cluster, containing the ACTHenrich

and silent TPITenrich clusters, was characterized by the presence of
multiple immune cell types, including central memory CD8+

T cells and CD8+ T cells (Fig. 5a; Supplementary information,
Fig. S8a). Moreover, the CD8+ T cell infiltration cluster showed
upregulation of EGFR signaling and cell cycle pathways (Fig. 5a, b).
The Endothelial cluster was characterized by antigen presenting
cells such as macrophages and cDCs, with upregulation of CSF1R,
CD34, and PDL2 at the mRNA level and FGFR1 at the protein level
(Fig. 5a, b). In the CD4+ T cell infiltration cluster, the immunosup-
pressive mediator CTLA4 was upregulated (CD4+ T cell infiltration
cluster vs other immune clusters: Wilcoxon rank-sum test,
P= 0.008), suggesting that these tumors might be responsive to
immune checkpoint-related therapeutic options (Fig. 5a, b). The
Immune-exhausted cluster, consisting of the TSH/silent PIT1enrich

and GHenrich proteomic clusters, was mainly distributed in the PIT1
lineage (Supplementary information, Fig. S8a, b), and character-
ized by higher scores of Treg cells and upregulation of PDL1
(CD274) (Kruskal-Wallis test, P= 1e‒05) based on transcriptomics
data (Fig. 5a; Supplementary information, Fig. S8c).
Indeed, PDL1 mRNA expression was significantly upregulated in

the TSH/silent PIT1enrich and GHenrich proteomic clusters (Kruskal-

Wallis test, P= 2.7e‒12) (Fig. 5c), as well as in the TSH, silent PIT1,
and GH clinicopathological subtypes (Kruskal-Wallis test, P= 7.1e‒
08) (Supplementary information, Fig. S8d). Given its role in
immune suppression,48 we further explored the correlation
between PDL1 mRNA expression and JAK1-STAT1-PDL1-related
molecules, including IFNGR1, EIF4E, JAK1, and STAT1 in PitNETs
(Fig. 5d). As expected, these molecules were significantly
positively correlated at the mRNA, protein, and phosphoprotein
levels. In addition, we observed that TCR signaling-related genes,
including PTPN6, PLCG1, and JUN, were significantly negatively
correlated with PDL1 mRNA expression (Fig. 5d), which is
consistent with the PD1-PDL1 immune checkpoint mechanism.49

The multi-omics data suggested that activation of the JAK1-STAT1-
PDL1 axis could inhibit antitumor immune response through
adaptive immune resistance based on the high transcription levels
of PDL1 observed in the TSH/silent PIT1enrich and GHenrich clusters,
suggesting that anti-PDL1 therapies might warrant exploration in
these tumors. Further validation of PDL1 by IHC staining in our
PitNET cohort revealed that it was expressed at higher levels in
some clinicopathological subtypes, including TSH, silent PIT1, and
GH, than in other subtypes (Supplementary information, Fig. S8e).
The PDL1 H-score was significantly higher in the TSH/silent
PIT1enrich and GHenrich clusters (proteomic subtyping) and
Immune-exhausted cluster (immune subtyping), which is consis-
tent with findings obtained from multi-omics data (Fig. 5e).
In the PIT1 lineage, we found that PDL1 was upregulated in the

TSH/silent PIT1enrich and GHenrich clusters, consistent with their
lower immune scores. In contrast, other clusters in the PIT1
lineage, such as the EMTPRO cluster, had higher immune scores
(Supplementary information, Fig. S8f) and low PDL1 expression.
Interestingly, the expression of another JAK-STAT axis, JAK3-
STAT6-FOS/JUN, was highly correlated with immune score (Fig. 5f;
Supplementary information, Fig. S8g). STAT6 has been reported to
regulate FOS and JUN, further contributing to tumor progres-
sion.50–52 In addition, the FOS and JUN TFs regulate downstream
chemokines, such as CCL2, CCL5, IL6, and TGFB1,53 all of which
showed significantly positive correlation with immune scores at
the mRNA and protein levels (Fig. 5f, g; Supplementary informa-
tion, Fig. S8g). These findings led us to propose that increased
immune infiltration caused by chemokine expression in the
EMTPRO cluster was likely regulated by the JAK3-STAT6-FOS/JUN
axis. In the multi-omics data, JAK1/STAT1 showed a moderate
negative correlation with JAK3/STAT6 in both the PIT1 lineage
tumors and all PitNETs (Fig. 5h; Supplementary information,
Fig. S8h).
Taken together, these data showed unexpected bidirectional

regulation in the PIT1 lineage, including immune suppression
mechanisms in the TSH/silent PIT1enrich and GHenrich clusters that
might be responsive to checkpoint (PDL1 and PD1) inhibitors, and
immune infiltration mechanisms in the EMTPRO cluster that could
be potentially targeted with immunotherapies (Fig. 5i).

Expression of available drug targets among proteomic
clusters
To expand the potential treatment options for PitNET patients
using these multi-omics data, we next evaluated the expression
levels of targets of FDA-approved drugs including dopamine
receptor 2 (DRD2) and somatostatin receptors (SSTR2/SSTR5), as
well as O-6-methylguanine-DNA methyltransferase (MGMT)
involved in DNA repair, which is known to affect temozolomide
efficiency.6,54 Somatostatin agonists are the predominant treat-
ment for GH PitNETs and are reported to be effective against
ACTH PitNETs.3 Transcriptomics data indicated that SSTR2 (Kruskal-
Wallis test, P < 2.2e‒16) and SSTR5 (Kruskal-Wallis test, P < 2.2e‒16)
were elevated in GH PitNETs as well as in the TSH/silent PIT1enrich

proteomic cluster (Supplementary information, Fig. S9a‒c). We
further found that MGMT mRNA was downregulated in the
PRLenrich, TSH/silent PIT1enrich, and silent TPITenrich proteomic
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clusters compared with other PitNETs (Wilcoxon rank-sum test:
PRLenrich, P= 0.001; TSH/silent PIT1enrich, P= 0.0002; silent
TPITenrich, P= 0.0005) (Supplementary information, Fig. S9a, d).
DRD2 overexpression has been reported in PRL and GN PitNETs,55

which aligned with our results showing significant upregulation of
DRD2 mRNA in PRLenrich (Wilcoxon rank-sum test, P= 2.37e‒05)
and SF1/NULLenrich (GN and NULL) clusters (Wilcoxon rank-sum
test, P= 1.21e‒05) (Supplementary information, Fig. S9a, e).
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Validation of markers in an independent cohort of 750
PitNETs
Our study identified seven robust tumor clusters and the
representative molecular characteristics of each proteomic
cluster were summarized in Fig. 6a and Supplementary informa-
tion, Table S8. To evaluate whether the results observed in this
study were robust beyond the initial cohort, we verified the
findings in an independent cohort of 750 PitNETs, with follow-up
data for 78% of patients (Supplementary information, Table S9).
The overall average follow-up duration was 85 months. The
proportion of GNAS high H-score was significantly greater in the
high tumor diameter group than in the low tumor diameter
group (Fisher’s exact test, P= 2.29e‒5), with a high GNAS H-score
suggesting poor prognosis (log-rank test, P= 0.046) (Fig. 6b, c).
These results were consistent with findings obtained in the initial
cohort of 200 PitNETs. Examination of the EMT-TFs identified in
the 200 PitNET cohort (Fig. 4j) indicated that ZEB2 and TWIST1
had higher H-scores in the invasive group in the validation cohort
of 750 PitNETs (Wilcoxon rank-sum test, P= 0.0019 and
P= 0.00061) (Fig. 6d). Moreover, in the 750 PitNETs, PDL1 showed
higher H-scores in the TSH and silent PIT1 clinicopathological
subtypes (Kruskal-Wallis test, P < 2.2e− 16) (Fig. 6e), supporting
our finding of PDL1 overexpression in the Immune-exhausted
cluster in the 200 PitNET cohort (Fig. 5c). IHC staining for VEGFR2
in the 200 and 750 PitNET cohorts consistently showed its higher
expression in the SF1 and NULL tumors (Wilcoxon rank-sum test,
P= 0.00012 in the 200 PitNET cohort and P < 2.2e‒16 in the 750
PitNET cohort) (Fig. 6f; Supplementary information, Fig. S7g). In
the 750 PitNET validation cohort, EGFR was uniquely over-
expressed in the TPIT lineage compared with other lineages,
which is also consistent with results of the 200 PitNET cohort
(Fig. 6g; Supplementary information, Fig. S5k). IHC staining for
EGFR T693 phosphorylation confirmed that the proportion of IHC-
positive cases was significantly higher in the silent TPIT (26 of 80)
subtype than in ACTH (0 of 11) within the TPIT lineage (Fisher’s
exact test, P= 0.0299) (Fig. 6h). Additionally, the percentage of
patients with positive staining for both EGFR and EGFR T693
phosphorylation was significantly higher in the silent TPIT (18 of
80) subtype than in other lineages (1 of 670) (Fisher’s exact test,
P < 2.2e‒16) (Fig. 6i).
In conclusion, the prognostic markers and therapeutic targets

GNAS, ZEB2, TWIST1, PDL1, VEGFR2, EGFR, and EGFR T693
phosphorylation identified in our initial 200 PitNET cohort were
validated in the corresponding subtypes of the 750 PitNET cohort.
These collective findings are summarized in a PitNET tree, which
shows an updated molecular classification in which patients are
clearly stratified into seven clusters for potential therapeutic
options (Fig. 6j).

DISCUSSION
In this study, genomics, transcriptomics, proteomics, and phos-
phoproteomics datasets were generated as a public resource from
a retrospective cohort of 200 PitNETs and 7 APGs collected at a
single center. We identified three genomic events, including GNAS
mutation, GNAS copy number gain and USP8 mutation, as well as
several other findings related to updated classification and
stratified therapies, through integrative analysis of transcriptomics,
proteomics and phosphoproteomics datasets. To the best of our
knowledge, this study represents the largest integrated proteo-
genomic study of PitNET to date, spanning all ten clinicopatho-
logical subtypes. In addition, several therapeutic targets (e.g.,
GNAS, CDK6, TWIST1, ZEB2, PDL1, EGFR, EGFR T693 phosphoryla-
tion, and VEGFR2) were further investigated in an independent
cohort of 750 PitNET cases.
PitNET is the most common neuroendocrine tumor and one of

the most common intracranial tumors, leading to severe clinical
manifestations.3 While treatments include surgery, radiotherapy
and medication, the management of frequently recurrent
aggressive PitNET (i.e., refractory PitNET) remains clinically
challenging.4 According to the WHO 2017 classification, PitNETs
can be categorized into ten subtypes based on IHC of TF markers
and hormone expression. This classification also indicates several
tumors with a higher probability of recurrence than typical
PitNETs, including tumors with elevated proliferative activity and
the special variants of adenomas.5 However, guidance for
selecting a treatment strategy using this classification system is
limited.56 To explore new potential treatments for PitNET, we
conducted a proteogenomic study to identify innovative drug
targets, which resulted in reclassification of PitNETs into seven
clusters based on TF expression and molecular characteristics in
multi-omics data (Fig. 6a). Each cluster has specific potential
treatment targets, and this new, clinical treatment-oriented
classification represents a major breakthrough for selecting
appropriate therapeutic interventions for this highly heteroge-
neous disease.
PDL1 has been widely studied in many other tumors, although

systematic evaluation of PD1/PDL1 therapy has not been
conducted in PitNET. Previous works have included IHC staining
of PDL157 and case reports of immunotherapy for PitNET.58 Here,
PDL1 expression and immune status were investigated for all
PitNET subtypes using the combined multi-omics data. Consider-
ing the severe side effects of anti-PDL1 therapy (e.g., neuromus-
cular disorders, myocarditis and intraocular inflammation),59 it is
necessary to select patients who are sensitive to and could benefit
from this treatment. Here we identified two PitNET clusters
(GHenrich and TSH/silent PIT1enrich) which exhibited high PDL1
expression in our proteogenomics data. Interestingly, immune cell

Fig. 5 Immune landscape in PitNETs. a The four immune clusters identified by consensus clustering showing cell-type features, immune
checkpoints, and ssGSEA pathways. Differential expression between tumors of one immune cluster vs the rest at the mRNA and protein levels
(Wilcoxon rank-sum test, P < 0.05) and the corresponding enriched pathways (Wilcoxon rank-sum test, P < 0.05) were shown. Chi-square test
was used to test the association of immune clusters with the 9 variables on the heatmap (*P < 0.05, ***P < 0.001). b Contour plot of two-
dimensional density based on CD8+ T cells scores (y-axis) and CD4+ Tcm scores (x-axis) for different immune clusters. For each immune
cluster, key upregulated pathways, and significant drug targets (Wilcoxon rank-sum test, P < 0.05) identified based on RNA-seq (R) and
proteomics (P) are reported in the annotation boxes. c Boxplot of PDL1 mRNA among the seven proteomic clusters. Kruskal-Wallis test was
used to test whether any of the differences among the subgroups were statistically significant. Wilcoxon rank-sum test was used to estimate
the significance of two subgroups, **P < 0.01; ***P < 0.001. d PD1-PDL1 signaling pathway-related genes were highly correlated with PDL1
mRNA expression at the mRNA, protein, and phosphoprotein levels in all PitNETs. The bar chart on the right shows Spearman’s correlation
coefficient with PDL1 mRNA expression (*P < 0.05, **P < 0.01, ***P < 0.001). e Boxplots showing the PDL1 H-score among proteomic clusters
and immune clusters. Kruskal-Wallis test was used to test whether any of the differences among the subgroups were statistically significant.
Wilcoxon rank-sum test was used to estimate the significance of two subgroups, *P < 0.05; **P < 0.01, NS, not significant. f Spearman’s
correlations (P < 0.05) between the ESTIMATE immune score and proteogenomic profiles of immune infiltration, chemokines, immune
checkpoints, and pathways in the PIT1 lineage. g Scatterplots showing the Spearman’s correlation of the immune score with the mRNA
expression of FOS, JUN, JAK3, and STAT6. h Spearman’s correlation among JAK1, JAK3, STAT6, and STAT1 at the mRNA, protein, and
phosphorylation levels in the PIT1 lineage (*P < 0.05, **P < 0.01, ***P < 0.001). i Diagram depicting the mechanism of the distinct immune
clusters within the PIT1 lineage.
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subtyping analysis revealed that high PDL1 expression was
significantly associated with JAK1/STAT1 activation in the
Immune-exhausted cluster. Other studies have shown that
therapies targeting STAT1 can be combined with anti-PDL1
antibody for patients resistant to immune checkpoint blockade,60

leading us to propose that JAK1/STAT1 inhibitor plus anti-PDL1
antibody could be potentially used to treat these PitNET patients.
This possibility suggests another major implication of our findings
for the application of immune therapies to treat a subset of PitNET
clusters.
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In total, we identified five transcriptomic clusters, seven
proteomic clusters, and seven phosphoproteomic clusters in
the 200 PitNET cohort. The vast majority of clusters identified in
TPIT lineage, SF1 lineage, and NULL tumors were recapitulated in
each of the multi-omics datasets. We focused on proteomic
classification since these data could distinguish EMTPRO, TSH/
silent PIT1enrich, PRLenrich, and GHenrich clusters within the PIT1
lineage, thus better reflecting clinicopathological subtypes than
either the transcriptomic or phosphoproteomic datasets. We
then examined the most likely treatment targets of each cluster.
The targets of available drugs for PitNET, such as DRD2 and
SSTR2/5, were confirmed in corresponding clusters, suggesting
the potential effectiveness of dopamine agonist and somatos-
tatin analogs in these clusters. For the other treatment targets,
although some of them were previously identified in other
cancers,41,61 the large majority are described here for the first
time in PitNETs, such as EMT, EGFR T693 phosphorylation, CDK6
and PDL1.
By systematic, combined analysis of genomic, transcriptomic,

and proteomics datasets, we identified the cis effects of
chromosome 20q that lead to cell cycle upregulation in the
invasive PIT1 lineage, which is consistent with another previous
report.19 Further investigation of chromosomal instability indi-
cated that GNAS protein overexpression was likely due to the
occurrence of GNAS copy number gain. Moreover, GNAS copy
number gain and GNAS mutation were mutually exclusive. GNAS
mutation has been well studied and is uniquely present in GH-
secreting PitNETs with characteristically lower capacity for
invasion and higher serum levels of GH.62 Interestingly, PIT1
lineage patients with GNAS copy number gain did not exclusively
harbor GH-secreting PitNETs, and may present with distinct clinical
features, such as highly invasive tumors, in sharp contrast with a
report by Hage et al., who found no differences correlated with
changes in 20q chromosome copy number, where GNAS is
located.28 Further studies are required to verify these findings and
to identify the differences between GNAS mutation and GNAS
copy number gain in their respective mechanisms driving PitNET
phenotype.
The proteogenomics datasets generated in this study enabled

the identification of seven clusters and establishment of a
biologically, prognostically, and therapeutically relevant classifi-
cation system for PitNETs. Notably, EMTPRO cluster presents a

highly invasive malignancy characterized by high expression of
EMT-related proteins, which is consistent with a previous report
that showed EMT marker expression is correlated with tumor
diameter and invasion in PitNET.63 The potential therapeutic
value of EMT suppression for treating patients in the EMTPRO

cluster warrants attention. Alternatively, immune therapy may be
an effective treatment strategy in these patients, since these
tumors also feature immune infiltration. Immunosuppressive
mediators such as CTLA4 are overexpressed in the EMTPRO

cluster, suggesting that immunotherapies may improve out-
comes for these patients.
Another invasive tumor cluster is silent TPITenrich, which

consists of the non-hormone secreting TPIT lineage, and is
characterized by EGFR T693 phosphorylation in our datasets. A
recent report also linked EGFR T693 phosphorylation in silent
PitNETs with worse prognosis.64 EGFR was previously identified
as a druggable target in ACTH PitNETs, another TPIT lineage
subtype that exhibits ACTH hypersecretion.11 In the present
study, we found that EGFR is overexpressed in all TPIT lineage
tumors and further discovered three distinct modes of EGFR
signaling pathway activation that led to dysregulation of
different downstream pathways and opposite clinical features.
More specially, USP8 mutation or EGFR ligand activation in ACTH
PitNETs are associated with decreased tumor diameter and ACTH
secretion, as previously reported.16 By contrast, EGFR T693
phosphorylation in silent TPIT activates the PI3K-AKT-mTOR
pathway and results in invasive tumors without hormone
hypersecretion. This discrepancy suggests that different target
therapies may be effective depending on activation mode for
TPIT patients: for ACTH patients with USP8 mutation, inhibiting
USP8 and/or EGFR activity may be an effective therapeutic
approach; for ACTH_USP8 WT patients whose EGFR ligands are
activated, EGFR monoclonal antibody (mAb) might effectively
prevent ligand-induced pathway activation; finally, for silent TPIT
patients, in which EGFR T693 is highly phosphorylated, EGFR
tyrosine kinase inhibitors (TKIs) may provide a good response.
NULL PitNETs are more aggressive than other clinicopatholo-

gical subtypes,65,66 and no therapeutic agents have yet shown
efficacy in patients with these tumors. In the present study, we
indicate that SF1 lineage and NULL tumors have similar
expression patterns in transcriptomics, proteomics, and phos-
phoproteomics datasets. Based on this similarity between

Fig. 6 Summary of molecular characteristics based on proteomic clusters in 200 PitNETs and validation of potential targets in an
independent cohort. a Graphical summary showing the major molecular findings of 200 PitNETs: heatmap showing unbiased consensus
clustering of proteomic clusters, transcriptomic clusters and phosphoproteomic clusters; radar maps showing different proportions of seven
proteomic clusters in clinicopathological subtypes and immune clusters; pie charts represent surgery invasion; biological insights and
potential targets are listed at the bottom. Novel prognostic markers and therapeutic targets were marked by green boxes in the last two lines.
IHC validation molecules are marked with red font. b Bar plot showing the proportion of high tumor diameter between GNAS high H-score
group and GNAS low H-score group in the cohort of 750 PitNETs. The significance was calculated by Fisher’s exact test. c GNAS staining is
correlated with PFS in the cohort of 750 PitNETs (log-rank test). d Boxplots describing the high H-scores of ZEB2 and TWIST1 in tumor invasive
group compared with non-invasive group in 750 PitNET cohort (Wilcoxon rank-sum test). e IHC staining of PDL1 in an independent cohort of
750 PitNETs. Boxplot showing the H-score of PDL1 in TSH, silent PIT1, PRL, GH and other clinicopathological subtypes, respectively (Wilcoxon
rank-sum test, ***P < 0.001). Kruskal-Wallis test was used to test whether any of the differences among the subgroups were statistically
significant. f IHC staining of VEGFR2 in an independent cohort of 750 PitNETs. Boxplot showing the percentage of tumor tissues with positive
staining among TF lineages. Kruskal-Wallis test was used to test whether any of the differences among the subgroups were statistically
significant. Wilcoxon rank-sum test was used to estimate the significance of two subgroups, *P < 0.05, ***P < 0.001. g IHC staining of EGFR in
an independent cohort of 750 PitNETs. Boxplot showing the H-score among TF lineages. Kruskal-Wallis test was used to test whether any of
the differences among the subgroups were statistically significant. Wilcoxon rank-sum test was used to estimate the significance of two
subgroups, **P < 0.01, ***P < 0.001. h Bar plot showing the proportion of EGFR T693 phosphorylation-positive staining in silent TPIT and ACTH
subtypes based on Fisher’s exact test. i Bar plot showing the proportion of both EGFR and EGFR T693 phosphorylation-positive staining in
silent TPIT compared to other subtypes based on Fisher’s exact test. j The PitNET tree shows that the main TF lineages (PIT1, TPIT, and SF1) and
NULL tumors can be further divided into seven proteomic clusters (GHenrich, EMTPRO, PRLenrich, TSH/silent PIT1enrich, ACTHenrich, silent TPITenrich,
and SF1/NULLenrich). Dark green leaves represent drugs with FDA approval for use in the specific reported clinicopathological subtypes, while
light green leaves represent new indications of FDA-approved drugs with potential efficacy in patients based on proteomic clusters. Red
leaves represent immune therapies and orange leaves represent potential targeted therapies. Leaves with black outlines are newly discovered
in our study. Abbreviations in PitNET tree: TMZ, temozolomide; TKI, tyrosine kinase inhibitor; mAB, monoclonal antibody; MGMT, O-6-
methylguanine-DNA methyltransferase; SST, somatostatin.
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subtypes evident in the multi-omics data, we suggest that the
NULL and SF1 lineage subtypes can be functionally combined
into a single SF1/NULLenrich cluster. However, in clinic, other
factors should be considered. For example, Tebani et al.
identified a NULL case showing high TPIT expression with
moderate ACTH expression levels.67 In addition, metastases of
neuroendocrine tumors from other primary locations should be
considered in the differential diagnosis of so-called NULL tumors.
In our study, the SF1/NULLenrich cluster showed characteristic

upregulation of glycolysis and citrate cycle. Analyses of transcrip-
tomics and proteomics datasets also led to the identification of
several highly upregulated mitochondrial citrate cycle enzymes,
including IDH1, IDH2, IDH3A, IDH3B and IDH3G (Supplementary
information, Fig. S7a). Among them, Tebani et al. recently reported
that IDH1 expression in SF1 was higher than that in TPIT and PIT1
tumors,67 which is consistent with our findings. Further analysis
revealed that VEGF signaling, activated by VEGFR2 and VEGFA,
was obviously aberrantly upregulated in the SF1/NULLenrich

cluster, suggesting that antiangiogenic therapies (e.g., apatinib)
and VEGFA-targeting fluorescence-assisted surgery could poten-
tially improve outcomes for these patients.68,69

This integrative proteogenomic analysis substantially expands
the current understanding of PitNET pathophysiology and can
guide the development and selection of effective treatment
strategies.

MATERIALS AND METHODS
Specimen acquisition
Patient recruitments. Two cohorts of patients were recruited: one for
genomics, transcriptomics, proteomics, and phosphoproteomics analysis
(200 PitNETs), the other for IHC validation (750 PitNETs). All underwent
surgeries at the Department of Neurosurgery at Huashan Hospital, an
affiliate of Shanghai Medical College, Fudan University. Patients in the
200 PitNET cohort underwent surgeries between 2018 and 2020, while
the 750 PitNET cohort was collected between 2010 and 2014. Both
cohorts only included subjects without previous malignancies. Clinical
data and follow-up information of all patients were collected from
medical records retrospectively and were shown in our study (Supple-
mentary information, Tables S1 and S9). Seven anterior pituitary gland
tissues were obtained from donors without evidence of any endocrine
disease. All patients have signed written informed consent, and the
ethics committee at Huashan Hospital has approved the study (KY2021-
498). The study was performed in accordance with the Declaration of
Helsinki.
The diagnosis of PitNET was based on clinical manifestations, imaging,

endocrine laboratory tests, and post-operative IHC staining according to
previously described criteria and currently accepted standard
guideline.9,70–74 The following IHC staining was performed to classify
clinicopathological subtypes: TFs including PIT1, TPIT, and SF1, pituitary
hormones including PRL, GH, TSH, FSH, LH, and ACTH, along with
cytokeratin 8 (CAM5.2), Syn, Ki67 (MIB1), and ER (estrogen receptor).
After surgical resection, histological diagnosis was confirmed in a blinded
fashion by at least two senior pathologists.
PitNET invasion was assessed on two dimensions: (1) Radiology

invasion: based on pre-operative MRI imaging, PitNETs classified as
Hardy’s modified classification grades III, IV and/or stages C, D and E, or
Knosp classification grades III and IV are considered invasive;75,76 (2)
Surgery invasion: invasion of the dura, cavernous sinus, mucosa or bone
in sphenoidal sinus based on intra-operative findings and pathological
examination.

Tumor sample collection and characterization. Tumor fragments were
removed and collected by experienced neurosurgeons (Yao Zhao and
Yongfei Wang) during surgery. To avoid any contamination by normal APG
tissue or para-tumoral connective tissue, the most representative tumor
specimens with minimal hemorrhage and necrosis were carefully picked
from the middle of the tumor, which were then rapidly frozen in liquid
nitrogen within 15min and subsequently stored at ‒80 °C ultra-low
temperature freezers.
The average weight of a tumor tissue was 55mg. Acceptable PitNET

tissue segments had to contain more than 80% tumor cell nuclei and less
than 20% tumor necrosis at the top and bottom of histological sections
decided by two pathologists. To facilitate the homogeneity of samples,
each tissue was homogenized via cryopulverization and then aliquoted for
subsequent DNA (~5mg), RNA (~5mg) and protein (~45mg) extraction
from the same tissue sample. In addition, paired perioperative blood was
also collected for WES to call somatic mutation of each PitNET.
The 200 PitNET cohort was adopted for integrated proteogenomic

analyses, including paired WES (n= 200), RNA-seq (n= 194), proteomics
profiling (n= 200), and phosphoproteomics profiling (n= 194). The 750
PitNET cohort was used to construct tissue microarray for large-scale IHC
staining, including: GNAS, ZEB2, TWIST1, PDL1, VEGFR2, EGFR, and
EGFR T693.

WES
DNA extraction and DNA quantification. Total DNA was extracted from
approximately 5 mg cryopulverized PitNET tissues using QIAamp DNA Mini
Kit (Qiagen-51306) according to the manufacturer’s instructions. The total
DNA of blood was extracted from the 1mL blood using QIAamp DNA
Blood Mini Kit (Qiagen-51106) according to the manufacturer’s instruc-
tions. Then the concentration and integrity of the total DNA were detected
by Qubit 2.0 fluorometer dsDNA HS Assay (Thermo Fisher Scientific) and
agarose electrophoresis. OD260/OD280 was measured by NanoDrop2000
(Thermo Fisher Scientific). About 300 ng high-quality DNA (OD260/OD280=
1.8‒2.0) of each PitNET tissue was adopted subsequently to construct the
sequencing library.

WES library preparation. The 300 ng genomic DNA samples were sheared
with Covaris LE220 Sonicator (Covaris) to obtain an average size of 150‒
200 bp. DNA libraries were constructed using SureselectXT reagent kit
(Agilent) according to the manufacturer’s instructions. End repair mix
(component of SureselectXT) was used for repairing the 3’ and 5’overhangs
of the fragments, which were subsequently purified with Agencourt
AMPure XP Beads (Beckman). A tailing Mix (component of SureSelectXT)
was used for adding ‘A’ tail to the purified fragments, which were then
ligated to an adapter using DNA ligase, a component of SureselectXT.
Herculase II Fusion DNA Polymerase (Agilent) was used for the adapter-
ligated DNA fragments amplification. Finally, the SureSelect Human All
Exon V5kit (Agilent) was used to pre-capture libraries containing exome
sequences.

Illumina sequencing. The Qubit 3.0 fluorometer dsDNA HS Assay (Thermo
Fisher Scientific) was used to determine the DNA concentrations of the
enriched sequencing libraries. Agilent BioAnalyzer 4200 (Agilent) was used
to analyze the size distribution of the resulting sequencing libraries. Paired-
end sequencing is performed using an Illumina NovaSeq6000 system
according to Illumina’s 2× 150 paired-end sequencing protocol. WES was
conducted with a mean coverage depth of 297× (range: 250‒412×) for
tumor samples and 156× (range: 120‒208×) for paired blood samples,
consistent with the recommendations for WES.77,78

WES data analysis
Quality control. The first step in our data analysis was quality control to
ensure that raw data had good metrics and no significant biases which
may affect the following analysis. In this study, read quality was evaluated
for all samples by using FastQC (v0.11.9) software with the default
parameters.

Filter of raw data. The adapter sequence of raw data (Fastq) was removed
using Fastp (v0.22.0). Then, the reads with more than 75 bp were preserved
(named clean reads) and used for downstream analysis

Sequence alignment. Clean reads were mapped to the human (Homo
sapiens) genome (version hg19) using the BWA-MEM (v0.7.17) algorithm to
generate the bam file, followed by marking the PCR reads in the bam,
rearranging the regions that may include Indel mutations, and recalibrat-
ing the quality of each base pair.

Variant detection and filtering. Gene variants are base changes that occur
in the genome, such as point mutations caused by single base changes, or
insertions, deletions, and duplications of multiple bases. In this study, the
pipeline of Sentieon software (20201001) was applied to detect InDel
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(small insertions and deletions) and SNV (Single Nucleotide Variants). The
variants were then annotated by Annovar (Date 20180416).79 Databases of
the 1000 Genomes80 and Exome Aggregation Consortium (ExAC) were
used to filter the germline variants. High-quality somatic variants were
obtained through a stringent downstream filter incorporating the
following criteria: strand bias ratio ≥ 0.1; Variant Allele Fraction (VAF)
ratio < 0.2; variant supporting reads ≥ 5; ExAc_EAS ≤ 1%; Subsequently,
mutations located in the non-coding regions were eliminated. A total of
12,782 non-silent somatic SNV and indel calls for tumor samples were
obtained in contrast to matched blood samples (200 pairs). In our study,
the transcriptional version of the GNAS variants is NM_001077489 and that
of the USP8 variants is NM_001128610.

CNA analysis. CNVkit software can analyze the CNA of single sample
and paired tumor samples. In this project, CNAs were determined using
CNVkit version 0.99. And a 200 bp bin size was used to analyze the
whole-genome CNA. Segment files of every 1000 were input in GISTIC2
to determine significantly amplified or deleted regions across all PitNET
samples. Thresholds with the following parameters were used to exclude
false positives: -brlen 0.5 -broad 1 -conf 0.9. To identify the genes with
CNAs, the correlation between copy numbers and the abundances of
mRNA, protein, or phosphoprotein were tested by Spearman correlation
coefficients. Genes displaying significant correlations with mRNAs,
proteins, and phosphoproteins with adjusted P values smaller than
0.05 were selected. Correlations were visualized using multiOmicsViz (R
package).

RNA-seq
RNA extraction, library preparation, and Illumina sequencing. Approxi-
mately 5 mg cryopulverized PitNET tissues or APGs were preserved to
extract total RNA using TRIzol® Reagent (Invitrogen) and RNeasy minElute
spin column (Qiagen). Then 2100 Bioanalyser (Agilent) and NanoDrop
(Thermo Fisher Scientific) were used to quantify the integrity of the total
RNA. About 500 ng high quality RNA sample was obtained to construct
sequencing library.
Sequencing libraries were generated using Ribo-off® rRNA Depletion Kit

(H/M/R) (Vazyme #N406) and VAHTS® Universal V6 RNA-seq Library Prep
Kit for Illumina (#N401-NR604), followed by adding index codes to attribute
sequences to each sample. The libraries were sequenced on an Illumina
platform and 150 bp paired-end reads were generated.

RNA-seq data analysis
Quality control. The first step in our data analysis was quality control to
ensure that raw data had good metrics and no significant biases which
may affect the following analysis. In this study, FastQC (v0.11.9) with
default parameters was applied to calculate read quality for all PitNET
samples.

Filter of raw data. The adapter sequence of raw data (Fastq) was removed
using Fastp (v0.22.0). Then, the reads with more than 75 bp were preserved
(named clean reads) and used for downstream analysis

Sequence alignment. Then the clean reads of each PitNET sample were
mapped to the human (Homo sapiens) genome (version hg19) by using
STAR (v2.4.2a) software with default parameters and were annotated with
transcriptome database (gencode v19).

Gene expression estimation. Expression estimation of gene and tran-
script was performed by using RSEM (V1.2.29) with setting-estimate-
rspd parameter to estimate the distribution of the starting position of
the sequencing sequence (RSPD) with other parameters in default. The
relative abundance of the transcript was quantified based on normal-
ized metric named FPKM. Transcripts whose FPKM score > 1 were
preserved.

Peptide preparation for MS analysis
Protein extraction and tryptic digestion. As for protein extraction and
tryptic digestion, approximately 45 mg cryopulverized PitNET tissues or
APGs were homogenized separately in an appropriate volume of Urea
lysis buffer (8 M urea, 100 mM Tris hydrochloride, pH 8.0) containing
protease and phosphatase inhibitors (Thermo Scientific). The lysate was

centrifuged at 4 °C 16000× g for 15 min for clarification, and the BCA
method was applied to measure the protein concentration. About
4900 μg protein was extracted from each sample. Next, protein samples
were replenished with a final concentration of 5 mM dithiothreitol (DTT)
before incubation for 30 min at 56 °C, which were then supplemented
with a final concentration of 20 mM iodoacetamide (IAA), and finally
were incubated at room temperature in the dark, according to the FASP
procedure.81 After 30 min incubation, samples were supplemented with
DTT to a final concentration of 5 mM and maintained for another 15 min
in the dark. Protein samples were centrifuged at 12,000× g for 20 min in
30 kD Microcon filtration devices, and then were washed twice with Urea
lysis buffer and 50 mM NH4HCO3. Protein samples were then digested
with trypsin at 37 °C overnight with an enzyme to protein mass ratio of
1:25. Peptides were dried with SpeedVac (Eppendorf).

Phosphopeptide enrichment. The peptide concentration was determined
using a NanoDrop 2000C spectrophotometer (at 280 nm). Approximately
300 μg peptides were then enriched with the High-Select™ Fe-NTA
Phosphopeptide Enrichment Kit (Thermo Fisher Scientific, A32992),
following the manufacturer’s recommendations.

Liquid chromatography-tandem MS. Digested peptides were analyzed on
an Easy-nLC 1200 nanoflow LC system tandem with a Fusion Lumos
(Thermo Fisher Scientific). Peptide samples were loaded into a homemade
trap column (100 μm× 2 cm; pore size, 120 Å; particle size, 3 μm;
SunChrom; USA), and then separated with a gradient of 4%–100% mobile
phase B (80% acetonitrile and 0.1% formic acid) at a flow rate of 600 nL/
min for 150min by a homemade silica microcolumn (150 μm× 30 cm; pore
size, 120 Å; particle size, 1.9 μm; SunChrom; USA).
LC-MS/MS based proteomic and phosphoproteomic experiments were

conducted with Field Asymmetric Ion Mobility Spectrometry (FAIMS).
FAIMS voltages were set to ‒40 V, ‒60 V and ‒80 V, respectively, and
other parameters were consistent and set as follows: protein quantifica-
tion consisting of an MS1 scan at a resolution of 120,000 (at 200 m/z)
with an AGC value of 5e5, max injection time of 50 ms and scan range
350–1500 m/z, MS2 scans with higher-energy collision dissociation
detected in the Ion Trap first (Ion trap scan rate = rapid, isolation window
1.6 m/z, max injection time 10 ms, AGC target 1e4, normalized collision
energy of 30%). The dynamic exclusion time of previously obtained
precursor ions was 45 s, cycle time = 1 s.

MS data analysis
Identification of peptide and protein. MS raw files of proteomics data
were processed with “Firmiana”, a one-stop proteomic cloud platform82

against the human RefSeq protein database (updated on 04-07-2013) in
the National Center for Biotechnology Information using the Mascot
2.4 search engine. A mass tolerance of 20 ppm for precursor and 0.5 Da
for production were allowed. Up to two missed cleavages were allowed.
Carbamidomethyl (C) was set as fixed modification, and N-acetylation
and oxidation of methionine were set as variable modifications. To
control the quality of protein identification, a target-decoy-based
strategy was employed to control the FDR of both the peptides and
proteins to less than 1%. Percolator was used to obtain the probability
value (q value), and to validate the FDR (measured by the decoy hits) of
every peptide-spectrum match (PSM) lower than 1%. Thereafter,
peptides shorter than seven amino acids were removed. For peptide
identification, the cutoff ion score was set as 20. To obtain more
stringent quality control, all PSMs in all fractions were combined for
protein quality control. The q values of both the target and decoy
peptide sequences were dynamically increased until the corresponding
protein FDR was less than 1% using the parsimony principle. Finally,
proteins with at least two unique peptides were selected for further
investigation to reduce the false positive rate.
MS raw files of phosphoproteomics data were searched against the

human refseq protein database (updated on version 04/07/2013, 27,414
proteins) with Proteome Discoverer (version 2.3.0.523) using Mascot83

(version 2.3.01) engine with a percolator.84 Oxidized methionine, N-term
acetylation, and phospho (STY) were set as variable modifications, and
carbamidomethyl cysteine was used as a fixed modification. The FDR of
peptide and protein was set at 1%. The tolerance for spectra search
allowed 20 ppm mass tolerance for the precursor. Up to two missed
cleavages were allowed.
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MS quantification of proteins and phosphoproteins. Proteomics datasets
were quantified using Firmiana, and both the results and raw data from
the mzXML file were loaded. Then, each identified peptide was retrieved
according to the identification information of MS1 to obtain the
extracted-ion chromatogram (XIC), and the abundance was estimated
by calculating the area under the extracted XIC curve. Non-redundant
peptide list was used to assemble the proteins according to the
parsimony principle. Protein abundance was then estimated using a
traditional label-free, intensity-based absolute quantification (iBAQ)
algorithm, which divided the protein abundance (derived from
intensities of the identified peptides) by the number of theoretically
observable peptides. Fraction of total (FOT) is a relative quantification
value defined as a protein’s iBAQ divided by the sum of the iBAQ of all
proteins identified in an experiment, calculated as the normalized
abundance of a particular protein in the experiment. Finally, for the ease
of presentation, the FOT was further multiplied by 1e5.
Phosphoproteomics datasets were quantified using the Proteome

Discover (version 2.3). For the phosphoprotein abundance calculation,
the non-redundant phosphopeptide list was used to assemble the
proteins according to the parsimony principle. For phosphosite
localization, phosphosite confidence was determined using ptmRS85

and a phosphosite probability > 0.75 was used for further analysis. The
phosphoprotein abundance was calculated from the sum of phospho-
peptide abundance.

Missing value imputation. Proteins and phosphosites with a missing rate <
50% were imputed separately on the data from clinicopathological
subtype, which is consistent with previous report.24 The missing values
were imputed by K-nearest neighbor (KNN) algorithm using the 5 nearest
neighbors based on “impute” R package (https://doi.org/10.18129/
B9.bioc.impute).

Batch effect analysis. Dip statistic test and PCA implemented in R v.4.0.2
were adopted to evaluate the batch effects in our study with regard to the
following two variables: sample type and batch identity. The density plots
of the the mRNAs, proteins and phosphosites have an expected unimodal
distribution by dip statistic test, indicating that the samples passed the
quality control (Supplementary information, Fig. S1c). In the PCA
procedure, the results also displayed that batch effects were negligible
for batch identity but were significant for the clinicopathological subtypes
(Fig. 1h; Supplementary information, Fig. S1e, f).

Quality control of the MS data. Digested peptides of HEK293T cell (National
Infrastructure Cell Line Resource) were acquired with LC-MS/MS to evaluate
the stability of instrument every three days. The HEK293T cell was digested
and analyzed using the same protocol and conditions as PitNET samples. The
Spearman’s correlation coefficient was computed for all quality-control runs
in R v.4.0.2, and the results are displayed in our study (Supplementary
information, Fig. S1d). The average correlation coefficient among the 23
HEK293T cells was 0.91, rangeing from 0.87 to 0.95.

Global proteomics analysis
Differential protein analysis. Wilcoxon rank-sum test was applied to
calculate the differentially expressed proteins between subtypes. Up or
down-regulated proteins in a specific subtype were identified as
differentially expressed proteins compared with other subtype samples
(ratio > 2, Wilcoxon rank-sum test, Benjamini-Hochberg adjusted
P < 0.05).

Pathway enrichment analysis. Gene sets of molecular pathways from the
KEGG86/Hallmark87/Reactome88 databases were applied to compute path-
ways. Differentially expressed proteins defined in different clinicopatholo-
gical subtypes or omic clusters were subjected to pathway enrichment
analysis in ConsensusPathDB (http://cpdb.molgen.mpg.de/) with FDR < 0.05.

Phosphoproteomics analysis
Differential phosphoprotein and phosphopeptide analysis. Wilcoxon rank-
sum test was used on PitNET samples to identify differential abundance of
phosphoproteins and phosphosites between subtypes. Upregulated or
downregulated phosphoproteins and phosphosites in tumor samples were
defined as differentially expressed phosphoproteins and phosphopeptides
in each specific subtype and were defined as differentially expressed

proteins compared with other subtype samples (ratio > 2, Wilcoxon rank-
sum test, Benjamini-Hochberg adjusted P < 0.05).

Multi-omics data analysis
Analysis of significantly mutated genes. MutSigCV (https://
software.broadinstitute.org/cancer/cga/mutsig, version 1.4) and Oncodri-
veCLUST were used for identifying significantly mutated genes with
default parameters. The Benjamini and Hochberg method was adopted to
convert the final P values to q values.89 Significant mutations were
determined in genes with q ≤ 0.1.

Co-occurrence and mutual exclusivity analysis of mutations. In our
mutational dataset, Fisher’s exact test was used to investigate co-
occurrence and mutually exclusive mutated genes.

Mutation signature analysis and TMB. Mutational Signatures in Cancer
(MuSiCa) software90 was used to jointly infer mutational signatures in 200
PitNET tumors. The 96 mutation vectors (or contexts) generated from
somatic SNVs based on six base substitutions (C > A, C > G, C > T, T > A,
T > C, and T > G) within 16 possible combinations of neighboring bases for
each substitution were used as input data in order to infer their
contributions to the observed mutations. To infer their exposure
contributions, non-negative matrix factorization (NMF) approach was
applied in MuSiCa to decipher the 96 × 159 (i.e., mutational context-by-
sample) matrix of 30 known COSMIC cancer signatures (https://
cancer.sanger.ac.uk/cosmic/signatures). The number of somatic mutations
(including base substitutions and indels) in the coding region was defined
as TMB. To compute TMB for each PitNET patient, the total number of
mutations calculated was divided by the size of the coding sequence
region of the Agilent SureSelect Human All Exon V6.

Effects of CNAs. Somatic CNAs affecting the expression levels of mRNA,
protein, and phosphoprotein in either “cis” (within the same aberrant
locus) or “trans” (remote locus) mode were calculated using multiOmicsViz
(R package). Spearman’s correlation analysis (FDR < 0.05) was performed
for CNA-mRNA correlation, CNA-protein correlation and CNA-
phosphoprotein correlation, consistent with the same FDR cutoff value
in recent studies.22,42 The CAGs used in Fig. 2e were from CAGs defined by
Bailey et al.,25 Mertins et al.91 and Vogelstein et al.92

Evaluation of mRNA-protein correlation. A total of 6115 genes that
correspond to mRNA and protein abundances were used to evaluate
gene-wise mRNA-protein correlation. Spearman correlation coefficient
between paired mRNA expression and protein abundance was measured.
The P values of the correlation coefficient were calculated and adjusted by
the FDR correction. As a result, the median Spearman correlation
coefficient of matched genes is 0.24. To identify cellular pathways with
the largest and smallest mRNA-protein correlations, GSEA93 was performed
based on correlation-ranked list of genes.

PCA. We performed PCA on 200 PitNET tumor samples and 7 APGs to
illustrate the omic difference between each subtype/cluster samples. To
visualize representation of omics separation of samples, we used the R
package factoextra.94 The 95% confidence coverage was represented
by a colored ellipse for each clinicopathological subtypes, which
was calculated from the mean and covariance of points in each
particular group.

Consensus clustering analysis for proteome, transcriptome, and phosphopro-
teome. Consensus clustering was performed to identify proteomic
clusters of PitNETs using the ConsensusClusterPlus and CancerSubtypes
package in R.31,95 We selected the top 1150 proteins from the proteins
expressed in at least 50% of the samples for clustering across
200 samples. Parameters were reps=1,000, pFeature = 0.8, pItem =
0.8, clusterAlg= “hc”, distance= “spearman” in the range of 2 to 10
clusters. The consensus matrices of k= 4, 5, 6, 7, and 8 clusters are shown
in our study (Supplementary information, Fig. S4a). The delta plot of the
relative change in the area under the cumulative distribution function
(CDF) curve, and the average silhouette distance for consensus clusters
were calculated to estimate the average pairwise consensus matrix
within consensus clusters (Supplementary information, Fig. S4a). We then
determined the consensus matrix of k= 7 as the best solution for
clustering as it presents the most separated clusters compared with
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other k value. Furthermore, compared to k= 7, when using k= 8, the
consensus matrix was also almost clearly divided into seven consensus
clusters rather than eight. In addition, the largest average silhouette
width (0.81) for k= 7 suggested the highest similarity of samples in each
cluster allocated by it.
To compare proteomic clusters with other omic datasets, transcriptomic

and phosphoproteomic clusters were identified using a similar procedure. For
the clustering of transcriptomics data, 2735 mRNAs among the top 20% most
varied mRNAs were selected in 194 tumor samples (Supplementary
information, Fig. S4b). For the clustering of phosphoproteomics data, 1244
phosphoproteins among the top 50% most varied phosphoproteins were
selected in 194 tumor samples (Supplementary information, Fig. S4c).
Parameters were reps = 1,000, pItem = 0.8, pFeature = 0.8, clusterAlg= “
pam”, distance= “spearman” in the range of 2 to 10 clusters. In addition to
considering the factors used in proteomic clusters, patterns of concordance
across data types and with histological diagnosis were considered. We finally
selected 5 transcriptomic clusters and 7 phosphoproteomic clusters for further
analysis.

GSEA. GSEA was performed by the GSEA software (https://www.gsea-
msigdb.org/gsea/index.jsp).93 Gene sets including KEGG, Reactome, Gene
Ontology and HALLMARK downloaded from the MsigDB (v7.4, https://
data.broadinstitute.org/gsea-msigdb/msigdb/release/7.4/) were set as
background.

Immune subtype identification. Immune score, stromal score and tumor
purity were inferred using the R package ESTIMATE v1.0.1137 using
transcriptome data (Supplementary information, Table S7). The abun-
dance of 64 cell types in 194 samples were estimated using xCell
(https://xcell.ucsf.edu/)47 based on transcriptomic profiles. Cell types
which were detected in at least 10% of the patients were used for
further consensus clustering, using the R packages ConsensusCluster-
Plus31 (clusterAlg= “pam”, distance= “spearman”). (Fig. 5a; Supplemen-
tary information, Table S7).

Pathway ssGSEA. To better understand biological processes and pathway
scores for each sample at the protein and mRNA levels, including 200 PitNET
tumor samples and 7 APGs, we applied ssGSEA96 using the GSVA package.97 For
this analysis, gene sets (KEGG, Reactome, Gene Ontology and HALLMARK)
downloaded from the MsigDB (v7.4, https://data.broadinstitute.org/gsea-
msigdb/msigdb/release/7.4/) were set as background.

Kinase activity inference. The phosphoproteomics data were processed
using NetworKIN98 to predict kinases for every identified phosphosite.
Known substrates from PhosphoSitePlus99 and UniProt used in Kinase
Activity Inference were used to generate substrate sets, which were further
predicted from NetworKIN with a NetworKIN score ≥ 5. The similar
approach of predicting kinase activity was also used in Clinical Proteomic
Tumor Analysis Consortium (CPTAC) works.24,41 Kinase Activity Inference
was further evaluated from kinase-substrate pairs using ssGSEA96 via the
GSVA package.97

TF activity inference. TF activities for 200 PitNET tumors were computed
using ssGSEA96 via the GSVA package.97 TF targets obtained from
DoRothEA (v1.6.0)100 were set as background.

MGPS. The MGPS was computed based on gene expression data of genes
contained in the proliferation signature from Ellis et al.101 ssGSEA score of
the package GSVA97 was used for MGPS calculation. The similar approach
of calculating MGPS was also employed in CPTAC works.41,61,102

PROGENy scores. PROGENy46 was used to generate activity scores for
EGFR, VEGF, Hypoxia, etc. based on RNA expression data. Tumor RNA
expression values were submitted to PROGENy.

Survival analysis. The coefficient value was calculated from Cox propor-
tional hazards regression analysis. Values with P < 0.05 were chosen for Cox
regression multivariate analysis. Kaplan-Meier survival curves (log-rank
test) were used for progression-free survival (PFS) of the patients.
Survminer (version 0.2.4, R package) with maximally selected rank statistics
(http://r-addict.com/2016/11/21/Optimal-Cutpoint-maxstat.html) was used
to determine the optimal cut-off point of a given protein, phosphoprotein,
or phosphosite for the following calculation including Kaplan-Meier
analysis, log-rank test.103

Immunohistochemistry and image analysis
Antibodies.

Antibodies Source Identifier

PDL1 (E1L3N) Cell Signaling
Technologies

Cat# 13684, RRID:
AB_2687655

CDK6 [EPR4515] Abcam Cat# ab124821, RRID:
AB_10999714

EGFR [EP38Y] Abcam Cat# ab52894, RRID:
AB_869579

EGFR T693 Immunoway Cat# YP0087

GNAS [EPR24177-
24]

Abcam Cat# ab283266

VEGF Receptor 2
[55B11]

Cell Signaling
Technologies

Cat# 2479, RRID:
AB_2212507

TWIST1 ABclonal Cat# A15596, RRID:
AB_2763001

ZEB2
(Clone 1E12)

Origene Cat# TA802113, RRID:
AB_2616296

Pan-Keratin (C11) Cell Signaling
Technologies

Cat# 4545, RRID:
AB_490860

Fibronectin/FN1
(E5H6X)

Cell Signaling
Technologies

Cat# 26836

Staining of tissue sections. Patient tumor samples were fixed in 4%
paraformaldehyde for 24 h, dehydrated by gradient ethanol and xylenes,
then embedded in paraffin. Paraffin blocks were cut into 3 μm sections for
IHC staining, IF staining, or HE staining. For IHC, slides were deparaffinized
and rehydrated through xylenes and graded ethanol, followed by antigen
retrieval using heat-induced epitope retrieval (HIER). After blocking
endogenous peroxidase and nonspecific binding sites (0.3% H2O2 and
5% normal goat serum, respectively), primary antibodies were applied at
4 °C overnight. Slides were incubated with Dako REAL™ EnVision™ HRP
rabbit/mouse (belong to K5007, DAKO, Glostrup, Denmark) at room
temperature for 20min, followed by applying Dako REAL™ DAB+ CHRO-
MOGEN and Dako REAL™ substrate buffer (belonging to K5007, DAKO,
Glostrup, Denmark) to visualize staining signals under light microscopy,
finally counterstained by hematoxylin solution. Stained slides were
scanned by Ocus (Grundium, Tampere, Finland) and analyzed with Qupath
software (see below). For IF staining, procedures before primary antibodies
incubation were the same as IHC, except for H2O2 blocking. Slides were
incubated with primary antibodys at 4 °C overnight, followed by
incubation with Goat Anti-Rabbit Alexa Flour 568 (1:500, ab175695,
Abcam) and Goat Anti-Mouse Alexa Flour 488 (1:500, 115-545-003, Jackson
ImmunoResearch). Finally, the slides were counterstained with DAPI
(1:1000, HY-D0814, MCE) and mounted in an antifade solution (Fluor-
omount-G, 0100-01, SouthernBiotech).

Image analysis. HE and IHC images were scanned by Ocus whole-slide
scanner (Grundium, Tampere, Finland) and processed with Qupath
software 0.3.0.104,105 For IHC, images are preprocessed by the built-in
stain vector estimator. Cells with shape and stain parameters in each area
were identified by built-in cell detection function via nucleus stain
(hematoxylin). For each antibody, the mean DAB optical density (OD)
thresholds for positivity grades were decided according to the staining
pattern and intensities, and then were applied uniformly to all samples.
The H-score was calculated as the percentage of tumor cells with positive
staining multiplied by the average intensity (0‒3) of positive staining for
PDL1, CDK6, EGFR, EGFR_T693, GNAS, TWIST1, and ZEB2. Besides, the
positive locations of VEGFR2 were mainly located at elongated endothelial
cells, which cannot be identified cell by cell in Qupath. The quantitative
results of VEGFR2 were calculated as positive area divided by total tissue
area (positive area ratio) for each sample. For HE, we built a machine
learning pixel classifier within Qupath, which learns typical tumor cell-
enriched and stroma cell-enriched areas and gives classifications of either
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tumor or stroma region in each sample. Scripts of the whole-slide images
analysis protocol above were created, batch performed on each set of
images and further checked by two expert pathologists. All quantifications
were evaluated blind to patient clinical characteristics.

Outlier process in H-score analysis
Winsorization106 is used to limit extreme values in the H-score data to
reduce the effect of possibly spurious outliers. The H-score below the
boundaries of the 5th percentile was set to the 5th percentile, and the
H-scores above the boundaries of the 95th percentile was set to the 95th
percentile.

Statistical analysis
Standard statistical tests, including but not limited to Chi-square test, Fisher’s
exact test, Wilcoxon rank-sum test, Kruskal-Wallis test, and Log-rank test,
were adopted to analyze the clinical data. For categorical variables vs
categorical variables, Fisher’s exact test was used in a 2 × 2 table; otherwise,
the Chi-square test was used. For categorical variables vs continuous
variables (e.g., pathway scores, kinase activity scores and TF activity scores),
the Wilcoxon rank-sum test and Kruskal-Wallis test were used to test whether
any of the differences among the subgroups were statistically significant;
and Spearman correlation was used for continuous variables vs continuous
variables. Statistical significance was considered at a P value < 0.05. To
account for multiple testing, the P values were adjusted using the Benjamini-
Hochberg FDR correction and was considered significant when < 0.05.
Kaplan-Meier plots (log-rank test) were used to describe PFS. All analyses of
clinical data were performed in R (version 4.0.2).
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