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Abstract

Aims In heart failure with preserved ejection fraction (HFpEF), the reduction of nitric oxide (NO)-bioavailability and conse-
quently endothelial dysfunction leads to LV stiffness and diastolic dysfunction of the heart. Besides shear stress, high-density
lipoprotein (HDL) stimulates endothelial cells to increased production of NO via phosphorylation of endothelial nitric oxide
synthase (eNOS). For patients with heart failure with reduced ejection fraction, earlier studies demonstrated a positive impact
of exercise training (ET) on HDL-mediated eNOS activation. The study aims to investigate the influence of ET on HDL-mediated
phosphorylation of eNOS in HFpEF patients.
Methods and results The present study is a substudy of the OptimEx-Clin trial. The patients were randomized to three
groups: (i) HIIT (high-intensity interval training; (ii) MCT (moderate-intensity continuous training); and (iii) CG (control group).
Supervised training at study centres was offered for the first 3 months. From months 4–12, training sessions were continued at
home with the same exercise protocol as performed during the in-hospital phase. Blood was collected at baseline, after 3, and
12 months, and HDL was isolated by ultracentrifugation. Human aortic endothelial cells were incubated with isolated HDL, and
HDL-induced eNOS phosphorylation at Ser1177 and Thr495 was assessed. Subsequently, the antioxidative function of HDL was
evaluated by measuring the activity of HDL-associated paraoxonase-1 (Pon1) and the concentration of thiobarbituric
acid-reactive substances (TBARS). After 3 months of supervised ET, HIIT resulted in increased HDL-mediated eNOS-Ser1177

phosphorylation. This effect diminished after 12 months of ET. No effect of HIIT was observed on HDL-mediated eNOS-
Thr495 phosphorylation. MCT had no effect on HDL-mediated eNOS phosphorylation at Ser1177 and Thr495. HIIT also increased
Pon1 activity after 12 months of ET and reduced the concentration of TBARS in the serum after 3 and 12 months of ET. A neg-
ative correlation was observed between TBARS concentration and HDL-associated Pon1 activity in the HIIT group (r = �0.61,
P < 0.05), and a trend was evident for the correlation between the change in HDL-mediated eNOS-Ser1177 phosphorylation
and the change in peak V̇O2 after 3 months in the HIIT group (r = 0.635, P = 0.07).
Conclusions The present study documented that HIIT but not MCT exerts beneficial effects on HDL-mediated eNOS phos-
phorylation and HDL-associated Pon1 activity in HFpEF patients. These beneficial effects of HIIT were reduced as soon as
the patients switched to home-based ET.
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Introduction

About 50% of patients hospitalized for heart failure (HF) have
been diagnosed with heart failure with preserved ejection
fraction (HFpEF).1–3 The prevalence of HFpEF averages 4.9%,
increasing by approximately 1% annually. Moreover, the mor-
tality in patients with HFpEF may be as high as in HFrEF,4 and
it is predicted that the prevalence of HFpEF and treatment
costs will increase due to an aging of the population.5 Despite
the high mortality rate, most therapeutic approaches using
medications established for the treatment of heart failure
with reduced ejection fraction (HFrEF) have failed.6–9 Never-
theless, promising results with respect to the use of the
SGLT2 inhibitor Empagliflozin10 and exercise training11 for
the treatment of HFpEF have been reported. A pathophysio-
logical model for the development of ventricular stiffness has
been proposed by Paulus and Tschöpe.12 In this model, a sys-
temic proinflammatory state causes coronary microvascular
endothelial inflammation resulting in reduced nitric oxide
(NO) bioavailability, cyclic guanosine monophosphate con-
tent, and protein kinase G (PKG) activity. This finally leads
to a hypophosphorylation of titin and consequently ventricu-
lar stiffening.

NO synthesis and release from the endothelium are in-
duced by shear stress.13,14 Shear stress has been shown to
cause phosphorylation of endothelial nitric oxide synthase
(eNOS) at the serine-1177 (Ser1177) position and in parallel
dephosphorylation at threonine-495 (Thr495). Besides shear
stress eNOS activity can also be induced by high-density lipo-
protein (HDL) via binding to scavenger receptor B1 (SR-BI).15

Studies have shown that a low concentration of HDL choles-
terol is associated with an increased risk of cardiovascular
events.16 However, interventions increasing the concentra-
tion of HDL did not reduce cardiovascular risk.17 Therefore,
it was postulated that not the level of HDL is the important
factor rather the ability of HDL to modulate inflammation
and activate eNOS and NO production. This idea is supported
by the observation that despite similar levels of plasma HDL
cholesterol, the HDL lost almost 40% of its ability to stimulate
eNOS activity and 20% of its ability to suppress an inflamma-
tory response in patients with type 2 diabetes.18 Further-
more, exercise training in HFrEF patients19 or a lifestyle mod-
ification in obese adolescents20 restored HDL-mediated eNOS
phosphorylation and NO production, without modulating
HDL plasma concentration. At the molecular level,
malondialdehyde (MDA), a product of lipid peroxidation,
binds to HDL resulting in PKCßII activation leading to reduced
eNOS activation (reduced phosphorylation of eNOS-Ser1177

and increased phosphorylation of eNOS-Thr495).21–23

Exercise training (ET) is a powerful tool to reduce morbid-
ity in heart failure patients and to increase endothelial func-
tion and subsequently exercise capacity. Particularly in HFpEF
patients, ET has been for a long time the only treatment op-
tion showing positive results with respect to improvements in

exercise capacity and quality of life. Nothing is known so far
about the impact of different exercise training modalities
on HDL function regarding modulated eNOS activity via phos-
phorylation. Therefore, in the present study, we isolated HDL
from patients with diagnosed HFpEF before and after
high-intensity interval training (HIIT) and moderate-intensity
continuous training (MCT) programmes. Subsequently, we
evaluated its stimulating effect on eNOS phosphorylation
and its antioxidative properties by assessing Pon1 activity.

Methods

Patients and sample collection

The present study is a substudy of the OptimEx-Clin trial
(ClinicalTrials.gov Identifier: NCT02078947) investigating
different training modalities of exercise to improve peak
V̇O2 in HFpEF patients.11 Sedentary, stable HFpEF patients
≥40 years of age with signs and symptoms of heart failure
(LVEF >50%, NYHA II/III, E/e0 ≥ 15 or E/e0 ≥ 8 and NT-proBNP
≥220 pg/mL) on stable medical therapy (>4 weeks) for risk
factor control were randomized (1:1:1) to one of the follow-
ing groups:

(i) HIIT (three training sessions per week, 10 min warm-up
at intensity of 35–50% of heart rate reserve (HRR), then
4× 4 min intervals at high intensity of 80–90% of HRR,
interspaced by 3 min of active recovery at 20–50%
HRR, 38 min each session);

(ii) MCT (5 times per week, intensity of 35–50% of HRR,
40 min each session); and

(iii) CG (exercise recommendations according to
guidelines24).

Exercise intensity (% HRR) was determined by a maximal
cardiopulmonary exercise test (CPET) at baseline and was
adapted after 6 weeks, 3 months, and 6 months of exercise
training based on repeated CPET. Supervised training at study
centres was offered for the first 3 months. From months
4–12, training sessions were continued at home with the
same exercise protocol as performed during the in-hospital
phase.

For the present study, 34 patients were randomly selected
from the total of 176 patients included in the final analysis of
the main study (10 subjects from the control group,
14 subjects from the MCT group, and 10 subjects from
the HIIT group). A comparison between the 34 patients
randomly selected for the present study and the overall
OptimEx study cohort is depicted in the Supporting
Information, Table S1. Blood samples were collected from
all participants when entering the study (baseline), after
3 months and after 12 months of training. Serum was
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prepared by ultracentrifugation (10 min at 3000× g at 4°C)
and stored at �80°C until used.

Isolation of high-density lipoprotein

High-density lipoprotein was isolated by ultracentrifugation
using a KBr density gradient as described in the literature.19

In brief, the density of the serum sample was raised with
solid KBr to a final density of 1.24 g/mL. For generating a den-
sity gradient the serum sample was put into the centrifuga-
tion tube, overlayed with a KBr solution (density 1.063 g/
mL) and subjected to ultracentrifugation (6 h, RT, and
77 000 rpm, Optima Max MLA-80 rotor). After centrifugation,
two white bands were visible, and the upper band was col-
lected using a syringe. To remove the KBr solution, the col-
lected HDL was washed serval times with PBS and concen-
trated using a filter system (Amicon Ultra-4, 30 kDa). The
quality of isolated HDL was evaluated by polyacrylamide gel
electrophoresis followed by Coomassie Brilliant Blue staining
or by specific detection of Apo-protein A1 (Western blot
analysis).

Cell culture and incubation with isolated
high-density lipoprotein

Human aortic endothelial cells (HAEC; Cell Systems Biotech-
nology, Troisdorf, Germany) were cultured in EGM-2 cell
culture medium (Lonza, Walkersville, MD) and incubated
for 0, 5, 10, 15, or 30 min with 50 μg/mL isolated HDL.
Thereafter, cells were harvested with ice-cold lysis buffer
(50 mmol/L Tris–HCl; pH 7.4; 1% NP-40; 0.25%
Na-deoxycholate; 150 mmol/L NaCl; 1 mmol/L EDTA; 0.1%
Triton X-100; 0.2% SDS) containing protease inhibitor mix
M (Serva, Heidelberg, Germany) as well as phosphatase
inhibitor mix II (Serva). Protein concentration was
determined using BSA as standard (BCA method; Pierce,
Rockford, IL).

Western blot analysis

Ten micrograms of total protein were separated on a dena-
turing polyacrylamide gel and transferred to a PVDF mem-
brane. To detect specific proteins, the following antibodies
were applied: anti-eNOS (Santa Cruz), antiphospho-eNOS-
Ser1177 and antiphospho-eNOS-Thr495 (both BD Biosciences,
Heidelberg, Germany). For the evaluation of HDL-induced
phosphorylation of the respective protein, the maximal
stimulation was used as recently described.19 All samples
were analysed in triplicate.

Measurement of the activity of paraoxonase-1

The paraoxonase activity was measured by the conversion of
paraoxon to p-nitrophenol, which can be monitored spectro-
photometrically by the change in absorbance over time at
405 nm.25 Isolated HDL or an aliquot of serum was added
to a solution containing 1 mM paraoxon, 2 mmol/L CaCl2,
and 100 mmol/L Tris pH 8.0. The change of absorbance over
time was monitored at 405 nm using a plate reader (Infinite
M Plex reader, Tecan, Männedorf, Switzerland), and enzyme
activity was calculated using an extinction coefficient of
17 000 M/cm.

Measurement of thiobarbituric acid-reactive
substances concentration

Free and protein-bound malondialdehyde were determined
using a commercially available TBARS assay kit following the
manufacturers protocol (Thiobarbituric Acid Reactive Sub-
stances, Abcam ab118970).

Statistical analysis

Statistical analysis was performed using GraphPad Instat
version 9.00. The data obtained are reported as mean
values ± SEM (standard error of the mean). Differences be-
tween groups were evaluated by an independent repeated
measures ANOVA test followed by a Bonferroni post hoc
test. Statistical significance was present at a value of
P < 0.05.

Results

Impact of exercise training on patients
characteristics

At baseline, no significant differences between the three
groups (control, MCT, or HIIT) were seen with respect to
age, BMI, exercise capacity measured as peak V̇O2, NHYA
class, hyperlipidaemia, hypertension, or atrial fibrillation.
The patients included into the study exhibited normal left
ventricular ejection fraction (LVEF), impaired diastolic func-
tion with an E/e0 above 15, and an elevated pro NT-proBNP
above >220 pg/mL (Table 1). Exercise training over a time
period of 3 or 12 months resulted in a significant increase
of peak V̇O2 when compared with baseline (Table 2). This in-
crease was independent of the training modality, since no sig-
nificant difference between HIIT and MCT was detected after
3 or 12 months. No impact of exercise training was observed
over time on BMI, blood pressure, and lipid status (LDL, HDL,
and total cholesterol) (Table 2).
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Impact of exercise training on high-density
lipoprotein mediated endothelial nitric oxide
synthase phosphorylation

Analysing the impact of different training modalities on
HDL-mediated eNOS phosphorylation revealed that only HIIT
after 3 months supervised training increased eNOS phosphor-
ylation at the enzyme activating residue serin1177

(Figure 1A–C). This increase after 3 months was no longer de-
tectable after continuing exercise training with the same ex-
ercise protocol for additional 9 months at home. No impact
on eNOS-Ser1177 phosphorylation was observed in the MCT
or control group (Figure 1A–C). Correlating the change in
eNOS-Ser1177 phosphorylation and the change in peak V̇O2 af-
ter 3 months (Figure 2), a trend between these parameters
was seen (r = 0.635, P = 0.07).

With respect to the phosphorylation of eNOS at the
threonine495 site (phosphorylation leads to inhibition of en-
zyme activity), no significant change was observed over time
in all three groups (Figure 1D–F).

Impact of exercise training on paraoxonase-1
activity

Pon1 is the major enzyme responsible for anti-oxidant
activity of HDL. Measuring Pon1 activity in the isolated HDL
(Figure 3A–C) and in serum samples (Figure 3D–F) showed
that in the control group and MCT group, no significant

increase in Pon1 activity was measured in either HDL (Figure
3A,B) or serum (Figure 3D,E). In contrast, the data collected
for the HIIT group indicate a significant increase in enzyme
activity after 12 months in both the isolated HDL (1.43-fold
increase vs. baseline) (Figure 3C) and serum (1.12-fold
increase vs. baseline) (Figure 3F).

Impact of exercise training on thiobarbituric acid
reactive substances concentration

Measuring thiobarbituric acid reactive substances (TBARS)
level in serum samples offers a convenient method of deter-
mining the relative lipid peroxide content as a marker for ox-
idative stress. As depicted in Figure 4 no difference in TBARS
concentration was seen in the control (Figure 4A) and MCT
group (Figure 4B) over time. Analysing the samples of the pa-
tients in the HIIT group a significant reduction of TBARS was
evident after 3 (17% reduction) and 12 months (24% reduc-
tion) (Figure 4C). A negative correlation between changes in
TBARS and Pon1 activity in the HIIT group was observed
(Figure 5; r = �0.61, P < 0.05).

Discussion

Exercise training is widely accepted as treatment strategy for
patients with heart failure independent of its aetiology—

Table 1 Patient’s baseline characteristics

CG (N = 10) MCT (N = 14) HIIT (N = 10)

Women, n 8 (80%) 9 (64%) 8 (80%)
Men, n 2 (20%) 5 (36%) 2 (20%)
Age (years) 71 ± 3 71 ± 2 72 ± 2
BMI (kg/m2) 30.9 ± 1.6 32.8 ± 1.9 31.4 ± 1.9
NYHA class (I/II/III/IV), n 0/5/5/0 0/6/8/0 0/5/5/0
LVEF (%) 59.8 ± 1.9 61.2 ± 2.4 63.6 ± 2.6
E/e0 17.23 ± 2.26 17.56 ± 0.73 16.51 ± 1.41
NT proBNP (pg/mL) 1008 ± 296 862 ± 237 535 ± 134
Hypertension, n 10 (100%) 14 (100%) 10 (100%)
Hyperlipidaemia, n 8 (80%) 11 (79%) 9 (90%)
Diabetes mellitus type II, n 1 (10%) 5 (36%) 4 (40%)
Non-smoker, n 5 (50%) 7 (50%) 7 (70%)
Ex-smoker, n 4 (40%) 7 (50%) 3 (30%)
Smoker, n 1 (10%) 0 0
CAD, n 2 (20%) 4 (29%) 2 (20%)
Atrial fibrillation

Paroxysmal, n 1 (10%) 1 (7%) 2 (20%)
Persistent, n 1 (10%) 1 (7%) 1 (10%)
Permanent, n 1 (10%) 2 (14%) 1 (10%)

Medication
Beta-blocker, n 8 (80%) 9 (64%) 10 (100%)
Thiazide/loop diuretics, n 9 (90%) 13 (93%) 7 (70%)
Angiotensin receptor blocker, n 6 (60%) 10 (72%) 5 (50%)
Angiotensin-converting enzyme inhibitor, n 3 (30%) 3 (22%) 4 (40%)
Aldosterone antagonist, n 1 (10%) 1 (7%) 2 (20%)
Statins, n 5 (50%) 8 (57%) 6 (60%)

BMI, body mass index; CAD, coronary artery disease.
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HFrEF or HFpEF. Beneficial effects of ET could be documented
for vascular, myocardial and skeletal muscle function (re-
viewed in Gielen et al.26). Several years ago, our group could
even document that ET modulates HDL function in HFrEF,
thereby influencing endothelial function via phosphorylation
of eNOS.19 If ET also impacts HDL function in HFpEF patients
was unknown. The results of the present study can be sum-
marized as follows:

• HIIT but not MCT resulted in increased HDL-mediated
phosphorylation of eNOS at its activating site Ser1177 after
3 months of supervised ET.

• This positive effect of HIIT diminished after switching from
supervised to home-based ET.

• HDL isolated from patients after performing HIIT exhibited
higher anti-oxidative capacity as indicated by an increase
in Pon1 activity.

• Assessment of TBARS in the serum revealed a lower con-
centration after performing HIIT.

In conclusion, HIIT has clear effects on HDL function (anti-ox-
idative properties and stimulating eNOS activity) in HFpEF pa-
tients, but unfortunately the eNOS activating effect is lost in
case training compliance decreases.11

Exercise training and its impact on high-density
lipoprotein

Analysing two large population-based studies, the Copenha-
gen City Heart Study and the Copenhagen General Population
Study, Madsen and colleagues documented that the associa-
tion between HDL cholesterol concentration and all-cause
mortality was U-shaped. Both, extreme high and low concen-
trations, were associated with high all-cause mortality risk.27

These observation and the finding that the pharmacologic in-
crease in HDL levels did not improve mortality28 supports the
idea that not the quantity, but the functional capacity of HDL
may be important for risk reduction in cardiovascular
disease.29,30 This idea is further supported by the finding that
exercise training in heart failure patients, independent of re-
duced or preserved left ventricular ejection fraction, im-
proves quality of life11,31 and is even associated with lower
mortality32 irrespective of any significant modulation of HDL
concentration. At least for HFrEF patients an earlier study
from our group could show that ET improves HDL properties
by increasing its ability to activate eNOS by phosphorylating
the enzyme at its Ser1177 residue. The physiological relevance
of eNOS phosphorylation at the Ser1177 has been supported
by a close correlation between eNOS-Ser1177 phosphorylation
and noninvasively measured endothelial function in a cohort
of healthy children.33 With the results presented in the cur-
rent study this observation can now be expanded to HFpEF
patients. Also in HFpEF patients ET resulted in a higherTa
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HDL-mediated phosphorylation of eNOS at Ser1177 without
modulation of the eNOS-Thr495 site, which inhibits eNOS ac-
tivity. This is in contrast to HFrEF patients, where a
HDL-mediated reduction in Thr495 phosphorylation was seen
after ET.19

High-density lipoprotein mediated protection against car-
diovascular disease is partly attributable to its robust
anti-oxidant activities with Pon1 being the major enzyme.

Measuring Pon1 activity in isolated HDL a significant increase
after 12 months HIIT was observed. The association of ET and
Pon1 activity is in line with earlier studies. An increase in
Pon1 activity was detected immediately after a single bout
of physical exercise, followed by a decrease after 2 h and a
recovery of levels after 24 h.34 In addition, a study of rugby
players reported significantly higher levels of Pon1 activity af-
ter performing maximal exercise.35 A potential regulator for

Figure 1 Human aortic endothelial cells (HAECs) were incubated with high-density lipoprotein (HDL; 50 μg/mL) isolated from HFpEF patients at base-
line (white bars), after 3 months (grey bars) and after 12 months (black bars). HDL-induced phosphorylation of eNOS at Ser1177 (A–C) and Thr495 (D–F)
was assessed in the control group (A,D), the MCT group (B,E), and the HIIT group (C,F). Values are shown as x-fold increase in eNOS phosphorylation of
HDL-incubated cells versus untreated cells and expressed as means ± SEM. Representative western blots are shown above the bar graphs.
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this immediate change in Pon1 activity may be the accumula-
tion of reactive oxygen species (ROS) induced by the acute
exercise bout. Whereas in a chronic state a negative correla-
tion between Pon1 activity and the load of ROS was
observed.36 Also, in the present study, a negative correlation
between changes in TBARS and Pon1 activity was seen. What
is the reason for observing different relations between ROS
and Pon1 activity in acute and chronic conditions? The an-
swer to this can only be speculative. In particular, for exercise
training, it is well known that regular physical activity is con-
sidered a factor for preventing the development of cardiovas-
cular disease. This goes along with the induction of antioxida-
tive enzymes like catalase and SOD. On the other hand, a
single bout of strenuous exercise results of oxygen consump-
tion and excessive free radicals formation. Although low
levels of reactive oxygen species (ROS) are beneficial for the
organism ensuring normal cell and vascular function, the
overproduction of ROS and increased oxidative stress levels
play a significant role in the onset and progression of cardio-
vascular diseases (for review, see Tofas et al.).37 Therefore, it
is conceivable that different ROS concentrations exert differ-
ent biological effects. Nevertheless, the precise molecular
mechanism leading either to a positive of negative correla-
tion between ROS and Pon1 activity is still not clear.

Training modalities—HIIT versus MCT

In a pioneering work, Wisloff and colleagues described the
superior effect of HIIT when compared with MCT on endo-
thelial function in patients with HFrEF.38 In this small patient
study, the improvement in flow-dependent vasodilation was
shown to be significantly greater after 3 months of HIIT
compared with MCT. Nevertheless, the concept of HIIT being
superior over MCT is still discussed controversial. Several

large clinical multicentre trials could not confirm the superi-
ority of HIIT when assessing the change in exercise capacity
in different patient populations,11,31,39 whereas a
meta-analysis of 10 studies in CAD patients reported a
higher increase in peak V̇O2 after HIIT compared with
MCT.40 Also in HFpEF patients the discussion if HIIT is the
better option for improvement in exercise capacity is still
ongoing. The recently published OptimEx trial,11 a large ran-
domized multi-centre trial, could not show a difference be-
tween MCT and HIIT whereas a meta-analysis of 11 studies
with 515 HFpEF patients reported more pronounced effects
of HIIT when compared with MCT.41 In the present study,
the results clearly documented a difference between HIIT
and MCT with respect to the modulation of HDL function.
Significant changes in HDL-mediated eNOS phosphorylation,
Pon1 activity and TBARS concentration was only observed
in HFpEF patients performing HIIT but not MCT. A possible
explanation why only HIIT exhibited positive effects may
be due to the fact that shear forces are probably higher in
HIIT. Increased shear force is the driving factor for the mod-
ulation of ROS production and eNOS activation. In the report
by Wisloff and colleagues,38 HIIT showed a higher improve-
ment of the anti-oxidative capacity measured in serum sam-
ples. Therefore, it may be plausible that the larger reduction
of ROS by HIIT results in a higher Pon1 activity associated
with HDL and an increased HDL-mediated eNOS phosphory-
lation. At least the significant reduction of TBARS by HIIT in
the present study supports this hypothesis.

Nevertheless, it is also clear that the clinical impact of ET
depends on the patient’s compliance to ET advice. In the
present study the effect of HIIT on HDL-mediated eNOS phos-
phorylation was only detectable after 3 months of supervised
training—high compliance. As soon as the patients trained at
home without supervision and a lower compliance,11 this
beneficial effect was lost.

Figure 2 Correlation analysis between the change of eNOS-Ser1177 phosphorylation and the change in VO2peak in the HIIT group after 3 months.
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Limitations

The present study was performed at a small subset of pa-
tients from the whole study cohort of 176 HFpEF patients.
The patients analysed in the current study were selected ran-
domly from patients recruited only at the trial site Leipzig.
Comparing the baseline characteristics of the recruited pa-
tients with that from the total cohort11 only minor, but not
study relevant differences were evident (see Supporting In-

formation, Table S1). Therefore, we may assume that the re-
sults with respect to HDL function are representative for the
whole HFpEF cohort of the OptimEx trial. Unfortunately, in
the present subset of patients no measurement of endothe-
lial function was performed. A correlation analysis between
changes in HDL function (measured as change in eNOS phos-
phorylation at Ser1177) and changes in endothelial function
would strengthen the physiological importance of exercise in-
duced change in HDL function.

Figure 3 Pon1 activity bound to isolated HDL (A–C) and present in serum samples (D–F) was quantified at baseline (white bars), 3 months (grey bars),
and 12 months (black bars) in samples from the control group (A,D), the MCT group (B,E), and the HIIT group (C,F). Values are shown as x-fold increase
versus baseline and expressed as means ± SEM.
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Figure 4 TBARS concentration was quantified at baseline (white bars), 3 months (grey bars), and 12 months (black bars) in serum samples from the
control group (A), the MCT group (B), and the HIIT group (C). Values are shown as x-fold increase vs. baseline and expressed as means ± SEM.

Figure 5 Correlation analysis between the change in TBARS serum concentration and the change in HDL-bound Pon1 enzyme in the HIIT group after
3 months.
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Conclusions

The results of the present study clearly documented that HIIT
in HFpEF patients exerts beneficial effects on HDL mediated
eNOS phosphorylation and HDL-associated Pon1 activity. In
addition, a significant effect of HIIT on a reduced ROS load
was documented. These beneficial effects of HIIT were re-
duced as soon as the compliance was not 100% as it is the
case with supervised training.
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