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Abstract

Aims Evidence of the prognostic value of high-sensitivity troponin in patients with non-ischaemic heart failure (NIHF) is
scarce. This study aimed to assess the predictive value of high-sensitivity cardiac troponin I (hs-cTnI) in NIHF patients.
Methods Hs-cTnI was measured at baseline in 650 NIHF patients admitted to the Heart Failure Center. The
prognostic value of hs-cTnI was assessed based on a well-established model (including age, sex, New York Heart
Association class, left ventricular ejection fraction, haemoglobin, sodium, estimated glomerular filtration rate, diabetes
mellitus, treatment with angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers, treatment with
β-blockers, and NT-proBNP).
Results During a median follow-up of 1036 days, 163 patients died of various causes. In total, 46.92% of patients had high
hs-cTnI (hs-cTnI >0.011 ng/ml). Over a 3-year follow-up, patients with high hs-cTnI (>0.011 ng/ml) had a 1.54 [95% confi-
dence interval (95% CI) 1.11–2.15] fold higher all-cause mortality risk than those without. Increasing concertation of hs-cTnI
was also associated with a 23.0% (95% CI 13–33%, per log2 increase) increment risk of all-cause mortality. The inclusion of
hs-cTnI significantly improved the risk prediction and stratification of all-cause mortality (integrated discrimination improve-
ment 1.58%, 95% CI 0.38–2.79%, absolute net reclassification improvement 23.41% 95% CI 4.52–44.49%, additive net reclas-
sification improvement 27.8%, 95% CI 9.29–46.3%) of the well-established model.
Conclusions Hs-cTnI provides significant prognostic value and could further remarkably improve risk stratification and pre-
diction capabilities in NIHF patients.
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Introduction

Cardiac troponin (cTns) I and T (cTnI and cTnT) have long been
used as classic biomarkers in the diagnosis and prognosis of
myocardial infarction. Recently, their prognostic value has
also been proven in both community dwellers and patients
with heart failure (HF), for example, in the prediction of inci-
dent HF, cardiovascular death, and HF rehospitalization.1–4

High sensitivity (hs) cTns, with a higher specific and wider de-

tection range, enable minor cardiac injury detection and more
precise risk stratification. These markers can be detected in
over 50% of apparently healthy people and nearly the whole
HF population.5,6 Ischaemic aetiology, especially coronary
heart disease, is the main reason for hs-cTns elevation and
the most common cause of HF. Previous studies have already
reported an independent association between hs-cTns and
all-cause mortality or cardiovascular outcomes and showed
their added value for risk prediction and stratification among
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patients with different types of HF.3,7–10 However, the case of
hs-cTns elevation and their prognostic value in non-ischaemic
heart failure (NIHF) may be different from that in coronary ar-
tery disease and healthy individuals. Few studies have ex-
plored the additional prognostic value of hs-cTns in an NIHF
cohort alone. To fill this gap, we conducted this study aiming
to explore the prognostic value of hs-cTnI in patients with
NIHF and its performance across different subgroups.

Methods

Patients and public involvement

This retrospective analysis of our prospective HF cohort used
data from 5124 patients admitted to the Heart Failure Center
of Fuwai Hospital, CAMS&PUMC, in Beijing, China, with a
definite diagnosis of chronic heart failure (CHF) between De-
cember 2006 and December 2017. Patients’ diagnoses of
CHF were made, confirmed, or revised by two cardiologists
according to existing guidelines.11,12 For heart failure with re-
duced ejection fraction (HFrEF), the criteria include (i) signs
and symptoms of HF and (ii) left ventricular ejection fraction
(LVEF) < 40%. For heart failure with preserved ejection
(HFpEF) and heart failure with mid-range ejection fraction
(HFmrEF), the criteria include (i) signs and symptoms of HF,
(ii) NT-proBNP >125 pg/mL or BNP >35 pg/mL, and (iii) ob-
jective evidence of cardiac structural and/or functional ab-
normalities consistent with the presence of left ventricular
(LV) diastolic dysfunction/raised LV filling pressures. This
study was conducted in accordance with the principles
drafted in the Declaration of Helsinki and was approved by
the institutional review board of Fuwai Hospital. All patients
signed consent forms once they were enrolled.

Study population

Patients with hs-cTnI results that were not concurrent with a
clear history of myocardial ischaemia or the symptoms, signs,
or objective evidence of myocardial ischaemia were ulti-
mately enrolled. Patients were excluded if their hs-cTnI re-
sults were unavailable or if they were <18 years old, had a
clear history of obstructive coronary artery disease (defined
as coronary occlusion ≥50% in coronary angiography), or
underwent one of the following coronary interventions or
surgeries: coronary artery bypass graft, percutaneous trans-
luminal coronary intervention, percutaneous transluminal
coronary angioplasty, etc. Furthermore, patients with
new-onset acute coronary syndrome, non-obstructive coro-
nary artery disease (defined as coronary occlusion <50% in
coronary angiography but with ischaemia-specific symptoms,
signs, or objective evidence such as angina, ST-segment
change, newly formed Q wave, etc.), stress cardiomyopathy, Ta
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severe valvular heart disease, acute myocarditis, chronic ob-
structive pulmonary disease or other severe respiratory dis-
eases, malignancy, cardiac amyloidosis, aortic dissection, pul-
monary embolism, prior heart transplantation or LV
assistance device implantation, end-stage chronic kidney dis-
ease requiring haemofiltration or dialysis, or severe infectious
or systemic diseases were also excluded.

Data collection

Patients’ clinical data were prospectively collected from
the hospital information system of Fuwai Hospital,
CAMS&PUMC, and recorded in the standard database of our

centre by a trained team of physicians and nurses. Fasting ve-
nous blood samples were collected for measurements of hs-
cTnI, NT-proBNP, and other biochemical parameters within
24 h after patients’ admission. We used the estimated glomeru-
lar filtration rate (eGFR) for renal function assessment, calcu-
lated by the Chronic Kidney Disease Epidemiology Collabora-
tion(CKD-EPI) equation. Body surface area was calculated with
the Stevenson formula modified for the Chinese population.

Hs-cTnI measurement

Cardiac troponin levels were measured at admission by
immunochemiluminometry using an hs-cTnI chemilumines-

Figure 1 Characteristics of baseline hs-cTnI. (A) Distribution of hs-cTnI cross study population. (B) Density plot and maximally selected rank statistics
for best cut-off of hs-cTnI for all-cause mortality prediction. (C) Correlation heatmap between hs-cTnI and baseline variables. (A) The limit of detection
(LoD) of hs-cTnI was 0.002 ng/mL, the cut-off value for outcome prediction of hs-cTnI was 0.011 ng/mL, and the 99th upper level of hs-cTnI was
0.034 ng/mL. (B) The optimal cut-off of hs-cTnI optimizing for all-cause mortality was 0.011 ng/mL. (C) Spearman correlation showed that hs-cTnI
was mild positively correlated with NT-proBNP, NYHA III/IV, big-ET, RDW-SD, RDW,WBC, NLR, hs-CRP, LAD, and LVEDDi and was negatively correlated
with sex, PLR, TP, sodium, eGFR, and LVEF. No correlation existed between hs-cTnI and VD/DM. big-ET, big endothelin; DM, diabetes mellitus; hs-CRP,
high-sensitivity C-reactive protein; LVEDDi, left ventricular end-diastolic diameter index; LVEF, left ventricular ejection fraction; NLR, neutrophil-to-lym-
phocyte ratio; PLR, platelet-to-lymphocyte ratio; RDW, red blood cell distribution; RDW-SD, red blood cell distribution width standard deviation;
RVEDD, right ventricular end-diastolic diameter; TP, total protein; VD, valvular heart disease; WBC, width white blood cell.
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cence assay on an i2000 SR immunoassay analyser (Abbott
Diagnostics) with a limit of detection of 0.002 ng/mL and a
99th percentile value of 0.034 ng/mL. The analytic range of
the analyser is 0.002–50 ng/mL.

Follow-up and primary endpoints

The primary endpoint of this study was patients’ all-cause
mortality. Follow-up was conducted either by clinic visit or
telephone at the 3rd, 6th, and 12th month and every 3–
6 months thereafter. Information about patients’ death was
collected by telephone from their relatives or through elec-
tronic medical records if patients died at other treatment
centres of Fuwai Hospital, CAMS&PUMC.

Statistical analysis

Descriptive statistics were applied to all variables. NT-proBNP
and hs-cTnI were logarithmically transformed with quadratic
terms because of their nonnormal distribution. Continuous
variables are expressed as the mean and standard division
or the median and interquartile range. Categorical variables
are expressed as numbers and proportions. Comparisons
were performed by Student’s t-test, the Mann–Whitney U
test, or the chi-square test, as appropriate. The median
follow-up time was calculated by the reverse Kaplan–Meier
method. Cut-off values of hs-cTnI and NT-proBNP were deter-
mined by the ‘OptimalCutpoints’ package with the greatest
specificity and sensitivity.13 Spearman ρ coefficients were cal-
culated to explore the correlation between hs-cTnI and other
clinical variables and visualized with a correlation heatmap.
Multilinear regression analysis was conducted to exclude
the effect of collinearity among variables. Multivariable logis-
tic regression analysis with a stepwise method was intro-
duced to ascertain variables that were independently associ-
ated with high-level hs-cTnI.

Kaplan–Meier curves for all-cause mortality were plotted,
and different curves were compared by the log-rank test.
Cox proportional hazards models were applied to evaluate
the prognostic value of hs-cTnI. Hs-cTnI and NT-proBNP were
log2-transformed to fill the assumption of linearity of
covariables. Variables adjusted in different Cox models in-
cluded age, sex, New York Heart Association (NYHA) function
class, LVEF, haemoglobin, sodium, eGFR, diabetes mellitus
(DM), treatment with angiotensin-converting enzyme inhibi-
tors (ACEIs) or angiotensin II receptor blockers (ARBs) and
β-blockers, NT-proBNP, and variables independently associ-
ated with a high level of hs-cTnI.

Multiple measurements and plots were performed to
assess the potential incremental prognostic value of hs-cTnI.

Discrimination
Harrell’s concordance index (c-index) was used to measure
the improvement in the hs-cTnI-incorporated model com-
pared with the model without in primary outcome
prediction.

Calibration
χ2 by the Hosmer–Lemeshow (H-L) test, the Bayesian infor-
mation criterion (BIC), the Akaike information criterion
(AIC), and the Brier score were performed to evaluate the dif-
ferent goodness of fit between models with and without hs-
cTnI. The calibration plot was used to visualize the result of
the H-L test.

Reclassification
Net reclassification improvement (NRI) and integrated dis-
crimination improvement (IDI) were calculated to evaluate
the potential improvement that hs-cTnI could bring to the
well-established model. Continuous NRI was preferred as no
consensus existed on risk categories.14 Both additive NRI
(ad-NRI) and absolute NRI (ab-NRI) were calculated to avoid
potential bias caused by the ad-NRI alone when the incidence
of events was low.15 Confidence intervals and P values for

Table 2 Association between hs-cTnI and all-cause mortality at 3-year follow-up

Crude Model 1 Model 2 Model 3

HR 95% CI P V HR 95% CI P Value HR 95% CI P Value HR 95% CI P Value

Continuousa 1.23 1.13–1.33 < 0.001 1.23 1.13–1.33 < 0.001 1.16 1.05–1.27 0.002 1.16 1.05–1.27 0.003
Categoryb 2.12 1.55-2.91 < 0.001 2.12 1.54–2.91 < 0.001 1.54 1.11–2.15 0.010 1.55 1.10–2.19 0.012

ACEI angiotensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; Hb, haemoglobin; hs-CRP, high-sensitivity C-reaction
protein; hs-cTnI, high-sensitivity cardiac troponin I; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; RDW-SD,
red blood cell distribution width standard deviation.
Cox regression analyses were performed in various models for assessing the association between hs-cTnI and all-cause mortality at 3-year
follow-up.
Crude model: hs-cTnI.
Model 1: hs-cTnI + age, sex.
Model 2: Model 1 + NYHA class, LVEF, sodium, eGFR, diabetes mellitus, ACEIs/ARBs treatment, β-blocker treatment, Hb, NT-proBNP.
Model 3: Model 2 + hs-CRP, RDW-SD.
aPer unit increase of log2-transformed hs-cTnI.
bHigh vs. low hs-cTnI level.
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NRIs were determined by bootstrapping with 2000 repeti-
tions. IDI was considered indicative of the improvement in
mortality prediction as a continuous variable.

All analyses above were also performed in the fully ad-
justed model that included variables independently associ-
ated with a high hs-cTnI level.

The clinical usefulness of the hs-cTnI-incorporated model
was assessed by decision curve analysis (DCA) conducted by
the ‘ggDCA’ package in R 4.1.3.16 Subgroup analysis was also
performed to explore the discrimination across sex, NYHA
class, DM co-morbidity, age, eGFR, LVEF, NT-proBNP, and
high-sensitivity C-reactive protein (hs-CRP). All analyses were

Figure 2 Kaplan–Meier analysis for all-cause mortality during 3-year follow-up. (A) Kaplan–Meier curve of different hs-cTnI levels. (B,C) Kaplan–Meier
curve of different NT-proBNP levels in patients with hs-cTnI ≤0.011 ng/mL (B) and hs-cTnI >0.011 ng/mL (C). (D,E) Kaplan–Meier curve of different
hs-CRP levels in patients with hs-cTnI ≤0.011 ng/mL (D) and hs-cTnI >0.011 ng/mL (E). (F,G) Kaplan–Meier curve of valvular heart disease
co-morbidity in patients with hs-cTnI ≤0.011 ng/mL (F) and hs-cTnI >0.011 ng/mL (G). As shown in the figure, the risk of all-cause mortality was sig-
nificantly higher in patients with hs-cTnI >0.011 ng/ml over a 3-year follow-up time (A,B). Notable discrimination could also be observed in patients
with NT-proBNP >1738 pg/mL than those not across different hs-cTnI levels (B,C). No discrimination on survival probability was obtained across the
different hs-cTnI level in patients with/without hs-CRP > 3 mg/mL (D,E) or concomitant with/without valvular heart disease (F,G) during the 3-year
follow-up time. hs-CRP, high-sensitivity C-reactive protein; VD, valvular heart disease.
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conducted by SPSS 25.0 (IBM, Chicago, IL) and R Version
4.1.3. A two-sided P value < 0.05 was considered statistically
significant.

Results

Baseline characteristics

A total of 1434 patients with hs-cTnI results at admission
were recruited, with 650 patients ultimately being enrolled.
The enrolment flow chart of this study is shown in Figure
S1. Baseline characteristics of the study population are sum-
marized in Table 1. Most of these patients were male with
a mean age of 50.73 ± 15.65 years. Dilated cardiomyopathy
was the predominant aetiology of HF. Worsening HF was
the leading cause of patients’ mortality (93/163, 57.06%).

Relationship between hs-cTnI and clinical
variables

The median hs-cTnI level was 0.01 (0.005,0.028) ng/mL (Table
1), and the distribution of hs-cTnI across different aetiologies
is shown in Figure S2. No significant discrimination was ob-
served. The best cut-off values of hs-cTnI and NT-proBNP
were 0.011 ng/mL and 1738 pg/mL, respectively. Density
plots and maximally selected rank statistics plotted for
hs-cTnI and NT-proBNP are shown in Figures 1A and S3,
respectively.

As shown in Table 1, compared with those with hs-cTnI
≤0.011 ng/mL, patients with hs-cTnI >0.011 ng/mL had a
higher NT-proBNP, big endothelin (big-ET), red blood cell dis-
tribution width standard deviation (RDW-SD), red blood cell
distribution width (RDW), and hs-CRP. Moreover, these pa-
tients had worse cardiac function as shown by NYHA function

class and LVEF (35.18 ± 14.33 vs. 39.00 ± 14.66, P = 0.001)
and worse renal function as indicated by a lower eGFR
(79.22 ± 23.87 vs. 85.70 ± 21.74, P < 0.001). Their left atrial
diameter (LAD) and left ventricular end-diastolic diameter
(LVEDD) were also larger than those with hs-cTnI ≤0.011.

Spearman correlation indicated that only a mildly positive
correlation existed between hs-cTnI and NT-proBNP, NYHA
III/IV, big-ET, RDW-SD, RDW, white blood cell, the neutro-
phil-to-lymphocyte ratio, hs-CRP, LAD, left ventricular end-di-
astolic diameter index (listed in Table S1). Sex, the platelet-
to-lymphocyte ratio, total protein, sodium, eGFR, and LVEF
were negatively correlated with hs-cTnI (Table S1). Correla-
tions were visualized with a heatmap in Figure 1C. Multivari-
able logistic regression analysis with a stepwise method indi-
cated that LVEF, RDW-SD, and hs-CRP were independently
associated with a high hs-cTnI level (>0.011 ng/mL, Table S2).

Hs-cTnI and all-cause mortality

Within a median follow-up of 1036 (1005,1055) days, 163 pa-
tients died. Increasing concertation of hs-cTnI was associated
with a 23.0% (95% CI 13–33%, per log2 increase, crude
model) increment risk of all-cause mortality during a 3-year
follow-up in NIHF patients. This association existed even after
adjustment for classic risk factors (HR: 1.16, 95% CI 1.05–
1.27, Model 2) and hs-CRP and RDW-SD (HR: 1.16, 95% CI
1.05–1.27, Model 3; Table 2).

Moreover, when treating hs-cTnI as a categorical variable,
patients with hs-cTnI >0.011 ng/mL showed a 2.12-fold
higher risk of all-cause mortality at 3 years than those with
hs-cTnI ≤ 0.011 ng/ml (crude model, HR: 2.12, 95% CI 1.55–
2.91). This increase persisted after further adjustment for
classic risk factors (Model 2:HR:1.54, 95% CI 1.11–2.15)
and hs-CRP and RDW-SD (Model 3: HR: 1.55 95% CI 1.10–
2.19; Table 2).

Table 3 Performance of the models at 3-year follow-up

Variable Model 1 Model 2 Model 3

Discrimination
C-index 0.733 0.745 0.747
Calibration
H-L test χ2 = 5.718 (P = 0.679) χ2 = 3.549 (P = 0.895) χ2 = 1.176 (P = 0.997)
Brier score 0.165 0.162 0.161
AIC 606.83 599.24 597.99
BIC 662.86 659.58 666.95
Reclassification
IDI (%) Reference 1.58 [0.38–2.79] P = 0.01 2.13 [0.69–3.56] P = 0.004
Absolute NRI (%) Reference 23.41 [4.52–44.49] P = 0.021 29.74 [11.55–51.36] P = 0.003
Additive NRI (%) Reference 27.8 [9.29–46.3] P = 0.03 31.1 [12.67–49.55] P < 0.001

AIC, Akaike information criterion; BIC, Bayesian information criterion; C-index, Harrell’s concordance index; H-L, Hosmer and Lemeshow
test; IDI, integrated discrimination improvement; NRI, net reclassification index.
Model 1: Age, sex, NYHA class, LVEF, sodium, eGFR, diabetes mellitus, treatment with ACEIs/ARBs, treatment with β-blockers, Hb, NT-
proBNP.
Model 2: Model 1 + hs-cTnI.
Model 3: Model 2 + hs-CRP + RDW-SD.
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Kaplan–Meier curves demonstrated the survival probabili-
ties across different hs-cTnI levels in the overall cohort and
different subgroups. As shown in Figure 2A, the risk of
all-cause mortality was significantly higher in patients with
hs-cTnI >0.011 ng/mL over a 3-year follow-up period (log-
rank P < 0.0001). Moreover, patients with NT-proBNP
>1738 pg/mL had a markedly lower survival rate than those
with NT-proBNP≤1738 pg/mL. This discrimination could be
observed at different hs-cTnI levels (Figure 2B and 2C). How-
ever, discrimination disappeared with different hs-CRP strata
and valvular heart disease co-morbidity at different hs-cTnI
levels (Figure 2D–G) during the 3-year follow-up period. Over-
all follow-up time Kaplan–Meier curves were also drawn, as
shown in Figure S4A–G.

Measurements of performance

Discrimination
The Harrell’s concordance index increased significantly after
hs-cTnI was added to the well-established model (Model 2;
Table 3). Model discrimination was further improved after
hs-CRP and RDW-SD were included [the fully adjusted model
(Model 3); Table 3].

Calibration
The P value of the H-L test manifested good calibration be-
tween models with and without hs-cTnI (Table 3). Lower
AIC, BIC, and Brier score were obtained after hs-cTnI was
added to Model 1, as shown in Model 2 (Table 3). Models in-
cluding hs-cTnI also showed better goodness of fit (P = 0.002;
Table 4). The calibration plot of Model 2 is shown in Figure S5.

Lower AIC and Brier score were also obtained in the fully
adjusted model (Model 3), and its goodness of fit was better
than that of the well-established one (P = 0.04; Table 4). No
discrimination was observed between Models 2 and 3 in cal-
ibration performance (P = 0.147; Table 4).

Reclassification
The IDI increased significantly after hs-cTnI was incorporated
into the well-established model (1.58%, 95% CI 0.38–2.79%,
P = 0.01). Marked increase in both ad-NRI and ab-NRI were
also observed (ad-NRI: 27.8%, 95% CI 9.29–46.3%, P = 0.03;
ab-NRI: 23.41%, 95% CI 4.52–44.49%, P = 0.021), showing a
better risk prediction ability.

Increases in IDI and NRI were also observed in the fully ad-
justed model when compared with Model 1 (Table 3). How-
ever, those increases were not obtained in Model 2, implying
that hs-CRP and RDW-SD may not further improve the risk
prediction ability (Table 4).

Given the ideal performance of discrimination, calibra-
tion, and reclassification of the hs-cTnI-incorporated model
(Model 2), DCA was necessary to further assess its clinical
usefulness. This model showed great usefulness in
predicting all-cause mortality at the 3-year follow-up withinTa
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the threshold probability of 12.5–70% (Figure 3A). It also
showed a higher overall net benefit than the
well-established model across a threshold probability of
12.5–62.5% (Figure 3B).

Subgroup analysis

Subgroup analyses showed that no significant discriminations
of the prognostic impact of high hs-cTnI were observed
among different subgroups of age, sex, NYHA class, eGFR,
LVEF, NT-proBNP, or hs-CRP. The impact might be more nota-
ble in NIHF patients with DM (Figure 4).

Discussion

In this study, we first analysed the association between
hs-cTnI and all-cause mortality in an NIHF cohort. Then, we
comprehensively evaluated the increased value of hs-cTnI in
the risk prediction and stratification and further explored
those of hs-CRP and RDW-SD. The major findings of our study
are as follows: (i) Both high hs-cTnI and increasing concentra-
tion of hs-cTnI (per log2) were independently associated with
all-cause mortality in NIHF patients. Performance measure-

ments improved markedly after hs-cTnI was added to the
well-established prediction model. (ii) DCA showed a higher
overall net benefit in the hs-cTnI-incorporated model than
in the well-established model across a threshold probability
of 12.5–62.5%. (iii) Compared with the well-established
model, the model that included hs-CRP and RDW-SD exhib-
ited a further increase in risk prediction ability in NIHF
patients.

Cardiac troponins, mainly cTnT and cTnI, have evolved as
important biomarkers of heart failure and have shown great
prognostic value in the HF population.2,3,8,10 It has been re-
ported that 10.4% of HF patients have detectable cTnI. That
number surged to 92% when tested by the hypersensitive
method,2 which reflects persistent myocardial injury. The
mechanism of cTns release in HF includes ischaemia-induced
cardiomyocyte necrosis, direct stretch-induced myocardial
injury,17,18 norepinephrine secretion in the failing heart,19

excessive renin–angiotensin system activation,20 and
inflammation.18,21

To the best of our knowledge, our study reported the
prognostic value of hs-cTnI in the largest NIHF cohort to
date. Our results demonstrated an independent association
between high hs-cTnI (>0.011 ng/mL) and all-cause mortal-
ity, which was similar to that found in other cohorts. Aimo
et al. reported that high hs-cTnT (≥43 ng/L) increased the

Figure 3 Decision curve analysis for the hs-cTnI-incorporated model during 3-year follow-up. Decision curve analysis for the hs-cTnI-incorporated
model (A) and its comparison with the well-established model (B). The hs-cTnI incorporated model showed a higher overall net benefit compared with
the well-established model across a threshold probability of 12.5–62.5%. Model 1 (well-established model): age, sex, NYHA class, LVEF, Na, eGFR, di-
abetes mellitus history, usage of ACEI/ARB, usage of β-blockers, Hb, NT-proBNP. Model 2 (hs-cTnI-incorporated model): Model 1 + hs-cTnI. ACEI angio-
tensin-converting enzyme inhibitor; ARB, angiotensin II receptor blocker; Hb, haemoglobin; hs-CRP, high-sensitivity C-reaction protein; LVEF, left
ventricular ejection fraction; NYHA, New York Heart Association; RDW-SD, red blood cell distribution width standard deviation.
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risk of all-cause mortality 1.89-fold (95% CI 1.27–2.82) over
a 24-month follow-up period in acute HF.22 Myhre et al. ob-
served that high hs-cTnI was associated with a 65%
(HR:1.65, 95% CI 1.35–2.02) increase in the risk of all-cause
mortality in HFpEF patients from the TOPACT study.3

Moreover, an individual patient data meta-analysis
suggested that high hs-cTnT (>18 ng/L) was independently as-
sociated with a higher risk of all-cause mortality, cardiovascu-
lar death, and cardiovascular hospitalization. However, the
authors did not elucidate the additional prognostic value of
hs-cTnT in patients with NIHF,9 which was highlighted in our

study. In addition, we first reported both ad-NRI and ab-NRI
simultaneously in this area to eliminate the latent bias
caused by ad-NRI alone. They were consistent in our study.
Our study showed a 1.58% IDI increase, which was similar
to the 1.7% increase reported by Marta et al.23 Moreover,
Aisha et al. found that IDI was primarily increased in HFpEF
patients among different HF types after hs-cTnI was
incorporated.8

In our study, no significant distinction was observed in
hs-cTnI levels across different aetiologies, unlike what Marta
et al.23reported. In their non-ischaemic subgroup, patients

Figure 4 hs-cTnI for Prediction of all-cause mortality: subgroup analysis. The prognostic impact of high hs-cTnI seemed to be more notable in NIHF
patients concomitant with diabetes mellitus. eGFR, estimated glomerular filtration rate; hs-CRP, high-sensitivity C-reaction protein; LVEF, left ventric-
ular ejection fraction; NYHA, New York Heart Association.
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with hypertensive cardiomyopathy had the highest hs-cTnI
level. This may be partly attributed to the racial differences.
As shown in the China-HF study, fewer Chinese patients had
co-morbid hypertension than those in Europe, the USA,
Japan, and South Korea.24

We also first reported that hs-CRP and RDW-SD were in-
dependently associated with a high level of hs-cTnI in this
area. Inflammation, especially sterile inflammation, may play
a core role in this finding. Elevation of pro-inflammatory cy-
tokines has been observed in nearly 90% of HF patients.18

Haemodynamic stress, coupled with stretch-induced myocar-
dial injury and HF-induced mitochondrial dysfunction, is
related to pro-inflammatory cytokines (such as TNF-α, IL-6,
and IL-1β) release, which lead to elevated hs-CRP and car-
diac inflammation.17,18,25 This mechanism may underlie the
association between hs-CRP and hs-cTnI. Moreover, the in-
flammation-induced maldevelopment of erythrocyte com-
bined with renal impairment and bone marrow resistance
to the effect of erythropoietin may be the main causes of
RDW abnormalities seen in the setting of HF,26–29 which
may partially explain the relationship between RDW-SD
and hs-cTnI. Moreover, hs-CRP and RDW also have prognos-
tic value for patients with HF,18,29 which could partially
explain the increases in the IDI and NRI observed in our
study.

In addition, our study found that the association between
high hs-cTnI and all-cause mortality seemed more promi-
nent in NIHF patients with DM. DM has long been regarded
as a major risk factor for cardiovascular disease. Richard
et al. reported that in an HFrEF cohort, DM was not only as-
sociated with a 1.72-fold increase in the risk of all-cause
mortality but also related to progressive HF and sudden car-
diovascular mortality in both ischaemic and non-ischaemic
cases.30 The underlying mechanism may include myocardial
injury and cardiac dysfunction by normal myocardial metab-
olism disorder, oxidative stress, and microcirculation
disturbance.

Last, we would like to discuss the differences between cTnI
and cTnT. Paul et al. found in a clinical-genetic study that cTnI
was more strongly associated with cardiovascular disease
outcomes, such as and coronary heart disease. In contrast,
cTnT was more strongly related to non-cardiac death.4 Bio-
chemically, cTnI is more specific to the heart than cTnT, with
the latter often seen to be increased in myopathies.31 Fur-
thermore, compared with cTnI, cTnT is more vulnerable to re-
nal function. Its renal clearance would drop dramatically with
chronic elevation persisted, even without renal dysfunction,
as indicated by the results of Vincent et al.5,32

Limitations

Several limitations of our study should not be neglected.
First, follow-up loss could not be avoided because it is a sin-

gle-centre, retrospective study with a long time span. In our
study, 10.5% (68/650) of patients were lost to follow-up. Fur-
thermore, although no selection bias existed, hs-cTnI was not
measured for all patients at admission. Second, only the first
hs-cTnI result after admission was assessed. We did not fur-
ther explore the peak value or change in hs-cTnIs and their
relationship with adverse outcomes. In addition, only
hs-cTnI was evaluated in this study. We could not compare
the difference in risk prediction ability across other myocar-
dial injury biomarkers such as hs-cTnT and CK-MB. Further-
more, we still could not eradicate the effect of myocardial mi-
crocirculation disorder as SPECT/PET-CT was not routinely
performed on our NIHF patients. Third, due to the limited
sample size, our results should be interpreted prudently,
and the conclusion needs to be further validated. Moreover,
our study was mainly focused on individuals of Chinese eth-
nicity, and caution should be taken when extrapolating our
conclusion extensively.

Conclusion

Hs-cTnI provides significant prognostic value and could fur-
ther remarkably improve stratification capabilities in NIHF pa-
tients. Hs-CRP and RDW-SD may also have certain prognostic
values in this population that need further discussion.
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