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A B S T R A C T   

Ethnopharmacological relevance: Traditional Chinese medicines (TCMs) have made great contributions to the 
prevention and treatment of human diseases in China, and especially in cases of COVID-19. However, due to 
quality problems, the lack of standards, and the diversity of dosage forms, adverse reactions to TCMs often occur. 
Moreover, the composition of TCMs makes them extremely challenging to extract and isolate, complicating 
studies of toxicity mechanisms. 
Aim of the review: The aim of this paper is therefore to summarize the advanced applications of mass spectrometry 
imaging (MSI) technology in the quality control, safety evaluations, and determination of toxicity mechanisms of 
TCMs. 
Materials and methods: Relevant studies from the literature have been collected from scientific databases, such as 
“PubMed”, “Scifinder”, “Elsevier”, “Google Scholar” using the keywords “MSI”, “traditional Chinese medicines”, 
“quality control”, “metabolomics”, and “mechanism”. 
Results: MSI is a new analytical imaging technology that can detect and image the metabolic changes of multiple 
components of TCMs in plants and animals in a high throughput manner. Compared to other chemical analysis 
methods, such as liquid chromatography-mass spectrometry (LC-MS), this method does not require the complex 
extraction and separation of TCMs, and is fast, has high sensitivity, is label-free, and can be performed in high- 
throughput. Combined with chemometrics methods, MSI can be quickly and easily used for quality screening of 
TCMs. In addition, this technology can be used to further focus on potential biomarkers and explore the ther-
apeutic/toxic mechanisms of TCMs. 
Conclusions: As a new type of analysis method, MSI has unique advantages to metabolic analysis, quality control, 
and mechanisms of action explorations of TCMs, and contributes to the establishment of quality standards to 
explore the safety and toxicology of TCMs.   

1. Introduction 

Traditional Chinese medicines (TCMs) have been used in the clinic 
for thousands of years and have shown good therapeutic effects. Due to 
the complexity of components and the characteristics of multi-target 
actions, TCMs can be used for broad opportunities, but face severe 
challenges. Given their various types, qualities, and efficacies, the key to 

the modernization of TCMs is to study their material bases, discover 
their therapeutic or toxic components, control their qualities, and clarify 
their targets and mechanisms of action. 

A variety of analytical methods have been used for the identification 
and mechanistic evaluation of individual TCM components, and can be 
mainly divided into two categories: chromatographic methods 
(including gas chromatography (GC) and hyphenated techniques (Zhang 
et al., 2013), liquid chromatography (LC) and hyphenated techniques 
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(Wang et al., 2021a), thin-layer chromatography (TLC)(Chen et al., 
2021), capillary electrophoresis (CE)) and spectroscopic methods 
(fourier-transform infrared (FT-IR)(Mukrimin et al., 2019), 
near-infrared spectroscopy (NIR)(Li et al., 2017) and nuclear magnetic 
resonance (NMR)(Zhao et al., 2020)). GC-MS and LC-MS in chromato-
graphic methods are two very popular chromatographic detection 
methods with high resolutions and sensitivities. The GC is appropriate 
for the determination of volatile components and LC is suitable for the 
identification of liquid ingredients in TCMs. However, the premise of 
these two methods requires complex pre-processing of samples, which 
will not only destroy information on the distribution of compounds in 
tissues, but may cause the loss of substances in low abundance (Prideaux 
and Stoeckli, 2012). FT-IR and NIR are spectroscopic methods that are 
non-invasive, rapid, and require simple sample preparations. However, 
their accuracies are lower than that of GC-MS and LC-MS. NMR has high 
accuracy and stability, but its sensitivity is poor, which renders it 
incapable of analyzing a large number of low abundance metabolites 
(Jiang et al., 2010). As an emerging analytical method, mass spec-
trometry imaging (MSI) overcomes the above technical defects. Without 
requiring complicated sample pre-processing steps, MSI can detect 
known or unknown compounds in high-throughput, while achieving 
high sensitivities and resolutions. In addition, this technology can 
convert a large volume of mass spectral data into images, retaining in situ 
information to show the distribution of drugs and small molecule me-
tabolites (Nilsson et al., 2012; Nimesh et al., 2013; Prideaux and 
Stoeckli, 2012). 

In recent years, spatially resolved metabolomics derived from MSI 
technology has been widely used in quality control and mechanistic 
studies of TCMs, and was first proposed by Sumner’s research group at 
the Joint Annual Meeting of the American-Fern-Society in 2007 (Watson 
et al., 2007). Compared to traditional MS methods (LC-MS/GC-MS), MSI 
can retain the in situ spatial information of metabolites. The former 
“Spatially” of spatially resolved metabolomics can be used to accurately 
identify and locate the differential distribution of various metabolites in 
Chinese herbal medicines in tissues and cells, and perform rapid quality 

screening of drugs. The latter “metabolomics” can be used for in-depth 
metabolic analyses of target micro-regions to identify the types and 
contents of metabolites and discover potential efficacy or toxicity bio-
markers of various components of TCMs. Such studies lay the foundation 
for understanding the possible medicinal and toxic mechanisms of TCMs 
(Bjarnholt et al., 2014; Ganesh et al., 2021). 

This article reviews the principles and characteristics of MSI tech-
nology, as well as its application to the identification, distribution, 
quality control, the discovery of efficacy/toxicity biomarkers, and 
possible mechanisms of action of TCM components. This review aims to 
promote the application of MSI technology in Chinese herbal medicine 
and provide new directions for the discovery of drugs and the estab-
lishment of quality control standards for TCMs. 

2. MSI: insights into the principles, indicators, and experimental 
processing 

As a new type of molecular imaging technology, MSI performs mass 
spectrometry analysis and image visualization with high sensitivity, 
wide coverage, and strong identification ability. A variety of ions on the 
surface of tissue samples can be ionized point-by-point according to the 
spatial and multi-dimensional data of the mass to charge ratio (m/z), 
intensity, and position of ionized molecules obtained by mass spec-
trometry. Such data can be reconstructed and visualized using software 
(such as MassImager (He et al., 2018)) with the MSI functions of qual-
itative, quantitative, and positioning (Qin et al., 2018; Römpp and 
Spengler, 2013; Takahashi et al., 2015). Compared to LC-MS and 
immunohistochemistry (IHC), MSI can perform high-throughput detec-
tion of substances (endogenous and exogenous metabolites) in tissue 
sections, without requiring special labeling or complex pre-treatment, 
which can not only identify and analyze substances but also reveal 
their spatial distributions and relative contents in tissues (Schwamborn 
and Caprioli, 2010). 

MSI was originally developed based on matrix-assisted laser 
desorption/ionization (MALDI). Therefore, MALDI-MSI is the most 

Abbreviations: 

TCMs traditional Chinese medicines 
MSI mass spectrometry imaging 
IHC immunohistochemistry 
LC-MS liquid chromatography-mass spectrometry 
NMR nuclear magnetic resonance 
m/z mass to charge ratio 
MALDI matrix-assisted laser desorption/ionization 
DESI-MSI desorption electrospray ionization-mass spectrometry 

imaging 
SIMS secondary ion mass spectrometry 
LA-ICP-MSI laser ablation-inductively coupled plasma-mass 

spectrometry imaging 
CMC carboxymethyl cellulose 
GC gas chromatography 
LC liquid chromatography 
TLC thin-layer chromatography 
CE capillary electrophoresis 
FT-IR fourier-transform infrared 
PTFE polytetrafluoroethylene 
SA sinapic acid 
CHCA α-cyano-4-hydroxycinnamicacid 
2-MBT 2-mercaptobenzothiazole 
DHB 2,5-dihydroxybenzoicacid 
DHAP 2,5-dihydroxyacetopheno 
9-AA 9-aminoacridine 

DAN 1,5-diaminonaphthalene 
MCA 3,4-dimethoxycinnamic acid 
PLL poly-L-lysine 
MCAEF matrix coating assisted by an electric field 
AP-SMALDI atmospheric pressure-scanning microprobe matrix- 

assisted laser desorption/ionization 
PALDI-MS plasma assisted laser desorption ionization mass 

spectrometry 
GALDI colloidal graphite-assisted laser desorption/ionization 
TIAs terpenoid indole alkaloids 
ICs idioblast cells 
LCs laticifer cells 
Q-makers quality markers 
PCA principal component analysis 
OPLS-DA orthogonal partial least squares-discriminant analysis 
LDA linear discriminate analysis 
LLS local least square 
HELP heuristic evolving latent projections 
OPA orthogonal projection analysis 
LLF ligustri lucidi fructus 
QWBA quantitative whole body autoradiography 
GD graphite dot 
PNGL notoginseng leaf triterpenes 
NG-R1 notoginsenoside R1 
MCAO/R middle cerebral artery occlusion/reperfusion 
ATP adenosine triphosphate  
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widely used mass spectrometry imaging method (Caprioli et al., 1997). 
In addition, related technologies include desorption electrospray 
ionization-mass spectrometry imaging (DESI-MSI), secondary ion mass 
spectrometry (SIMS) imaging, and laser ablation-inductively coupled 
plasma-mass spectrometry imaging (LA-ICP-MSI), etc.(de Souza et al., 
2020; Oppenheimer and Drexler, 2011; Parrot et al., 2018). These 
technologies are mainly classified according to their ionization mode: 
SIMS imaging uses a primary ion beam to bombard the surface of the 
sample, and then introduces secondary ions sputtered from the surface 
into the mass spectrometer for mass separation and determination (Yoon 
and Lee, 2018). MALDI-MSI mainly makes use of a matrix to absorb the 
laser energy and then transfers energy to sample molecules for ioniza-
tion (Knochenmuss, 2006). DESI-MSI uses atomized charged droplets to 
hit the surface of the sample. After being hit by high-speed droplets, the 
sample is sputtered and then subjected to the mass spectrometer (Ifa 
et al., 2007; Takáts et al., 2004). The ion source type, spatial resolution, 
sample preparation requirements, and other information of these three 
mass spectrometry imaging technologies are summarized in Table 1. 

2.1. Critical indicators 

Speed, spatial resolution, and sensitivity are critical indicators of MSI 
(Vestal et al., 2020). Speed is the main factor affecting the experimental 
time, and the scanning rate mainly depends on the influence of the laser 
frequency, mobile platform speed, and signal acquisition. The increase 
in scanning speed leads to a decrease in ionized ions (Tillner et al., 
2017). In this case, high sensitivity is key to ensuring the imaging results 
of low abundance ions. Spatial resolution and sensitivity are negatively 
correlated and an improvement in sensitivity will inevitably lead to a 
decrease in the mass resolution (Vestal et al., 2020). Sensitivity is also 
closely related to ionization efficiency, ion transport efficiency, and ion 
detection (Merdas et al., 2021), while the mass resolution is mainly 
dependent on the specific desorption/ionization method used (Hand-
berg et al., 2015; Römpp and Spengler, 2013) (Table 1). Therefore, MSI 
is a systematic project, in which the limit value of indicators should be 
selected according to the experiment. 

2.2. Experimental process 

We will use the most widely used technology, MALDI-MSI, as an 
example to describe the specific experimental process. First, the 
appropriate sample preparation method is selected according to the 
nature of the animal/plant tissue sample; a suitable matrix is selected for 
spraying based on the type and nature of the test object; a laser beam is 
used to desorb and ionize each sampling point. Subsequently, the ana-
lyte ions are separated and detected by the mass spectrometer to obtain 
the mass spectra associated with the sample space position. Finally, the 
MSI map is obtained by matching and reorganizing all of the mass 
spectral data with their corresponding two-dimensional spatial positions 
using software (Fig. 1) (Dong et al., 2016; Grassl et al., 2011; Sturtevant 
et al., 2016). The following is an additional introduction to the key 
experimental steps to enhance the readers’ understanding. 

2.2.1. Sample preparation 
Sample processing is the most critical step in MSI and the material 

basis for obtaining experimental results. The pretreatment method 
varies according to the type and location of the sample. For plant sam-
ples, a section of the roots, stems, and fruits is generally sliced using a 
cryostat microtome. Generally, such samples must also be embedded 
with gelatin (Beck and Stengel, 2016; Gemperline et al., 2014), 2% 
carboxymethyl cellulose (CMC) (Enomoto, 2020; Li et al., 2020b), or ice 
(Gorzolka et al., 2014), and frozen in liquid nitrogen prior to slicing into 
frozen sections (5–20 μm) at − 20 ◦C. However, for plant stem slices with 
higher water contents or a young and small surface area, the sample is 
easily deformed or migration of the material occurs due to the blowing 
of spray gas. Thus, imprinting can be used for sample pretreatment in 
such situations. This technology utilizes external pressure to transfer a 
thin layer of plant tissue cell contents in situ to an adsorbent TLC plate 
(Liao et al., 2019) or the polytetrafluoroethylene (PTFE) membrane 
(Thunig et al., 2011) for imaging. For the petals and leaves, the surface 
must be kept as flat as possible, which can be directly blown or 
imprinted for indirect imaging. 

2.2.2. Matrix selection 
In MALDI-MS analysis, the image quality depends in large part on the 

establishment and optimization of the matrix system, and thus, the 
choice and spray type for the matrix is very important. Commonly used 
matrices include sinapic acid (SA)(Chaurand et al., 2008), α-cyano-4--
hydroxycinnamicacid (CHCA)(Grassl et al., 2011; Lemaire et al., 2006), 
2-mercaptobenzothiazole (2-MBT)(Astigarraga et al., 2008), 2,5-dihy-
droxybenzoicacid (DHB)(Li et al., 2016b), 2,5-dihydroxyacetopheno 
(DHAP)(Jovanović and Peter-Katalinić, 2016), 9-aminoacridine (9-AA) 
(Morikawa-Ichinose et al., 2019), and 1,5-diaminonaphthalene (DAN) 
(Korte and Lee, 2014). Among them, SA and DHAP are suitable for the 
detection of high molecular weight biomolecules (proteins, oligosac-
charides, etc.), CHCA and 2-MBT are fit for the detection of medium 
molecular weight analytes (peptides, lipids), and DHB, DAN, and 9-AA 
are preferred for the detection of low molecular weight molecules 
(fatty acids, amino acids, nucleotides, etc.). In addition, some novel 
matrices such as quercetin (Wang et al., 2014), N-phenyl-2-naphthyl-
amine (Liu, H. et al., 2018), graphene oxide (Wang et al., 2017), 3, 
4-dimethoxycinnamic acid (DMCA)(He, H. et al., 2019) and 
poly-L-lysine (PLL)(He, Y. et al., 2019) have been successfully used for 
MALDI-MSI. After selecting the suitable matrix according to the sample 
type, it is necessary to evenly cover the matrix solution on the surface of 
the tissue section to form good co-crystallization with the tissue surface 
molecules. There are three main methods of matrix covering, including 
manual spraying, automatic spraying, and vacuum sublimation (Bjarn-
holt et al., 2014). Furthermore, matrix coating assisted by an electric 
field (MCAEF) has also been proven to enhance tissue imaging (Wang 
et al., 2015). 

2.2.3. Data processing 
MSI will obtain large volumes of mass spectral data during high- 

throughput detection, which can be reconstructed and visualized into 
image information using imaging software (such as MassImager (He 
et al., 2018), R Packages (Ràfols et al., 2020), MSiReader (Desbenoit 

Table 1 
Comparison of the three most commonly used MSI techniques.  

Ionization 
type 

Ionization 
source 

Environment Resolution Characteristic Ref. 

MALDI IR/UV High vacuum/low 
vacuum 

IR：150 μm 
UV: 10–250 
μm 

Need matrix, wide detection range Heyman and Dubery (2016) 

SIMS Primary ion 
beam 

High vacuum 50 nm–5 μm High resolution, high vacuum, easy to produce 
fragments of ions 

Behrens et al. (2012) 

DESI Charged 
corpuscle 

Atmospheric pressure 100–200 μm No matrix, atmospheric pressure Ifa et al. (2007); Takáts et al. (2004);  
Wiseman et al. (2006)  
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et al., 2018), etc.). Imaging software can image the ions individually or 
simultaneously to show the distribution of the target molecule in the 
sectioned tissue. The identification of target molecules can be based on 
the accurate mass value in commonly used mass spectrometry databases 
such as METLIN (http://metlin.scripps.edu/), HMDB (http://hmdb.ca/ 
), MassBank (https://massbank.eu/MassBank/), and Lipid Maps 
(http://www.lipidmaps.org/.) for preliminary search matching. Then 
the verification of the compound is performed according to the specific 
fragment ions of the compound in the MS/MS experiment and other 
experimental support materials (such as nuclear magnetic or ultraviolet 
spectroscopy). In addition, the mass spectral data can be screened ac-
cording to the experimental design and compared with KEGG 
(https://www.kegg.jp/) and other databases to explore the drug 
mechanisms of action. 

MSI has a wide detection range from exogenous drugs to endogenous 
metabolites (lipids, peptides, etc.) and metals (Aichler and Walch, 
2015). Sample preparation, parameter settings, data processing, and 
other MSI operations are detailed in the literature (Gessel et al., 2014; 
Kaletaş et al., 2009; Schulz et al., 2019). To date, MSI has been widely 
used in the fields of medicine (Schulz et al., 2019; Végvári, 2015), 
environment (Böhme et al., 2015), food (Morisasa et al., 2019), and 
plant biology (Kaspar et al., 2011; Korte et al., 2015; Qin et al., 2018). 
The MSI methods, research drugs, tissue types, and imaged molecules 
involved in this article are summarized in their order of appearance in 
Table 2. 

3. MSI: A camera for showing the distribution of multiple 
components in a plant 

Investigations of the basal metabolism of TCMs are the premise for 
identifying new drug candidates, increasing the clinical range of drugs, 
and improving quality control. Secondary metabolites (such as flavo-
noids, mushrooms, alkaloids, etc.) are the main components of TCMs 
that can prevent or cure diseases. The types, contents, and relative 
proportions of secondary metabolites are key to determining the effec-
tiveness and quality of TCMs (Zhang et al., 2018) and MSI is suitable for 
detecting the content and distribution of primary/secondary metabolites 
in various plant structures (petals, roots, stems, leaves, seeds, seedlings) 
(Enomoto, 2020; Enomoto and Nirasawa, 2020; Qin et al., 2018; Sagara 
et al., 2019). 

The conventional mass spectrometry method used to study the 
multiple components of TCMs is LC-MS. Complex pretreatment is 
generally required for LC-MS, including solvent extraction and chro-
matographic column separation before structural characterization. Such 

work not only requires substantial investigator energy and wastes a 
considerable amount of chemical reagents for sample preparation, but 
may also cause the loss of analytes or damage to the active ingredient 
(Wu et al., 2007). Furthermore, LC-MS fails to provide location infor-
mation for the analyte in the tissue. Conversely, MSI can directly analyze 
the solid sections of plant tissues, without labeling and pre-processing 
and many studies have confirmed the advantages of direct analysis of 
plant tissues (Talaty et al., 2005; Wu et al., 2007). MSI can detect and 
identify the metabolic distribution of various components of TCMs while 
retaining in situ information, which is especially suitable for showing the 
material differences among different tissue parts of TCMs and the dis-
tribution characteristics of multiple components in the tissue (Hemala-
tha and Pradeep, 2013). 

In studies of Salvia miltiorrhiza, MALDI-MSI was used to visualize the 
spatial dynamics of functional metabolites (such as amino acids, 
phenolic acids, fatty acids, oligosaccharides, cholines, etc.) (Sun et al., 
2020) and MALDI-MSI was used to determine the distribution of me-
tabolites in the tissue structures of roots, stems, and leaves. In this study, 
the characteristic constituents of the medicinal plant Salvia miltiorrhiza 
were identified as phenolic acids and tanshinones, which was consistent 
with the LC-MS data (Li et al., 2020b). MALDI-MSI was also used to 
identify and show the location of specific metabolites in Tripterygium 
roots (Lange et al., 2017). In a study of Paeonia lactiflora, atmospheric 
pressure-scanning microprobe matrix-assisted laser desorption/ioniza-
tion mass spectrometry imaging (AP-SMALDI MSI, 10 μm/30 μm reso-
lution) was used to detail the specific distribution of the major 
secondary metabolites, gallotannins and monoterpene glucosides, in 
root samples (Li et al., 2016a). SIMS imaging was used to characterize 
the morphological distribution of syringyl and guaiacyl lignin in the 
xylem of maple samples, which revealed a clear difference in the annual 
distribution of lignins between the fiber and vessel (Saito et al., 2012). 
Take Putterlickia Pyracantha as an example to illustrate in detail, the 
maytansinoids of Putterlickia pyracantha were visualized by AP-SMALDI 
MSI in the rhizome and were highly distributed in the vascular cambium 
region and the phloem. Such compounds were also widely distributed in 
the xylem and extremely low in the outer bark (periderm) of the stem. In 
addition, maytansine and maytanprine were also mainly detected in the 
central cylinder of the root (Fig. 2)(Eckelmann et al., 2016). 

Due to high background noise in the low mass (<500 Da) region and 
the spatial inhomogeneity of matrix crystals formed on plant tissues, the 
application of MSI to the analysis of small molecule metabolites in plant 
tissues is more challenging than that in animal tissues. To improve the 
spatial resolution of MSI, some new ion sources were constructed for 
plant tissue imaging. Plasma assisted laser desorption ionization mass 

Fig. 1. The Experimental process of MALDI-MSI (kidney).  
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spectrometry (PALDI-MS) combines multiwavelength laser desorption 
and heated metastable plasma ionization of analytes, and does not 
require solvents to decrease ion suppression, reduce the pH effect, or 
simplify complicated spectra caused by adducts to a high spatial reso-
lution of 60 μm × 60 μm. PALDI-based MSI for tissue section imaging of 
Scutellaria baicalensis showed that the two active components, baicalein, 
and wogonin, were mainly distributed in the epidermis of the root (Feng 
et al., 2014). To solve the problem of uneven matrix distribution in 
MDLDI-MSI, colloidal graphite was introduced as an alternative matrix 
that can be evenly distributed on the sample surface. Colloidal 
graphite-assisted laser desorption/ionization (GALDI) MS imaging was 
developed to analyze the metabolites of Arabidopsis, showing the spe-
cific distribution of flavonoids in Arabidopsis in the whole flower and a 
single petal (Cha et al., 2008). In addition, 3D-MSI has been developed 
as cutting-edge technology for plant imaging. The 3D-surface 
MALDI-MSI is the most recent instrumental approach in AP-SMALDI 
MSI and was developed to characterize the specific distribution of 
plant defensive cardiac glycosides at injury sites in Asclepias curassavica 
(Dreisbach et al., 2021). 

Most of the MALDI imaging experiments performed on plant tissues 
have a spatial resolution of 50–200 μm. With high resolutions in mass 
and space, this technology has been applied to cell-level imaging in 
plants. The AP-MALDI-MSI approach (Koestler et al., 2008) that was 
independently developed by Li’s laboratory achieves 10 μm resolution in 
cell level imaging in plants, thus, showing the distribution of the main 
natural products (flavonoids, flavonoid glycosides, and saponins) of 
Glycyrrhiza glabra (licorice)(Li et al., 2014). The technology was also 
used to detect and identify the distribution of flavonoid glycosides and 
biflavonoids in Ginkgo biloba L (Beck and Stengel, 2016). A study used 
MALDI-MSI based on the FT-ICR-MS detector (with a spatial resolution 
of 20 μm) to show that most of the terpenoid indole alkaloids (TIAs) in 
the stem tissue of Catharanthus roseus were accumulated in idioblast cells 
(ICs) and laticifer cells (LCs) (Yamamoto et al., 2016). Another study 
also used the FT-ICR-MS detector to image the leaves of Catharanthus 
roseus at a resolution of 10 μm, and was combined with single cell MS 
analysis to detail the biosynthesis of TIAs and determine the cell-specific 
localization of TIAs in leaf tissue (Yamamoto et al., 2019). 

MSI technology can achieve high resolution cell and tissue imaging, 
showing the specific distribution of the functional metabolites of TCMs 
and laying a foundation for subsequent mechanistic exploration. 

4. MSI: A simple and quick way to discover the quality markers 
of TCMs 

Due to the polymorphism of medicinal plants, the quality control of 
drugs is a complicated process and includes a detailed characterization 
of the appearance, active ingredients, and physical and chemical prop-
erties of TCMs, as well as the quantification (absolute dry weight, yield, 
etc.), manufacturing (temperature, solvent, extraction and drying time), 

Table 2 
Published literature showing the application of MSI for the composition, quality 
control, and mechanisms of action of TCMs and natural products.  

Drug Tissue 
type 

Technical 
method 

Imaged 
molecules 

Ref. 

Salvia miltiorrhiza Whole 
plant 

MALDI- 
MSI 

Functional 
metabolites 

Sun et al. 
(2020) 

Salvia miltiorrhiza Roots, 
stems 
and 
leaves 

MALDI- 
MSI 

Phenolic acids 
and tanshinones 

Li et al. 
(2020b) 

Tripterygium Roots MALDI- 
MSI 

Triterpenoids 
and 
sesquiterpene 
alkaloids 

Lange et al. 
(2017) 

Paeonia lactiflora Roots AP- 
SMALDI 
MSI 

Gallotannins and 
monoterpene 
glucosides 

Li et al. 
(2016a) 

Maple Xylem TOF-SIMS 
imaging 

Syringyl and 
guaiacyl lignin 

Saito et al. 
(2012) 

Putterlickia 
pyracantha 

Stems 
and roots 

MALDI- 
MSI 

Maytansinoids Eckelmann 
et al. (2016) 

Scutellaria 
baicalensis 

Roots PALDI- 
based MSI 

Baicalein and 
wogonin 

Feng et al. 
(2014) 

Asclepias 
curassavica 

Injury 
site 

3D-surface 
MALDI 
MSI 

Plant defensive 
cardiac 
glycosides 

Dreisbach 
et al. (2021) 

Glycyrrhiza glabra Rhizome AP- 
MALDI- 
MSI( 
Koestler 
et al., 
2008) 

Flavonoids, 
flavonoid 
glycosides and 
saponins 

Li et al. 
(2014) 

Ginkgo biloba L. Leaves AP- 
MALDI- 
MSI 

Flavonoid 
glycosides and 
biflavonoids 

Beck and 
Stengel 
(2016) 

Catharanthus 
roseus 

Stem 
tissue 

MALDI- 
MSI 

TIAs Yamamoto 
et al. (2016) 

Catharanthus 
roseus 

Leaves MALDI- 
MSI 

TIAs and 
precursors 

Yamamoto 
et al. (2019) 

Panax ginseng Roots MALDI- 
MSI 

Ginsenosides Bai et al. 
(2016); Lee 
et al. (2017); 
Taira et al. 
(2010) 

Ginseng Roots DESI-MSI Ginsenosides Yang et al. 
(2021) 

Panax ginseng, 
Panax 
quinquefolius, 
and Panax 
notoginseng 

Roots MALDI- 
MSI 

Saponins Wang et al. 
(2016) 

Aconitum 
carmichaeli 
Debx 

Roots MALDI- 
MSI 

Aconitum 
alkaloids 

Wang et al. 
(2009) 

Paeonia 
suffruticosa and 
Paeonia 
lactiflora 

Roots MALDI- 
MSI 

Monoterpene 
and paeonol 
glycosides, 
tannins, 
flavonoids, 
saccharides and 
lipids 

Li et al. 
(2021) 

Ligustri Lucidi 
Fructus (LLF) 

LLF fruits MALDI- 
MSI 

Q-markers Li et al. 
(2020a) 

Vinblastine The 
whole 
body of 
rats 

MALDI- 
IMS-MSI 

Sinblastine and 
metabolites 

Trim et al. 
(2008) 

Salidroside Multiple 
organs 

MALDI- 
MSI 

Salidroside Meng et al. 
(2020) 

Puerarin Mice 
kidney 
tissue 

GD-4- 
assisted 
MSI 

Puerarin and its 
two metabolites 
(daidzein 
and 
dihydrodaidzein) 

Shi et al. 
(2017) 

Scutellarin MALDI- 
MSI 

Scutellarin and 
scutellarein 

Wang et al. 
(2021c)  

Table 2 (continued ) 

Drug Tissue 
type 

Technical 
method 

Imaged 
molecules 

Ref. 

Mice 
kidney 
tissue 

Notoginseng leaf 
triterpenes 
(PNGL) 

Rat brain MALDI- 
MSI 

Endogenous 
metabolites 

Wang et al. 
(2021b) 

Notoginsenoside 
R1 

Rat brain MALDI- 
MSI 

Endogenous 
metabolites 

Zhu et al. 
(2020) 

Thymoquinone Rat brain MALDI- 
MSI 

Endogenous 
metabolites 

Tian et al. 
(2020) 

Radix Aconiti 
Lateralis 
Preparata 
extracts 

Rat heart MALDI- 
MSI 

Endogenous 
metabolites 

Wu et al. 
(2019)  
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impurity testing, and chemical content determinations of the final active 
pharmaceutical ingredients (Liu, C. et al., 2018). In recent years, to 
improve the consistency and quality control of TCMs, quality markers 
(Q-makers) have been introduced ; (Guo, 2017; Liu et al., 2016). 
Q-markers of TCMs refer to substances that can be characterized qual-
itatively and quantitatively and are closely related to the function of the 
TCM in raw materials or during the processing and preparation of TCMs. 
The image of Q-makers plays an important role in the authenticity 
identification and quality assessment of TCMs (including raw materials, 
extracts, products, and compound preparations)(Yang et al., 2017). 
There are a variety of methods and strategies used for the discovery of 
Q-markers, including genomics, metabolomics, system pharmacology, 
pharmacokinetic analyses, and spider-web mode (Ren et al., 2020). 

As mentioned, MSI can detect the content and distribution of mul-
tiple components of TCMs in a high throughput manner. As a new 
analytical method, this technique has been used to discover the quality 
markers of TCMs. In this application, massive volumes of mass spectral 
data are generated and subsequently analyzed and processed by che-
mometric methods. Such methods mainly include principal component 
analysis (PCA), orthogonal partial least squares discriminant analysis 
(OPLS-DA), linear discriminate analysis (LDA), local least square (LLS), 
heuristic evolving latent projections (HELP), and orthogonal projection 
analysis (OPA)(Bansal et al., 2014). Compared to other chemical ana-
lyses such as LC-MS and UV, MSI does not require complicated sample 
extraction and separation steps, and does not lose low-abundance 
components. Thus, MSI quickly distinguishes the active ingredients 
and metabolic characteristics of different drugs, as well as readily 
identifies Q-markers. All such capabilities are suitable to rapidly and 
semi-quantitatively perform quality screening of TCMs (Huang et al., 
2016). 

Panax ginseng is a type of precious Chinese medicine, known as the 
king of medicines. However, as there are multiple species of Panax 

ginseng, the origin, age, efficacy, and nutritional value of ginseng med-
icines are also different, and counterfeit or substandard products often 
exist in the market. Ginsenoside is the main active component in Panax 
ginseng, and the content of ginsenoside increases with plant age. Many 
studies have used MSI to reveal that ginsenosides are mainly distributed 
in the sebaceous layer and part of the cortex of Panax ginseng tissue 
located in the center of the root. Dozens of ginsenoside analytes have 
been identified by MS/MS as specific markers for quickly distinguishing 
different varieties, ages, and organs of Panax ginseng based on their 
specific distributions in tissues (Fig. 3)(Bai et al., 2016; Lee et al., 2017; 
Taira et al., 2010; Wang et al., 2016; Yang et al., 2021). In one study, 
UPLC-QTOF MS and DESI-MSI were simultaneously used to detect and 
characterize the age and parts of ginseng to identify the common bio-
markers across different age groups using the OPLS-DA method. The 
results showed that compared to UPLC-QTOF MS, DESI-MSI was a novel 
and stable method for the rapid evaluation of ginseng root slices (Yang 
et al., 2021). In addition, LC-MS and MALDI-MSI were also used to 
analyze Aconitum alkaloids in the Chinese herbal medicine, Aconitum 
carmichaeli Debx. The results between the two analytical methods were 
consistent and revealed significant differences in the contents of alka-
loids between different samples. The comparative study using two 
analytical methods showed that MALDI-MSI was a more rapid and 
robust analytical method than LC-MS for semi-quantitative analyses of 
high concentration alkaloids (Wang et al., 2009). In addition, spatial 
metabolomics based on MALDI-MSI was also used to comprehensively 
and accurately detect the differential distribution of metabolites in 
Paeonia suffruticosa and Paeonia lactiflora (both belonging to genus 
Paeonia), including monoterpenes and paeonol glycosides, tannins, fla-
vonoids, carbohydrates, and lipids, and it was also used to further 
visualize the gallotannins biosynthesis pathway in the roots of Paeonia 
suffruticosa and Paeonia lactiflora (Li et al., 2021). Most TCMs are crude 
drugs and the majority of which must be processed to reduce their 

Fig. 2. MSI results from Putterlickia pyracantha stems (Eckelmann et al., 2016). A. Chemical structures of maytansinoids occurring in Putterlickia pyracantha. B. (a) 
Anatomical imaging of the cross section of Putterlickia pyracantha stems stained with phloroglucinol/HCL. (b–d) MALDI-imaging-HRMS of different Putterlickia 
pyracantha stem cuttings (spatial resolution: 40 μm; scan area: b: 3720 × 2600 μm; c: 3520 × 4120 μm; d: 3720 × 2600 μm). Localization of maytansine ([M+K]+; 
m/z 730.2503), maytanprine ([M+K]+; m/z 744.2659), maytanbutine ([M+K] +; m/z 758.2816), maytansine precursor 6 ([M+K] +; m/z 716.2347), maytanvaline 
([M+K]+; m/z 772.2973), normaytancyprine ([M+K]+; m/z 770.2816), maytansine ([M+K]+; m/z 730.2503), hydroxylated maytansine ([M+K]+; m/z 746.2452), 
and hydroxylated maytanprine ([M+K]+; m/z 760.2609). 

H. Jiang et al.                                                                                                                                                                                                                                   



Journal of Ethnopharmacology 284 (2022) 114760

7

toxicity in clinical medications. A strategy integrating multi-component 
characterization, non-target metabolomics, and MSI was proposed for 
quality control during processing. MSI was used to visualize the spatial 
distribution of four main biomarkers in the Ligustri Lucidi Fructus (LLF) 
based on steaming time (Li et al., 2020a). 

MSI technique was used to discover Q-makers, providing a new di-
rection and insights for the quality control of TCMs. As a rapid evalua-
tion method, MSI has a broad applicability for the quality control of 
TCMs. 

5. MSI: A tool for studying the metabolic distribution and 
therapeutic/toxic mechanisms of TCMs 

MSI can be applied to entire animal bodies or multiple tissue sections 
to observe the distribution of metabolites of active components in each 
organ, and to determine the target organ and toxicity. 

A study on the anticancer drug, vinblastine, performed MALDI-IMS- 
MS whole body imaging. The results showed that most of the product 
ions of vinblastine were highly distributed in the liver, renal cortex, and 
surrounding the gastric intestinal tract. The accuracy of the MSI results 
was verified by quantitative whole body autoradiography (QWBA)(Trim 
et al., 2008). By collecting multiple organ samples from mice at various 
time points after intravenous administration of salidroside, MALDI-MSI 
visualized the temporal and spatial distribution of salidroside showing 
that salidroside was heterogeneously distributed throughout the kidney 
and heart, and could be quickly eliminated with 5 min (Meng et al., 
2020). 

The distribution of drugs in tumor tissues or organs is heterogeneous. 
The possible metabolic pathways of TCMs can also be predicted by MSI 
to analyze the distribution of active components and their metabolites in 
microregions of tissues or organs. It has been found that hydroxyl-group- 
dominated graphite dots (GD) are an ideal matrix with extremely low 
background noise and ultra-high sensitivity. GD-4-assisted MSI has been 
used to show the distribution characteristics of puerarin and its me-
tabolites in renal microregions showing that puerarin was primarily 
distributed in the renal pelvis and major calyx. However, its metabolites 
(daidzein and dihydrodaidzein) were also detected in the renal pelvis, 
major calyx, and partly in the minor calyx, but were nearly absent in the 
medulla (Shi et al., 2017). In another study, MALDI-MSI was also used to 
identify the in situ localization of scutellarin (traditional Chinese botanic 
drug of Erigeron breviscapus extract) and its metabolites to show meta-
bolic differences in the kidney (Wang et al., 2021d). Imaging the 

distribution characteristics after drug administration facilitates an un-
derstanding of the biological activity and metabolism of drugs in various 
animal organs. 

In recent years, various cutting-edge omics technologies (genomics, 
transcriptomics, proteomics, metabolomics, lipidomics) have been 
applied to diverse fields of TCM research, including screening, quality 
control, research and development, mechanistic research, and clinical 
verification. Taking metabolomics as an example, metabolism reflects 
the changes of small molecule metabolites in the body. Metabolomics 
with high-throughput monitoring can identify the metabolic network of 
molecules following drug administration, which has become a powerful 
tool effectively breaking through the application bottleneck of the study 
of the multi-component mechanisms of TCMs. The discovery of meta-
bolic markers provides a foundation for the early identification of 
toxicity, quality control, and clinical utility of TCMs (Han et al., 2020; 
Shi et al., 2016; Sun et al., 2012; Wang et al., 2021a). As MSI is a 
high-throughput and label-free technology, it can obtain drug meta-
bolism distribution information and also endogenous small molecule 
metabolism information (that is, metabonomics data) from the same 
animal tissue. Compared to traditional metabolomics methods, spatial 
high resolution metabolomics studies based on MSI can preserve tissue 
integrity and visualize the distribution of metabolites. Researchers can 
also superimpose MS images with optical/HE scanning images and focus 
on the tissue microregions or lesions of interest to accurately extract 
mass spectral data for the target area for metabolic research; thus, 
avoiding the challenges associate with difficult separations of research 
specimens. 

Panax notoginseng is a traditional Chinese medicine and is widely 
used for the treatment and prevention of ischemic cerebrovascular dis-
eases (Yan et al., 2018). Notoginseng leaf triterpenes (PNGL) and 
notoginsenoside R1 (NG-R1, Fig. 4) extracted from Panax notoginseng 
were visualized by MALDI-MSI to study the effect on small molecule 
metabolism after perfusion injury. According to the results, the two 
drugs had a callback effect on the tricarboxylic acid (TCA) cycle and 
adenosine triphosphate (ATP) metabolism pathway, and also played a 
role in improving the malate-aspartate shuttle; thus, improving the 
antioxidant capacity and maintaining the homeostasis of Na+ and K+

(Wang et al., 2021b; Zhu et al., 2020). In the similar disease model, Fang 
et al. also used MALDI-MSI to explore the role of Thymoquinone, the 
main active ingredient in Nigella sativa, in regulating abnormal meta-
bolism in injured brain areas by promoting the aerobic oxidation of 
glucose, regulating intracellular energy metabolism, improving the 

Fig. 3. MALDI-MSI distinguishing ginseng of different ages based on the localization of ginsenosides (Bai et al., 2016) A. (a) Optical scan image of ginseng. (b) 
Overlay of ion images: red, m/z 805.5 (Rg8/Rk/Rz1); yellow, m/z 955.6 (unidentified); blue, m/z 917.8 (unidentified). (c–g) Five localization modes of signals: 
xylem-medulla type (c1 and c2); xylem-only type (d1 and d2); cork-xylem type (e1 and e2); cork-phloem-cambium-medulla type (f1 and f2); and cork-only type (g1 
and g2). B. PCA score plot and 2D peak distribution plot of m/z 1117.5 and m/z 1147.5: a and c, whole tissue; b and d, cork. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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phospholipid molecular level, increasing the content of small antioxi-
dant molecules, and balancing sodium homeostasis (Tian et al., 2020). 
According to the results of metabolomics studies in the same model, it is 
known that the mechanisms of related drugs for the treatment of stroke 
and other central nervous system diseases begin with mitochondrial 
oxidative damage, energy metabolism, lipid metabolism disorders, and 
Na+ homeostasis. In another study, MALDI-MSI was used to study 
anti-myocardial infarction effects of Radix Aconiti Lateralis Preparata 
extracts. Pharmacodynamics results showed that Radix Aconiti Lateralis 
Preparata extracts can improve the hemodynamic status and organ 
weight index and inhibit myocardial injury of rats with myocardial 
infarction. The corresponding MALDI-MSI results elucidated the 
possible mechanism of action by presenting Radix Aconiti Lateralis 
Preparata extracts to reverse metabolic changes of related small mole-
cules (energy metabolism-related molecules, phospholipids, potassium 
ions, and glutamine in the heart) to produce anti-myocardial infarction 
effects (Wu et al., 2019). The identification of potential biomarkers of 
TCMs based on changes in the metabolic networks of small molecules in 
vivo, thus, lays a foundation for further exploration of the mechanisms 
of action. 

Spatial metabolomics based on MSI can detail the interactions be-
tween metabolites, and further screen and identify biomarkers with 
significant changes by comparing the correlation between metabolomics 
spectra and histopathological/biochemical indicators. Finally, the 
analysis of related metabolic pathways can reveal the possible effects or 
toxic mechanisms of TCMs. The above studies illustrate that spatial 
metabolomics analyses based on MSI methods are powerful in exploring 
the therapeutic effects of TCMs and provide insights into the potential 
mechanisms of action of TCMs. 

6. Summary and conclusion 

In recent years, MSI has attracted the attention of many researchers 
and was rapidly developed. Currently, the quality control of most TCMs 
is limited to the identification and analysis following extraction and 
separation, and the process is cumbersome and time-consuming. The 
ingredients with lower concentrations are often overlooked and are not 
the focus of studies. MSI provides a new method for the rapid screening 

and control of the quality of TCMs. The understanding of modern 
medicine in TCMs has developed from macroscopic to microscopic 
considerations. In particular, the discovery and identification of active 
components of TCMs in the body is a key research topic. MSI technology 
has become a powerful tool for the analysis of metabolites in animal/ 
plant tissues, as well as single cells, providing a means to study transport 
pathways, metabolic pathways, and the accumulation of exogenous 
drugs in animal tissues and endogenous metabolites in plant tissues. The 
multi-component and multi-target synergistic characteristics of TCMs 
have been advantageous for the treatment of certain chronic diseases. 
Extracting active ingredients from TCMs and isolating monomers is a 
key approach to the identification of new drugs. MSI also offers a new 
visual perspective and provides multi-dimensional information for 
metabolomics analysis. However, MSI technology has faced many 
challenges, such as its limited spatial resolution and insufficient sensi-
tivity. By improving sample preparation methods, matrix replacement, 
algorithm optimization, and instrument improvements (Abdelmoula 
et al., 2018; Alexandrov et al., 2011; He et al., 2015; Morikawa-Ichinose 
et al., 2019; Song et al., 2017), MSI technology has achieved substantial 
breakthroughs in its sensitivity, resolution and sample suitability. With 
the integration of MSI with other technologies (Porta Siegel et al., 2018), 
such as LC-MS(Desbenoit et al., 2013), microscopic imaging (Tian et al., 
2019; Van de Plas et al., 2015), Raman spectroscopy (Bocklitz et al., 
2015), and magnetic resonance imaging (Verbeeck et al., 2017), the 
application of MSI technology to TCMs research will also become 
broader. 
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