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Abstract
Background: The proliferation and increasing maturity of 
biometric monitoring technologies allow clinical investiga-
tors to measure the health status of trial participants in a 
more holistic manner, especially outside of traditional clini-
cal settings. This includes capturing meaningful aspects of 
health in daily living and a more granular and objective man-
ner compared to traditional tools in clinical settings. Sum-
mary: Within multidisciplinary teams, statisticians and data 
scientists are increasingly involved in clinical trials that incor-
porate digital clinical measures. They are called upon to pro-
vide input into trial planning, generation of evidence on the 
clinical validity of novel clinical measures, and evaluation of 
the adequacy of existing evidence. Analysis objectives relat-
ed to demonstrating clinical validity of novel clinical mea-
sures differ from typical objectives related to demonstrating 

safety and efficacy of therapeutic interventions using estab-
lished measures which statisticians are most familiar with. 
Key Messages: This paper discusses key considerations for 
generating evidence for clinical validity through the lens of 
the type and intended use of a clinical measure. This paper 
also briefly discusses the regulatory pathways through 
which clinical validity evidence may be reviewed and high-
lights challenges that investigators may encounter while 
dealing with data from biometric monitoring technologies.

© 2022 The Author(s).
Published by S. Karger AG, Basel

Introduction

The emergence of digital medicine in clinical trials has 
been propelled in recent years due to a surge of health-
related technologies that enable holistic health assess-
ments and data production for trial participants, spon-
sors, and healthcare systems, especially outside of tradi-
tional clinical settings [1]. Rigorous processes for 
verification, analytical and clinical validation, and evalu-
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ation of usability are needed to develop fit-for-purpose 
digital medicine tools for medical data generation in to-
day’s clinical research, care, and decision-making [2, 3].

This paper uses the previously coined term biometric 
monitoring technologies (BioMeTs) [2] to refer to “connect-
ed digital medicine products that process data captured by 
mobile sensors, using algorithms to generate measures of 
behavioral and/or physiological function and level of func-
tional activity that may ultimately result in the identifica-
tion and deployment of clinical digital measures.” As in any 
rapidly evolving field, multiple terms referring to the same 
kind of tools can be found in the literature and regulatory 
documents, including Digital Health Technologies, which 
have a broader scope. The focus of this paper is on the 
BioMeTs used to enable reliable and comprehensive clini-
cal evaluations of trial participants and to add flexibility 
outside of the traditional clinical trial assessment setting to 
yield data for the development of investigational medical 
products (IMPs), i.e., drugs, biologics, and vaccines. This 
paper will not address clinical validation in support of clear-
ance for a medical device, software as a medical device, or a 
digital behavioral intervention and the corresponding digi-
tal endpoints.

There are significant advantages to use of BioMeTs in 
clinical trials, including enhancing the quality and effi-
ciency of clinical investigations [4] and facilitating the de-
velopment of personalized medicine by expanding the 
pool of potential predictive biomarkers and granular par-
ticipant-monitoring methods [5]. BioMeTs can make 
health-related data more representative of the composi-
tion of contemporary societies by extending access to 
clinical trials to diverse populations and measuring 
health-related outcomes that truly matter to trial partici-
pants, reflecting their health and functioning in daily liv-
ing and real-world settings [6].

As evidenced by a growing list of Digital Medicine Soci-
ety (DiMe) crowdsourced digital endpoints in industry-
sponsored clinical investigations [7], there is a need for 
standardized methodologies to validate and analyze health-
related digital measures so that they become scientifically 
accepted in clinical research [2, 3]. This paper provides a 
viewpoint on the scientific framework for demonstrating 
the clinical validity of novel digital measures and highlights 
key considerations for using some statistical methods. Fu-
ture work will delve into providing further technical guid-
ance on the analytical methods to achieve the analysis ob-
jectives. This paper also discusses key aspects of the regula-
tory framework guiding BioMeT-derived evidence 
generation and review, challenges specific to clinical trial 
data sets, and perspectives on future directions.

Background

A foundational approach for developing health-relat-
ed digital measures in clinical trials follows a well-accept-
ed framework of outcomes research where measures are 
defined in terms of (i) a meaningful aspect of health 
(MAH); (ii) a concept of interest (COI); (iii) and a clinical 
measure [8–10]. The MAH refers to elements of a disease 
that the trial participant wants to prevent, improve, or 
avoid making worse. From the MAH, a measurable COI 
can be identified. In turn, a specific clinical measure can 
be derived from the COI. Digital clinical measures are 
health outcomes or physiological characteristics of an in-
dividual’s health, wellness, and/or condition that are col-
lected digitally and include both technology and mea-
surement considerations [2]. The above framework ap-
plies both to direct and indirect measures of 
health-related outcomes, which are referred to as Clinical 
Outcome Assessments (COA) and biomarkers, respec-
tively, with several subcategories defined for each [11].

A COA directly measures what matters to trial partici-
pants and reflects how they feel, function, or survive. 
When a COA is collected using electronic or sensor tech-
nologies, it is referred to as an electronic COA (eCOA). 
All types of COAs (i.e., patient-reported outcome [PRO], 
observer-reported outcome, clinician-reported outcome, 
and performance outcome) are commonly digitalized and 
used in remote activities in modern clinical trials. How-
ever, not all eCOAs are collected using BioMeTs; e.g., elec-
tronic PROs use technology to capture survey data. This 
paper focuses on eCOAs that are collected using BioMeTs.

Biomarkers are characteristics that measure indicators 
of a normal biological process, pathogenic process, or re-
sponses to an exposure or a medical intervention, includ-
ing therapeutic interventions [12]. When a biomarker is 
collected using digital technologies, it is referred to as a 
digital biomarker [13]. Following the BEST framework, 
biomarkers can be of seven types: pharmacodynamic 
(PD)/response, monitoring, safety, susceptibility/risk, 
prognostic, diagnostic, and predictive [12].

Both COAs and biomarkers may serve as the basis for 
a definition of an endpoint to be used in clinical trials – a 
precisely defined, statistically analyzed health-related 
variable to demonstrate a clinical benefit of an experi-
mental medical intervention. The evaluation of the fit-
for-purpose of BioMeTs for collecting digital clinical 
measures comprises the verification, analytical valida-
tion, and clinical validation phases as described in the V3 
framework [2]. This paper will address only the aspects of 
clinical validation.
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As an illustration of the above concepts, consider a 
MAH in trial participants with pulmonary arterial hyper-
tension (PAH) that reflects physical functioning in daily 
living. A measurable COI related to this aspect of health 
could be the physical capacity to perform activities of dai-
ly living [14]. A clinical measure that reflects this COI 
could be the number of minutes spent daily in moderate 
or vigorous physical activity (MVPA) categories, which 
include the type of daily activities that matter to patients. 
It can be measured using a BioMeT containing an accel-
erometer sensor. An endpoint for use in clinical trials 
could be defined as the change in the average daily num-
ber of minutes of MVPA from baseline to month four 
after initiation of treatment [15, 16].

Figure 1 provides an example of a measurement pro-
cess that may be employed to arrive at an endpoint value 
from a raw BioMeT-derived signal. Verification is expect-
ed to provide assurance that the raw data harnessed from 
an accelerometer sensor is an accurate physical measure-
ment of acceleration associated with the movement of a 
wrist. Analytical validation is intended to focus on the 
next two steps that represent a data-processing algorithm 
aiming at transforming sensor signal into classification of 
the physical activity intensity level per minute when mo-
tion is being monitored and digitally collected. This vali-
dation phase could be carried out by assessing classifica-
tion accuracy compared to another method, e.g., direct 
human observation, measurement of metabolic equiva-
lent units, and labeling of various types of movement. 
Given an assurance of acceptable algorithm accuracy, a 
specific clinical measure (outcome) can be defined using 
the output of the classification algorithm, e.g., the num-
ber of minutes of MVPA aggregated at the day level. This 
outcome can then serve to define an endpoint. Clinical 
validation is expected to provide evidence that the Bio
MeT-derived outcome and endpoint are clinically mean-
ingful, e.g., they can capture a clinically significant effect 
of a medical intervention on the corresponding COI that 
is meaningful for the target population. This granular 
view of the measurement process highlights the fact that 
changes at any of its steps (e.g., change of sensor that gen-
erates raw data or its body positioning or change in the 
classification algorithm) may necessitate revalidation of 
the endpoint or showing some degree of equivalence or 
superiority of modified components compared to the ini-
tial ones.

Digital clinical measures collected by BioMeTs can be 
used in clinical trials in many ways, for instance, as prog-
nostic biomarkers for stratification purposes during trial 
enrollment [17]; for collection of additional evidence on 

the trial participants’ quality of life, e.g., via passive mon-
itoring of physical activity or sleep [8]; as monitoring bio-
markers for the safety and efficacy [9, 18], as surrogate 
endpoints, e.g., in early phase trials for “go/no-go” deci-
sions to accelerate clinical development programs [2]; 
and, as predictive biomarkers in the framework of preci-
sion medicine. Given the novelty and complexity of 
BioMeTs, to use digital clinical measures to support regu-
latory decisions (e.g., labeling), early regulatory interac-
tions are needed to discuss the validation process [18].

Novel digital clinical measures are expected to be most 
beneficial when no assessment tools exist for the concept 
of interest or existing tools have important limitations. In 
such cases, validation of novel digital measures cannot 
proceed by simply showing sufficient equivalence to exist-
ing measurement methods. Although working with data 
from BioMeTs entails many unique challenges, general 
principles of development and validation of fit-for-pur-
pose drug development tools apply, and the existing regu-
latory and scientific guidelines should be followed. The 
next section will focus on key considerations when using 
some statistical analyses to demonstrate the clinical valid-
ity of novel digital measures depending on their type.

Key Considerations for Statistical Analysis Planning 
to Support Clinical Validation

A body of clinical validation evidence should provide 
insight into the reliability, accuracy, sensitivity, and gen-
eralizability of a novel clinical outcome measurement 
method [9]. Validation evidence should be transparent, 
comprehensive, and traceable across different analysis 
stages, which can be broadly divided into two categories 
– analyses of exploratory versus confirmatory nature.

Exploratory analyses may first be carried out to suggest 
a definition of a promising clinical measure or its compo-
nents that may be strongly associated with the COI. These 
analyses have a hypothesis generation purpose and may 
employ predictive modeling to assess the strength of as-
sociation between one or more digital parameters and 
disease-related clinical outcomes [8]. A precise definition 
of a clinical measure can be proposed based on both qual-
itative input from patients, caregivers, and investigators 
as well as quantitative input from data-driven explorato-
ry analyses, although the relative influence of these two 
factors may vary. In qualitatively driven use cases (more 
likely for eCOAs), exploratory analyses may be helpful to 
fine-tune digital features that would represent the COI 
most accurately [19], e.g., to suggest thresholds on “activ-
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ity counts” (summaries of accelerometer measurements 
over time intervals) that best delineate activities of daily 
living that are important to trial participants. More ex-
ploratory data-driven modeling may first be conducted to 
evaluate the feasibility and face validity of the approach, 
assess the maturity of BioMeTs to be deployed into clini-
cal development, and identify the features that are most 
correlated with relevant clinical outcomes when it is less 
clear which digital parameters are most related to the 
COI. This is often done as part of early-phase trials during 
a clinical development program or in separate studies de-
signed specifically to explore several candidate BioMeTs 
and digital clinical measures. For example, the utility and 
accuracy of multiple digital technologies have been as-
sessed as potential diagnostic tools for unipolar depres-
sion, as well as digital biomarkers that may complement 
existing clinically validated psychometric questionnaires 
in depression [20]. Another example is the study of par-
ticipants with elevated blood glucose or prediabetes [21] 
where the feasibility of using noninvasive and widely ac-
cessible methods, including smartwatches and food logs, 
was assessed for continuous detection of personalized 
glucose deviations and prediction of interstitial glucose 
value in real-time.

Once one or more candidate digital clinical measure 
definitions are proposed, confirmatory analysis is con-
ducted to demonstrate desirable measurement proper-
ties and all aspects of clinical validity relevant to the type 
of measure and its intended context of use [8]. Several 
candidate definitions may undergo these types of valida-
tion analyses to determine which one is the most reliable 
and sensitive in the target population. The latter is espe-
cially pertinent when high-resolution longitudinal data 
are collected by BioMeTs, which need to be summarized 
into high-level summary measures representative of 
COI. All aspects of clinical validity should be demon-
strated in the target population for which the clinical 
measure is intended to be used. A digital clinical measure 
previously validated in a different patient population 
generally requires revalidation for use in a new popula-
tion, although revalidation requirements may differ be-
tween COA and biomarkers and depending on clinical 
characteristics of the two populations. For example, the 
FDA guidance on development of COA [22] mentions 
that “Additional qualitative research may be recom-
mended if the instrument will be used in a significantly 
different patient population (e.g., a different disease or 
age-group), and sufficient evidence is not available to 
support content relevance to the target population. Ad-
ditional analyses may be recommended to evaluate the 

instrument’s measurement properties within the new 
population.”

The rest of this section discusses the types of analysis 
objectives that would need to be pursued to demonstrate 
various aspects of clinical validity. While the require-
ments for validation of eCOAs and digital biomarkers are 
somewhat different, there are also many commonalities. 
For biomarkers, requirements also depend on the bio-
marker type as defined earlier, and reliability as well as 
sensitivity to change (also referred to as responsiveness) 
needs to be demonstrated [19].

In general, responsiveness is defined as the ability of an 
instrument to accurately detect change when it has oc-
curred. Although this definition is very simple, responsive-
ness is not a static attribute of an instrument but rather de-
pends on the context in which it is used. The concept of 
“change” itself can represent many different distinct states, 
either within or across individuals, concurrently or over 
time, and possibly in relation to other measures. Clarity on 
the aspects of change that are relevant for a specific use case 
is crucial for choosing appropriate clinical trial designs and 
methods for assessing and interpreting responsiveness. The 
taxonomy of responsiveness introduced by Beaton et al. 
[23] is very useful in this respect. Essential aspects are brief-
ly summarized and expanded here.

The three axes of Beaton et al.’s [23] taxonomy of re-
sponsiveness are as follows:
1.	 Individual-level (change in an individual patient) ver-

sus group-level (average amount of change for a group) 
interpretation. A smaller amount of change may some-
times be considered “important” at a group level com-
pared to the individual level.

2.	 Between-individual differences at one point in time ver-
sus within-person change over time versus a hybrid of 
both. The first category may contrast trial participants 
with different disease severities at diagnosis, the sec-
ond – evolution of the disease over time within the 
same participant, and the third may target between-
participant differences in their individual changes 
over time.

3.	 Minimum change (potentially) detectable by the instru-
ment versus observed change in a population at two 
different occasions versus estimated change in a popu-
lation deemed to have changed based on an external 
(reference) criterion. The first category reflects mainly 
the measurement error of the instrument. The ob-
served change is likely to be most relevant for eCOAs, 
where sensitivity to a change typically primarily focus-
es on the effect size (mean-to-standard-deviation ra-
tio) of decline/improvement, i.e., change in eCOA val-
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ues over time during which the disease is expected to 
progress or improve relative to inherent population 
variability. The estimated change would most often be 
relevant for biomarkers because, unlike eCOA, they 
are indirect measures. Clinically meaningful changes 
in biomarker values are primarily established by cor-
relating and anchoring them to clinical outcomes and/
or a response to interventions known to induce change 
in the relevant health aspect.
The three axes are orthogonal, although not all possi-

ble combinations may be relevant. With respect to the 
third axis, especially for the estimated change, there is ad-
ditional granularity that determines with respect to what 
(reference) the responsiveness is determined. The details 
will often depend on whether the validation is for an 
eCOA or a specific type of digital biomarker, as outlined 
in Table 1. Cells marked by “X” in Table 1 indicate which 
objective may apply to the various types of digital clinical 
measures.

Considerations for the Assessment of Reliability
Assessment of (test-retest) reliability aims at evaluat-

ing the degree to which the results obtained by a measure-
ment procedure can be replicated, or in other words, the 
variability of repeated measurements under the same 
conditions. This analysis is relevant to all types of clinical 
measures and is a prerequisite for all subsequent analyses 
and interpretations of meaningful differences and chang-
es, i.e., what constitutes a signal versus noise.

The measurement error is typically viewed as having 
two components: (1) random error of the measurement 

tool and/or measurement process and (2) natural variabil-
ity in the measured COI. The first component is likely to 
be evaluated, to a large extent, during the verification and 
analytical validation. However, those validation stages 
may not always cover all conditions that are relevant for a 
specific use case. The second component is especially like-
ly to necessitate evaluation during the clinical validation 
stage as it examines both the within-individual sources of 
variability (including the individual’s physiology and fluc-
tuations in behavioral patterns and environmental factors 
while the individual remains in a stable disease state) and 
the between-individual sources of variability.

Reliability of a digital measure can be assessed based 
on data from a repeated-measure design, where measure-
ments are collected from each participant multiple times 
under various conditions that would reflect both error 
components. For example, for a measure of sedentary be-
havior, measurements should be obtained over two or 
more weeks, to reflect wear compliance and day-to-day 
variability. Multiple measurements should be taken over 
periods of time where the participant’s disease status is 
stable, e.g., during screening/baseline, maintenance treat-
ment period, or follow-up. At the same time, participants 
with different disease severities should be included in the 
study and/or participants should be assessed during mul-
tiple periods when their disease can be confirmed as de-
teriorating or improving based on established clinical cri-
teria. This would enable assessment of whether the mea-
surement error depends on the disease state.

Analyses of reliability typically rely on random (or 
mixed) effect models, from which one of the key reliabil-

Table 1. Key analysis objectives to demonstrate clinical validity of eCOA and digital biomarkers

Demonstrate that a digital measure can: eCOA Digital biomarker

PD monitoring safety risk prognostic diagnostic predictive

Reliably measure a COI within and across individuals in stable disease 
states within a range of environmental conditions

X X X X X X X X

Differentiate between healthy individuals and those with disease X X X X X

Differentiate between concurrent disease/symptoms severity categories; 
correlate with other concurrent clinical outcomes

X X X X X

Detect disease progression or a clinical event of interest X X X X X

Predict future outcomes (short or long term) X X X X

Accurately detect functional states or activities of interest X X X X X

Capture response to an intervention X X X X

Predict response to an intervention X
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ity indices, the intra-class correlation, is estimated [24]. 
For categorical clinical measures, reliability is often char-
acterized using Cohen’s kappa, prevalence-adjusted and 
bias-adjusted kappa, and average positive and negative 
agreement indices [25].

Assessments of reliability lead to the estimate of the 
standard error of measurement and contribute to the de-
termination of minimal detectable change and Minimal 
Clinically Important Change (MCIC). Determination of 
MCIC requires additional considerations, including 
qualitative clinical arguments and/or analyses of respon-
siveness (sensitivity to change).

In cases where BioMeTs are used in a free-living envi-
ronment, outside of the controlled clinical center setting, 
and over long periods of time, digital clinical measures 
may be affected by multiple sources of variability, and it 
is critical to thoroughly evaluate its magnitude and op-
portunities to improve reliability.

Assessment of Ability to Differentiate between Healthy 
Individuals and Those with Disease
This is a key objective for diagnostic biomarkers but 

may also be relevant for eCOAs, monitoring biomarkers, 
and for some PD/response and safety biomarkers. Vali-
dation may be based on a clinical trial that includes par-
ticipants with and without a disease as determined by a 

reference diagnostic method. For example, a novel meth-
od for detecting the presence or absence of PAH based on 
the number of minutes of MVPA as discussed in Figure 1 
with a wrist-worn device over extended periods of time in 
daily living would need to be evaluated in terms of accu-
racy against one or more reference standard measuring 
methods. A new digital PAH measure can then be used as 
a diagnostic biomarker as well as a monitoring biomark-
er to determine treatment success.

Analysis typically relies on classification techniques 
and performance measures, including sensitivity (recall), 
specificity, precision, and related measures of classifica-
tion accuracy. Care must be taken to select appropriate 
metrics as different measures may be biased or mislead-
ing depending on the base rates of target categories. One 
of the challenges is the selection and validation of cutoff 
levels for classification, which should ideally be done 
based on data that were not used in biomarker discovery/
development.

Assessment of Ability to Differentiate between 
Concurrent Disease/Symptoms Severity Categories 
and Correlations with Other Concurrent Clinical 
Outcomes
For eCOAs and several types of digital biomarkers, a 

digital clinical measure may need to differentiate between 

Fig. 1. Measurement process example for a BioMeT.
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disease or symptom severity categories as determined by 
other clinical assessments concurrently. For example, a 
novel digital clinical measure of physical activity intended 
for monitoring trial participants with heart failure may 
need to distinguish between New York Heart Association 
(NYHA) classes of heart failure and/or Kansas City Car-
diomyopathy Questionnaire (KCCQ) overall summary 
score categories [26].

This aspect also covers more general objectives of in-
vestigating how the digital clinical measure is associated 
with other related clinical outcomes. For example, for a 
digital measure of physical activity in trial participants 
with heart disease, an association with the concurrent as-
sessments using the KCCQ physical limitation score [27] 
may be of interest. Although it should be noted that some-
times lack of correlation may not necessarily be evidence 
of invalidity: e.g., objective BioMeTs-derived measures 
and PROs may be measuring different and complemen-
tary aspects of the same MAH.

Analysis methods used for this objective may include 
both classification and regression models that focus on 
classification accuracy and significance of the digital clin-
ical measure effect on the reference outcome or vice versa. 
At a minimum, a strong association would need to be 
shown or that the distribution of digital measurements 
within each category of reference outcome are sufficient-
ly distinct. There is no universal rule as to what consti-
tutes a strong association, as the interpretation depends 
on the statistical method used to characterize the associa-
tion as well as on the context of use (e.g., a stronger asso-
ciation may be required for a PD biomarker intended to 
be used for go/no-go decisions during a clinical develop-
ment program, while a weaker association may be accept-
able for a monitoring biomarker intended to be used as a 
stratification factor in a randomized treatment assign-
ment).

One of the goals of these analyses may also be to evalu-
ate responsiveness and support the determination of 
Minimal Clinically Important Difference (MCID). The 
discussion of Beaton et al.’s [28] taxonomy of responsive-
ness above highlighted that this is a multifaceted aspect, 
and it should always be clearly defined what type of re-
sponsiveness is being assessed and relative to what. De-
termination of MCID may, at least in part, rely on an-
chor-based methods that explore the magnitude of change 
in a novel clinical measure versus a reference (anchor) 
measure [22, 28, 29]. The MCID is not an intrinsic char-
acteristic of a clinical measure, but rather may vary, at 
both the group and individual level, depending on the 
target population, clinical context, the patient’s baseline, 

and whether improvement or deterioration is being mea-
sured. In addition to quantitative evidence, qualitative 
clinical considerations may often be included in the de-
termination of MCID.

Assessment of Ability to Detect Disease Progression or 
a Clinical Event of Interest
A somewhat different objective for eCOAs and several 

types of digital biomarkers may be to demonstrate their 
ability to detect a clinically meaningful disease progres-
sion or a critical clinical event of interest, i.e., a concur-
rent (and sometimes abrupt) health status change. Statis-
tical methods and performance metrics, in this case would 
be similar to those mentioned above for differentiating 
between healthy and diseased individuals. A study that 
could support this evaluation would ideally include par-
ticipants who are monitored for an event of interest over 
a period, with one group using a BioMeT and a control 
group not using it. The importance of thorough clinical 
validation in the context of a specific use case and careful 
evaluation of both false negative and false positive detec-
tion rates and their implications cannot be overstated 
here, as the target events may have a big impact both on 
the individuals’ health and the healthcare system. An ex-
ample of this is a clinical validation study in participants 
who presented for a cardiovascular evaluation at a clinic 
after an abnormal pulse was detected by Apple Watch 
[30]. The device and its algorithm were previously cleared 
by the FDA for an optical abnormal pulse and ECG fea-
tures detection to opportunistically reveal a notification 
of possible atrial fibrillation in over-the-counter use [31, 
32]. The Wyatt et al. [30] study concluded that only 11% 
of participants who received an alert received a clinically 
actionable diagnosis and that the false positive alerts may 
lead to overutilization of healthcare resources, which 
highlights the importance of use case-specific clinical val-
idation.

For these interventions to be fit-for-purpose, success-
ful deployment of BioMeTs needs to account for different 
demographics that reflect the clinically relevant popula-
tions with regards to age, gender, sex, race, and ethnicity 
[33, 34]. Additionally, there can be significant differences 
in physiologic and activity parameters measured via 
BioMeTs across sex, race, ethnicity, and clinical condi-
tions [35]. For example, the measurement of blood oxy-
gen saturation via optical sensors may need to be vali-
dated in some specific populations [21, 33, 36, 37]. Fur-
thermore, technology utilization may vary across different 
demographics [38, 39].
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Assessment of Ability to Predict Future Outcomes 
(Short- or Long-Term)
Unlike in previous cases, here the goal is to demon-

strate the ability of a digital clinical measure to predict 
future clinical outcomes and events. This is most relevant 
for risk and prognostic biomarkers. For example, gait 
speed may be a susceptibility/risk biomarker in patients 
with HIV as an early indicator of future decline in mobil-
ity [40]. This aspect may also be relevant for some safety 
and monitoring biomarkers. For example, deterioration 
in the number of minutes of MVPA, as discussed in Fig-
ure 1 in participants with heart disease, may be used to 
predict the likelihood of major cardiovascular events in 
the future.

To support such an evaluation, data from a longitudi-
nal clinical trial would be necessary, where values of the 
digital clinical measure are collected at trial entry and 
possibly over time with the information on the outcomes 
or events of interest. Longitudinal studies require more 
resources compared to cross-sectional studies. Conse-
quently, the objectives of evaluating the association be-
tween the novel digital measure and future outcomes (or 
the clinical events of interest as discussed in the previous 
subsection) are often embedded as secondary or explor-
atory objectives in interventional trials rather than being 
pursued as the primary objectives in studies designed spe-
cifically for clinical validation. Statistical methods useful 
for this objective will typically include classification and 
regression models with an evaluation of the significance 
of the biomarker effect on the outcome of interest after 
adjusting for other relevant covariates [41].

Assessment of Accuracy of Detection of Functional 
States or Activities of Interest
Clinical measures can also be developed to detect var-

ious functional states or activities of interest and to quan-
tify associated parameters. Examples include detecting 
sleep versus wake state, walking versus other types of lo-
comotion, scratching behavior, hand movements associ-
ated with smoking or eating, etc.

Evaluating the accuracy of such detection would typi-
cally require data collected by a reference method, e.g., 
polysomnography for sleep or video recording for walk-
ing or smoking. Some related digital parameters may be 
evaluated as part of the analytical validation. However, 
during clinical validation, additional evaluation, e.g., over 
more extended periods of time, in specific environments, 
or for specific aggregate measures, may need to be per-
formed. It is important to clearly set and justify acceptable 
accuracy targets, taking into account a clinically mean-

ingful difference for the population of interest, including 
whether they are most relevant on an individual or group 
level, as well as for cross-sectional assessments versus 
changes in response to treatment. For example, the accu-
racy of actigraphy-based measures of sleep varies across 
different sleep parameters and sleep disorders, and ac-
ceptable levels of accuracy also depend on whether the 
measure is intended to be used for individual clinical care 
decisions or for the assessment of treatment-related 
changes [42].

Assessment of Ability to Capture Intervention Effect
If eCOAs or digital biomarkers (PD/response, moni-

toring, or safety) are planned to be used in clinical trials 
as endpoints, it is necessary to show that the measure is 
sensitive to intervention-induced changes. For a bio-
marker, this would typically be shown by assessing the 
correlation between changes in the biomarker values 
from pre- to post-intervention and the corresponding 
changes in some other clinical measurements. Analyses 
done to address some of the questions listed above lay a 
foundation for this analysis, e.g., determining minimal 
detectable change and MCID is necessary to interpret 
meaningful differences between treatment groups. Statis-
tical approaches may include anchor-based analyses with 
anchors such as Patient Global Assessment of (disease) 
Severity (PGI-S) or Patient Global Assessment of Change 
(PGI-C) to determine or confirm clinically meaningful 
differences between treatment groups for the digital mea-
sure [43].

Assessment of Ability to Predict Response to an 
Intervention
Predictive biomarkers measure patient characteristics 

prior to the start of an intervention and are used to predict 
a future response to a treatment or its magnitude, with the 
latter often measured by a different clinical measure (ei-
ther efficacy or safety). Predictive biomarkers are a cor-
nerstone of precision/personalized medicine, which aims 
at selecting the right treatment for the right patient when 
there is considerable treatment response heterogeneity 
that can be explained by a measurable patient or disease 
characteristics. There is a growing recognition that in 
many diseases, it would be difficult to identify a single 
predictive biomarker capturing complex effects of the 
disease and treatment, and pursuing multivariate bio-
marker signatures may hold more promise to capture the 
interplay between genomic, demographic, physiological, 
behavioral, and environmental factors [44]. Digital bio-
markers may be particularly suited for measuring some 
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of these characteristics. Digital predictive biomarkers are 
also likely to play an essential role in digital or digitally 
enhanced therapeutics [45].

Over the past two decades, the number of methods in 
the literature has been growing for a data-driven identi-
fication of predictive biomarkers, capable of considering 
a large number of candidate biomarkers and identifying 
a few with the most robust predictive properties [46–48]. 
Predictive biomarker identification is laden with meth-
odological difficulties and pitfalls, including multiplicity 
and treatment effect estimation “optimism bias” (also re-
ferred to as data resubstitution bias). Ideally, data-driven 
predictive biomarker identification should be consid-
ered as an exploratory, hypothesis generation stage car-
ried out on one dataset. In contrast, a confirmatory anal-
ysis would be carried out on a separate dataset with the 
objective of estimating and testing the significance of the 
treatment effect in a biomarker positive subgroup and its 
complement. In cases where data are limited, and both 
analyses have to be done using the same dataset, naive 
data resubstitution should be avoided in favor of more 
principled methods, examples of which can be found in 
[49, 50].

Assessment of Biomarkers for Use as Surrogate 
Endpoints
Biomarkers may be used in clinical trials as surrogate 

endpoints, if there is a “clear mechanistic rationale and 
clinical data providing strong evidence that an effect on 
the surrogate endpoint predicts a specific clinical benefit” 
[11]. A well-known example is hemoglobin A1c which is 
a validated surrogate endpoint for microvascular compli-
cations associated with diabetes mellitus. Surrogate end-
points are used in cases where a clinical endpoint requires 
a very long follow-up or invasive assessment procedures.

To validate a surrogate endpoint, it must be shown 
that (1) the biomarker is prognostic with respect to the 
clinical outcome and (2) treatment effects on the surro-
gate endpoint reliably predict treatment effects on the 
clinical outcome [51]. The second condition is especially 
challenging to demonstrate because of the possibility of 
confounding factors that may lie on a causal path and may 
be difficult to account for even in randomized clinical tri-
als. Multiple statistical approaches have been suggested, 
including meta-analyses and model-based estimations of 
direct and indirect effects. For the body of validation evi-
dence to be considered robust, data are required from 
multiple clinical trials, which may be a mix of randomized 
and observational studies, as well as prospective and ret-
rospective. Demonstration of surrogacy typically requires 

the highest level of evidence for regulatory acceptance 
among all biomarker types. It is expected to be based on 
a sound scientific hypothesis about the biomarker’s role 
in the target disease and treatment’s mechanism of ac-
tion.

Recent research also suggests that in some disease ar-
eas, a combination of several biomarkers (composite bio-
markers) have stronger surrogate properties compared to 
any single surrogate parameter [52]. In this respect, digi-
tal biomarkers may play an even more critical role, mea-
suring aspects of health not well captured by other means.

Handling of Missing BioMeT Data
It is paramount to identify statistical approaches to 

deal with missing data to ensure that derived endpoints 
are valid, accurate, and reliable [53, 54]. The taxonomy 
for classifying missing data mechanisms is based on the 
likelihood of being missed: MCAR (missing completely 
at random), MAR (missing at random), and MNAR 
(missing not at random) [53]. Currently, derived values 
of digital clinical measures are often left missing when 
some underlying measurements are not available. Emerg-
ing statistical approaches for addressing missing BioMeT 
data include within-patient imputations across standard 
periods, functional data analysis, deep learning methods, 
imputation approaches, and robust modeling [53].

Investigators should anticipate the impact of the miss-
ing data on trial results and the types of missing data that 
are likely to occur [1] and implement strategies to opti-
mize data quality starting from the study design [55, 56]. 
Additionally, the authors should discuss the study’s find-
ings, including the handling of missing data and any tech-
nical BioMeT problems that impacted the study results in 
publications and study reports [57, 58].

Key Regulatory Considerations

Regulatory Pathways for Acceptance, Qualification, 
and Approval of Novel BioMeTs and Their 
Corresponding Digital Endpoints
The individual regulatory review division within the 

FDA that may accept a novel clinical measure for a given 
digital endpoint may differ depending on the disease area 
in which a specific type of IMP will be evaluated for safe-
ty and efficacy in a clinical trial program relative to drugs, 
biological products, and vaccines [1]. For example, differ-
ent types of BioMeTs and their corresponding digital 
endpoints may be used in clinical programs (phase 1–3 
trials) to evaluate different experimental IMPs under dif-
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ferent investigational new drug applications (INDs). 
Once the clinical evaluations have been completed, these 
IMPs are reviewed for US market approval under a new 
drug application (NDA for drugs) or a biologics license 
application (BLA for biologics and vaccines).

The regulatory interactions between a sponsor using a 
BioMeT and the FDA should occur early during the IMP 
development process to discuss the appropriateness of a 
specific technology to measure a given digital endpoint. 
The FDA’s feedback on a BioMeT to test the safety and 
efficacy of an IMP within a specific clinical program may 
be obtained as part of a pre-IND meeting within the IND 
pathway [59].

BioMeTs are used to measure a clinical measure do not 
need to be qualified to be included in a clinical program. 
However, sponsors may choose to qualify an eCOA or dig-
ital biomarker and its corresponding digital endpoint if 
they determine that they can be used in multiple clinical 
programs to test different IMPs (e.g., a digital accelerometer 
may be used in clinical trials related to heart disease, Par-
kinson’s disease, obesity, and other conditions in which 
mobility may be an important symptom). The regulatory 
pathway for qualification is described in FDA’s Drug De-
velopment Tool (DDT) Qualification Programs [60].

Like the FDA, the EMA recommends early discussions 
for the qualification of BioMeT-derived novel clinical 
measures. An iterative qualification process is often rec-
ommended for applicants [61]. The qualification submis-
sion has to provide evidence that the methodology to be 
qualified is reliable, accurate, precise, generalizable, clin-
ically relevant, and applicable [61]. A successful example 
of close and continuous collaboration between investiga-
tors and the regulatory agencies is the qualification of a 
digital clinical measure of stride velocity 95th centile as a 
measure of functional ability in daily life in patients with 
Duchenne muscular dystrophy [62].

Regulatory agencies require the quality, integrity, reli-
ability, and robustness of data generated in clinical trials 
for which the sponsors have the ultimate responsibility, 
even if they delegate all or part of trial activities [19, 63]. 
To ensure the authenticity, integrity, and confidentiality 
of data, sponsors should develop a data management plan 
that depicts the flow of data from creation to final storage 
and corresponding electronic systems.

Data Standards for the Regulatory Submission of 
BioMeTs
Data standards for BioMeTs should be fit for purpose 

and follow the needs of a clinical development program 
so that the meaning and traceability of the data are clear 

and transparent to the researchers. It is recommended to 
involve biostatisticians and data scientists from the pro-
tocol design stage to plan data collection in a way that 
would be appropriate both for an initial proof-of-concept 
scope and long-term objectives [64].

It is advisable to provide the definition of “sample-lev-
el data” and “derived data” in regulatory submissions, as 
well as details related to the development of algorithms 
employed to convert the sample-level data into parame-
ters of interest and to disclose the mobile technology 
specifications and testing (e.g., calibration) and metadata 
collection [55]. Standardized clinical trial data such as de-
fined by the Clinical Data Interchange Standards Consor-
tium (CDISC) are required, preferred, or endorsed for 
regulatory submissions of clinical and nonclinical data 
[65, 66]. Literature highlights that these standards are not 
designed to collect, organize, and analyze large volumes 
of BioMeT data, but more suitable common standards are 
yet to be developed [64, 67, 68].

In this context, an emerging standard for BioMeTs is 
Open mHealth, which recently became an official IEEE 
family of standards [69]. A summary of relevant data 
standards is provided in Table 2.

Conclusions

The novelty and potential of BioMeTs to produce reli-
able data that give investigators a comprehensive picture 
of participants’ health have encouraged research organi-
zations to explore the feasibility of using these tools in 
clinical trials. However, this has been done primarily as 
pilot or exploratory trials that offer limited evidence of 
their clinical validity. This is partially due to the cost, 
time, and technical and regulatory complexities of more 
formal validation approaches.

In the coming years, it is expected that these initial tri-
als will be followed by more structured and sound designs 
that offer stakeholders the evidence they need to increase 
BioMeT adoption [8]. One of the fundamental aspects of 
trial design is sample size which needs to be sufficient to 
fulfill study objectives. Clinical validation of a novel clini-
cal measure is often positioned as a secondary or tertiary 
objective in a clinical trial, while the sample size is typi-
cally calculated to fulfill the primary objective. In order to 
ensure robust clinical validation evidence, statisticians 
should determine the sample size required for analyses 
planned to support clinical validation. Sample size re-
quirements are also driven by expectations for statistical 
power and model accuracy which, in turn, depend on the 
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intended context of use of a digital clinical measure and 
its impact on clinical care and clinical development deci-
sion-making. For some analysis methods, e.g., determina-
tion of intra-class correlation for reliability assessment, 
estimation of correlation coefficients, and classical analy-
sis of variance, statistical software, such as SAS, R, and 
SPSS, provide easy-to-use tools for sample size estimation. 
For more complex methods that may need to be employed 
for modeling associations between digital measures and 
other clinical outcomes, several papers on sample size es-
timation have emerged in recent years [70–74], but more 
emphasis and guidance on this topic would be beneficial.

In general, organizations are likely to face multiple 
challenges as they move toward the formal validation of 
novel digital measures. The amount of data generated by 
continuous-monitoring BioMeTs used in daily living is 
unprecedented. Integration across different tools, plat-
forms, and technology vendors becomes a complicated 
task for data streaming, storage, and real-time analysis 
due to the lack of standards for health-related digital data. 
The absence of standards for BioMeT-derived data re-
sults in inefficiencies, and barriers for many stakeholders 
and some initiatives are already underway to address this 
critical issue [74]. Additionally, data quality can be im-
pacted by trial participants’ adherence to BioMeTs [75], 
technology literacy, and access to reliable and fast inter-
net for data transmission [4]. Certain types of biases may 
be introduced in the data via the use of previously devel-
oped algorithms either in their entirety or as pre-trained 
layers in machine learning models. It is essential to exam-
ine the characteristics of the individuals whose data con-
tributed to the development of such algorithms to evalu-
ate whether they will be generalizable to other or broader 
populations [76]. For example, algorithms developed 
with data from young individuals may not generalize to 

elderly populations. Another example would be an AI-
powered tool for the recognition of skin conditions which 
may have poor generalizability if it was developed using 
training data without good representation of various skin 
colors [77]. Such factors do not necessarily affect all 
BioMeTs in the same way. For example, a recent study, 
where the participants used photoplethysmography de-
vices to track the heart rate, has found that the type of 
activity being performed by an individual had more of a 
statistical impact on the BioMeT’s error than the skin 
tone of the participant [76]. Precise and quantitative data 
collected by BioMeTs may also highlight some of the dif-
ferences between representative populations for the first 
time. Nevertheless, hypotheses regarding potential biases 
should be carefully considered and tested.

For many BioMeTs, the processing that occurs be-
tween raw data collection and derived parameters used 
for the calculation of a clinical measure may be a “black 
box.” Various types of data smoothing and filtering may 
be applied before data are run through one or more pro-
prietary algorithms to generate parameters of interest. 
This aspect challenges the flexibility of the interchange-
able use of different BioMeTs designed for a similar pur-
pose and makes it difficult to compare or integrate data 
across different trials. Additionally, it is often unclear 
how the algorithms have been modified in newer software 
versions that may be rolled out in the middle of a clinical 
trial or a clinical development program and if any of the 
data generated and processed with the previous software 
version are reliable, comparable, and transferable.

A device-agnostic clinical validation of a digital clini-
cal measure may be challenging because it rests upon the 
validity of all components, including hardware, raw sig-
nal, data preprocessing methods, and algorithms. The 
equivalence between certain technologies and compo-

Table 2. Data standards for regulatory submissions of BioMeTs

Standard name Format Focus

CDISC Tabulation data:
– The Study Data Tabulation Model (SDTM) 
including (SDTMIG-MD for medical devices 
collected data)
– Standard Exchange for Nonclinical Data (SEND)
Analysis data:
– Analysis Data Model (ADaM)

Objective: regulatory submission of clinical trial data
Note: additional metadata collected from medical devices is required with respect to 
data collected from BioMeTs (e.g., the location where the device was used) (Badawy 
et al. [64])
Geographic scope:
– Recommended by FDA and Japan PMDA for regulatory submissions
– Preferred by China NMPA
– Endorsed by EMA

Open mHealth Open Mobile Health Objective:
Mobile health data interoperability standard for patient health generated data
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nents should not be taken for granted, although it may be 
assumed and demonstrated in some cases.

There are also challenges related to the financial re-
sources, time resources, the knowledge base required to 
navigate the evolving regulatory pathways toward clinical 
validation of eCOAs and digital biomarkers, and the tech-
nical expertise necessary to collect, integrate, manage, an-
alyze, and interpret BioMeT data. Considerations for key 
analysis objectives required for clinical validation of an 
eCOA or a specific type of biomarker were highlighted in 
Table  1. Relevant methodologies and expertise exist in 
communities involved in the development of non-digital 
drug development tools but are often fragmented and not 
known to those currently engaged in the use of BioMeT.

Given these challenges, we believe that for- and non-
profit stakeholders would benefit from pre-competitive 
collaborations focusing on three particular areas. First, 
develop data, hardware, and software standards and regu-
lations to work around and connect the diverse BioMeT 
ecosystem. Second, improve regulations for data rights, 
access, privacy, and governance [56], as well as scientific 
transparency required for fulfilling validation require-
ments. Third, provide guidance on existing analytical 

methodologies for validation of novel clinical measures 
and extend or adapt them for BioMeT data as needed [3]. 
Overall, it would be expected that these partnerships can 
accelerate the adoption of novel BioMeTs in clinical trials. 
For example, DiMe has convened several pharmaceutical 
companies to help advance nocturnal scratch as a digital 
endpoint for atopic dermatitis [78].

As a first step toward this goal, this paper provides the 
reader with an overview of the statistical considerations 
toward clinical validation of eCOAs and digital biomark-
ers for clinical trial applications. As summarized in Figure 
2, we discussed the objectives of statistical analyses that 
need to be pursued to support the critical elements of 
clinical validation: reliability, associations between novel 
digital measures and other relevant clinical measures, re-
sponsiveness, and MCID. Factors that play a critical role 
in enabling a successful validation of novel digital mea-
sures are as follows: starting with early input from pa-
tients, caregivers, and investigators; engaging early with 
regulatory agencies; participating in pre-competitive col-
laborations across the BioMeT ecosystem; adopting data, 
hardware, and software standards; using technologies 
that underwent rigorous verification and analytical vali-

Fig. 2. Key elements are supporting clinical validation and factors contributing to a successful development of 
novel digital clinical measures.
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dation; promoting scientific transparency with regards to 
the algorithms used to process BioMeT data; and, last but 
not least, developing, sharing, and using robust statistical 
methodologies to demonstrate clinical validity. In future 
publications, statistical approaches that can be used to 
tackle the key analysis objectives described in this paper 
will be explored in more detail.
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