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�
 ABSTRACT 

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive 
disease with poor 5-year survival rates, necessitating identification of 
novel therapeutic targets. Elucidating the biology of the tumor 
immune microenvironment (TiME) can provide vital insights into 
mechanisms of tumor progression. In this study, we developed a 
quantitative image processing platform to analyze sequential mul-
tiplexed IHC data from archival PDAC tissue resection specimens. 
A 27-plex marker panel was employed to simultaneously phenotype 
cell populations and their functional states, followed by a compu-
tational workflow to interrogate the immune contextures of the 
TiME in search of potential biomarkers. The PDAC TiME reflected 
a low-immunogenic ecosystem with both high intratumoral and 
intertumoral heterogeneity. Spatial analysis revealed that the relative 
distance between IL10+ myelomonocytes, PD-1+ CD4+ T cells, and 

granzyme B+ CD8+ T cells correlated significantly with survival, 
from which a spatial proximity signature termed imRS was derived 
that correlated with PDAC patient survival. Furthermore, spatial 
enrichment of CD8+ T cells in lymphoid aggregates was also linked 
to improved survival. Altogether, these findings indicate that 
thePDAC TiME, generally considered immuno-dormant or im-
munosuppressive, is a spatially nuanced ecosystem orchestrated by 
ordered immune hierarchies. This new understanding of spatial 
complexity may guide novel treatment strategies for PDAC. 

Significance: Quantitative image analysis of PDAC specimens 
reveals intertumoral and intratumoral heterogeneity of immune 
populations and identifies spatial immune architectures that are 
significantly associated with disease prognosis. 

Introduction 
Pancreatic cancer is projected to be the second leading cause of 

cancer-related death worldwide by 2030 (1). Pancreatic ductal ad-
enocarcinoma (PDAC) is the most prevalent type of pancreatic 
cancer accounting for over 90% of all pancreatic malignancies di-
agnosed (2). PDAC is highly aggressive and demonstrates a strik-
ingly poor 5-year survival rate of approximately 10% in the 

United States (3). Surgical resection is generally considered the only 
curative treatment for localized PDAC, when clinically a viable 
option (4). However, more than 80% of tumors are nonresectable at 
the time of diagnosis, and most patients who benefit from surgery 
may eventually recur (5, 6). As a result, developing novel treatment 
strategies for PDAC is an urgent yet unmet medical need. 

In recent decades, advancements in immunotherapy have led to 
some modest improvements in PDAC treatment. Currently, there are 
several clinical trials evaluating anticancer efficacy of immune check- 
point inhibitors and cancer vaccines (7–9). For instance, Jaffee and 
colleagues evaluated neoadjuvant GVAX with or without low-dose 
cyclophosphamide in patients with resectable PDAC and reported ev-
idence of proinflammatory immunologic changes within PDAC tumors 
in response to GVAX (10). Bockorny and colleagues evaluated the 
synergistic effects of a CXC chemokine receptor 4 antagonist (BL-8040) 
in combination with PD-1 inhibition (pembrolizumab) and chemo-
therapy in PDAC, and reported that dual blockade improved clinical 
outcomes (11). Despite significant survival benefits associated with 
aforementioned treatments, the overall response rates were modest. 
Therefore, identifying novel therapy targets and predictive biomarkers 
will guide new clinical strategies for PDAC treatment. In general, 
searching for novel biomarkers relies on the notion that an activated 
tumor immune microenvironment (TiME) favors positive response to 
immunotherapy. The PDAC TiME has traditionally been considered 
T cell suppressive, thus presenting considerable barriers to establishing 
effective biomarkers for patient stratifications (12, 13). As a result, a 
more nuanced understanding of the biology of TiME is warranted for 
rational disease control. 

Recent developments in high-dimensional multiplexed imaging 
technologies allow for simultaneous phenotyping of multiple cell 
populations with their spatial domains preserved, thus facilitating a 
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better understanding of TiMEs. For instance, previous studies have 
reported the prognostic significances of spatial landscapes for a series 
of immune populations featuring B cells, T cells, myelomonocytes, 
and cancer-associated fibroblasts in PDAC TiMEs (14–18). Although 
these studies shed light on features of distinct immune populations, 
how they cooperatively impact antitumor immunity remains un-
known. Indeed, antitumor immunity requires structured, spatially 
coordinated interplay between components of the TiME. Schürch and 
colleagues reported that coupling of distinct cellular neighborhoods 
alters antitumor behaviors in colorectal cancer (19); similarly, Jackson 
and colleagues described higher-order interactions between immune 
phenotypes, namely spatial communities, to be correlated with clinical 
outcomes for patients with triple-negative breast cancer (20). 

To this end, we deployed a multiplexed IHC (mIHC)-based 
computational pathology framework and applied it to tumor re-
sections from archival single-institution patient cohorts with PDAC 
consisting of a treatment-naїve group and a presurgically treated 
group. This framework is a significant expansion of our previous 
studies (21–23), while also building on studies from other groups (19, 
24). The imaging system herein utilized a comprehensive lymphoid 
and myeloid marker antibody panel to profile leukocyte populations 
in histopathologically defined regions within PDAC TiMEs. An image 
processing pipeline was then implemented to capture the multiscale 
immune architectures. Altogether, such workflows enable assessment 
of complex TiME biology and relationship to clinical outcomes, with 
potential applications to informing effective patient stratification and 
rationally designed clinical trials. 

Materials and Methods 
Data acquisition with mIHC 

mIHC staining was performed as described previously (25). mIHC- 
stained mages utilized in the current study included specimens from 
cohort 1 of the treatment-naїve group and presurgically treated 
group, stained previously with the functional panel (Supplementary 
Table S1). A subset of biomarkers from this panel was used to eval-
uate higher-order cell types with greater expected abundance. In the 
current study, the treatment-naїve group was used for biomarker 
discovery, denoted as discovery cohort; presurgically treated group 
was used for validation, denoted as validation cohort. Patient char-
acteristics for both cohorts were summarized in Supplementary Ta-
bles S2 and S3. Images were acquired using an Aperio AT2 scanner 
(Leica Biosystems) at 20� magnification. Human PDAC specimens 
were obtained in accordance with the Declaration of Helsinki and 
were acquired with written informed consent by Institutional Review 
Boards at Johns Hopkins University (Baltimore, MD) and Oregon 
Health and Science University (Portland, OR). 

Image processing and analysis 
Regions were selected and annotated in Aperio ImageScope 

(Leica Biosystems, RRID: SCR_014311) and saved as an XML. Se-
lected regions of each stain from each tissue were extracted and regis-
tered to the final hematoxylin stain in MATLAB version R2018b (The 
MathWorks, Inc., RRID: SCR_001622) using detectSURFFeatures to 
identify the strongest matching key points from each of the RGB 
channels and selecting the channel with the highest matching key 
points. Region of interest (ROI) areas for each patient are summarized 
in Supplementary Table S4. A geometric transformation for each mIHC 
stain to the corresponding hematoxylin was estimated on the basis of 
similarity of matched key points with outliers excluded using the 
M-estimator Sample Consensus algorithm (MSAC). The transformation 

was applied to each RGB channel and merged to create the com-
posite registered RGB image region. Color deconvolution was per-
formed in FIJI (RRID: SCR_002285) by converting the RGB image 
to CMYK and using the Y channel to extract AEC chromogenic 
signal. Nuclei segmentation was watershed based and performed in 
FIJI by first using color deconvolution (H AEC) to separate he-
matoxylin signal, followed by smoothing, background subtraction 
and Otsu thresholding. Cell Profiler was used to quantify mean 
intensity of each segmented cell, along with area and centroid lo-
cation (Fig. 1A). The resulting feature matrix was used in FCS 
Express 7 Image Cytometry RUO (De Novo Software) where each 
tissue region was manually gated for single-cell classification and 
visually validated with live rendering of the segmentation mask on 
top of the signal extracted image (Fig. 1B; Supplementary Fig. S1). 
Phenotyping results as well as the registered pseudocolored multi- 
channel images were visualized in Fig. 1C. 

Characterization of spatial heterogeneity 
A previously introduced spatial form of Shannon entropy (ESP) 

was implemented to quantify the spatial heterogeneity (22). ESP is 
formally defined as: 

ESP ¼ �
Xn

i¼1

dint
i

dext
i

pilog2pi 

where dint
i denotes the average Euclidean distance between all cell 

centroids of type i; dext
i represents the average distance between all 

cells of set i and cells of all other types; pi is the percentage of type i 
within the core. 

Evaluation of spatial correlations 
To evaluate the spatial correlation between each pair of immune cell 

phenotypes, we utilized the spatial G(r) function (Gcross) to model the 
clustering pattern. Gcross computed the likelihood of seeing at least 
one cell of phenotype j around a cell of phenotype i, denoted as Gcross 
(i-j) within a series of radii. Here, we chose the maximum evaluable 
radius as 50 μm, to ensure clustering patterns were fully captured. 
Gcross values were estimated at every 0.05 μm to maximize continuity, 
then stratified into four bins based on the evaluated radius: (i) 10– 
20 μm, (ii) 20–30 μm, (iii) 30–40 μm, and (iv) 40– 50 μm. The bin 
selection was based upon previous studies that evaluated direct cell–cell 
interactions and enables a plausible profiling of clustering (26–28). G(r) 
was computed using “Gcross” function from R package “spatstat” (29). 

Enrichment score 
ROIs with at least 10 CD4+ T cells and 10 myelomonocytes were 

subjected to analysis. The enrichment score was computed for both 
CD4+ T cells and myelomonocytes on a per-ROI basis. For example, 
for myelomonocytes, the procedure is as follows: For each evaluable 
ROI, we computed the distance from all myelomonocyte centroids to 
CD4+ T-cell centroids. Next, myelomonocytes located within 50 μm 
of at least one CD4+ T cell were identified and defined as neighbors of 
those CD4+ T cells. Then, for every protein x ∈ X ¼ {PD-L1, PD-1, 
IL-10, GZMB, Ki67, EOMES, ICOS}, the following procedures were 
conducted: (i) the ratio of neighbors positive for x was computed, 
denoted as R0 (ii); repeatedly randomize the location of myelomo-
nocytes. For the ith randomization, the ratio was also computed and 
denoted as Ri, where i ∈ {1, 2, 3, . . ., n} (iii); Enrichment score 
was formally defined as the proportion of R0 greater than Ri. The 
protocol was also implemented in reverse with CD4+ T cells as 
neighbors of myelomonocytes. Here, distances were computed using 
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Figure 1. 
A, Overview of mIHC staining and analysis pipeline including ROI selection from a PDAC resection, image registration, nuclei segmentation, color deconvolution, and 
single-cell measurements. B, Table describing biomarkers used for identifying cell types and functional states (left) alongside a visual of the gating strategy (right). The full 
gating strategy and description can be found in Supplementary Fig. S1. C, Gated phenotype map shows cells classified from manual gating (left); same region shown as a 
pseudofluorescent image (middle). White box indicates area of the right panel image; zoomed in region from middle panel image showing cells with biomarkers used for 
identification. White arrows (left to right) point to a CD3 T cell, CD20 B cell, CD8 T cell, and CD68 myelomonocytic cell. (Schematics created with BioRender.com.) 
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“dist2” function from R package “flexclust”; randomization was 
implemented using “runifpoint” function from R package “spatstat”. 

IL10+ myelomonocyte RiskScore 
ROIs with at least one IL10+ myelomonocyte, at least one PD-1+ 

CD4+ T cell, and at least one granzyme B-positive (GZMB+) CD8+ 

T cell were subjected to analysis. For every IL10+ myelomonocyte, 
the distances to its nearest PD-1+ CD4+ T cell and GZMB+ CD8+ 

T cell were computed and denoted as d1 and d2, respectively. The 
IL10+ myelomonocyte RiskScore (imRS) is formally defined as: 

RiskScore ¼
d1

d1þ d2 
RiskScore, also termed as imRS in this study, reflects the balance 

of IL10+ myelomonocyte between high immunosuppressive risk and 
low immunosuppressive risk. Close proximity to PD-1+ CD4+ 

T cells will result in d1 decreasing and d2 increasing, therefore 
resulting in low imRS. 

CD8+ T-cell–B-cell network morphometrics 
ROIs with at least 100 total CD8+ T cells and 100 total B cells were 

subjected to analysis. For each evaluable ROI, cell dataset were trun-
cated to include CD8+ T cells and B cells only. A HDBSCAN algo-
rithm was first applied to identify clusters. For each cluster, Voronoi 
tessellation was then generated. Here, each cell was treated as a node. 
For each pair of Voronoi polygons that share at least one border, the 
associated nodes were connected to formulate a link. The set of nodes 
and links formed the cluster network. To facilitate the computation of 
cluster morphometrics, the α-shape and convex hull of each cluster 
was also derived. In this study, four morphometrics were gauged: 

Cluster area: measures the area of convex hull. 
Circularity: measures the roundness of the object. Here, circu-

larity is defined as: 

Circularity ¼
4 � Aαπ

P2
conc

;

where Aconc is the area of the α-shape, Pconc is the perimeter of the 
concave hull. 

Eccentricity: measures the degree of the object deviation from 
being circular. Here, we computed the fitting ellipse by first com-
puting the covariance matrix from the cluster point clouds. As-
suming the point clouds follow Chi-squared distribution Q ∼ x2 (k), 
the eigenvectors can be calculated from the covariance matrix 
yielding the orientations. Thus, the major and minor axis length can 
be computed as: 

α ¼ 2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ1X2
2ð0:95Þ; β ¼ 2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2X2
2ð0:95Þ

q

;

respectively, where λ1 and λ2 are eigenvalues of the covariance 
matrix. According to the definition, the ellipse represents the con-
tour that covers 95% of point clouds. Thus, the eccentricity is 
computed as: 

Eccentricity ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
β 2

α2

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�
λ2

λ1

s

Convexity: measures the curvature of the object. Here, convexity 
is defined as: 

Circularity ¼
Aα

Aconv
;

where Aconv is the area of convex hull. 

HDBSCAN algorithm was implemented using “hdbscan” func-
tion from R package “dbscan”; neighboring Voronoi polygons were 
identified using “voronoi_adjacentcy” function from R package 
caramellar; α-shape was computed using the “ashape” function from 
R package “alphahull”; concave hull was computed using the “chull” 
function from R package “grDevice”; covariance matrices from the 
cluster point clouds were computed using “cov.wt” function from R 
package “stats”; eigenvectors were computed using “eigen” function 
from base R package; χ2 distribution at 95% confidence interval (CI) 
was computed using “qchisq” function from R package “stats”. 

Statistical analysis 
Two-sided Wilcoxon rank-sum test was performed for pairwise 

comparisons using “wilcox.test” function from R package “stats”. 
FDR adjustment for P values were performed for multiple com-
parisons using “p.adjust” from R package “stats” and adjusted P < 
0.05 was considered significant. Pearson correlation coefficients 
were computed to assess the linear correlation between two sets of 
data using “cor” function from R package “stats”; χ2 test was per-
formed to assess the correlation between categorical variables using 
“chisq.test” function from R package “stats”; heatmaps and hierar-
chical clustering were generated using “Heatmap” function from R 
package “ComplexHeatmap” (RRID: SCR_017270). 

Data availability 
The data supporting the findings of this study (single-cell and 

patient data) are available online at Zenodo (RRID: SCR_004129, 
https://zenodo.org/record/6416102#.Yky33jfMIrY). Raw images are 
available from corresponding author upon reasonable requests. 

Code availability 
The codes for computational methods are made publicly available 

at GitHub: https://github.com/popellab/PDAC-mIHC-processing- 
pipeline. And an online-executable capsule is made available at 
Code Ocean (https://codeocean.com/capsule/2525016/tree/v1) and 
the link is provided in the GitHub repository. 

Results 
Patient stratifications 

Acknowledging the fact that PDAC is highly aggressive and has 
poor prognosis, we stratified treatment-naїve patients into two groups 
reflecting long-term survivors, that is, above median, and short-term 
survivors, that is, below median [based on overall survival (OS) days; 
threshold ¼ 619 days], for downstream evaluations. A merit of such 
approach is that survival differences can be maximized therefore the 
subtle spatial heterogeneity can be scaled to facilitate the prognostic 
marker discovery. Identifying differences first and then correlating to 
survival may weaken the significance due to misclassification of cer-
tain patients. While different splitting strategies have been employed 
by previous studies for biomarker discovery (25, 30, 31), there is no 
consensus on the optimal split approach. In this study, 50% was 
selected as the cut-off point produced two groups of comparable size, 
also reducing the risk of overfitting for the downstream analysis. The 
resulting long-term group consisted of 22 patients with a median 
OS ¼ 832 days, whereas the short-term group consisted of 23 patients 
with a median OS ¼ 313 days (Fig. 2A).Using 50% as the cut-off 
point produced two groups of comparable size, reducing the risk of 
sample limitations in downstream analysis. In addition, this stratifi-
cation also exhibits statistical significance between survival groups at 
the same level (log-rank test P < 0.001), as opposed to alternative 
stratification strategies (Supplementary Fig. S2). 
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Figure 2. 
Characterization of the PDAC immune ecosystem. A, A discovery cohort was split into short-term and long-term groups by OS using 50% as the cut-off threshold 
(long-rank test). B, Density of each immune phenotype was compared between long-term and short-term groups; CD45+ other: CD45+ population other than 
identified immune phenotypes (B cell, myelomonocyte, CD4+ T, and CD8+ T); ns, not significant (Wilcoxon rank-sum test). C, Immune cell densities of all patients 
were sorted in ascending order and the associated compositions at both patient and ROI level were visualized. D, Correlation analysis identified strong negative 
correlations between B-cell and myelomonocyte density, and positive correlation between myelomonocyte and other immune phenotypes (Pearson coefficient). E, 
Correlation heatmaps for all immune phenotype pairs showed similar patterns between short- and long-term groups (Pearson coefficient). F, Immune-infiltration 
levels were quantified into low, medium, and high categories and compared within each category; ns (Wilcoxon rank-sum test); the distribution among all categories 
was also compared between short- and long-term groups (χ2 test). G, Exemplary ROI with high and low spatial Shannon entropy. H, Spatial Shannon entropy was 
computed for each ROI and then averaged to the patient level for comparison between short- and long-term groups; ns (Wilcoxon rank-sum test). 
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Quantitative image analysis reveals poor immunogenicity in 
PDAC TiME 

We applied automated image analysis to profile the immune 
populations for all patients. Specifically, we quantified the cell 
densities per ROI for every immune cell phenotype and averaged to 
the patient level. Region properties associated with each ROI are 
summarized in Supplementary Table S4. Average densities of each 
cell type were compared between survival groups, but there were no 
significant differences found (Wilcoxon rank-sum test P > 0.05; 
Fig. 2B). Nonetheless, all immune cell phenotype densities showed 
moderate to large variability, thus we further sought to analyze 
whether such variations were driven by different patterns reflecting 
immune subset compositions. We first sorted leukocyte densities for 
each patient from low to high, and then calculated the percentage of 
each leukocyte subset at the per-patient and per-ROI level. We then 
correlated overall immune cell densities with each immune cell 
phenotype. Previous studies reported that the compositions of im-
mune subsets were highly correlated with overall immune cell 
abundances in triple-negative breast cancer (24). Specifically, CD4+ 

T cells were enriched whereas myelomonocytes were sparse in pa-
tients with high-leukocyte infiltration. We observed the same sig-
nificance for CD4+ T cells but not myelomonocytes in this study for 
both short- and long-term groups (Supplementary Fig. S2A–S2F). 
However, correlations were identified between immune cell pop-
ulations densities (Fig. 2C); for instance, myelomonocyte densities 
were positively correlated with other CD45+ density, but were 
negatively correlated with B-cell densities (Fig. 2D) in both short- 
and long-term groups. In fact, the density correlation heatmaps 
revealed that the two groups shared similar correlation profiles. That 
is, whichever cell correlation pair that was significant in the short- 
term group, was also significant in the long-term group, with the 
only difference reflected in significance level (Fig. 2E). Next, we 
stratified all patients into tertiles reflecting low-, medium-, and 
high-leukocyte infiltration. We then decomposed each tertile based 
on the patient’s survival group. Results demonstrated no correlation 
between immune infiltration levels and survival, as short- and long- 
term survivors were evenly distributed across all categories (χ2 P ¼
0.9149; Fig. 2F). The immune infiltration profiles were further gauged 
by evaluating compositional heterogeneity. Here, a spatial form of 
Shannon entropy (Esp) was implemented. Briefly, the metric attributes 
the sources of spatial entropy to the distance between cells and the 
diversity of cell species and their abundance, that is, close proximity 
between cells of different types and enrichment of unique cell phe-
notypes both lead to the increase of Esp (Fig. 2G; Materials and 
Methods). Previously we reported that high Esp, that is, high spatial 
immune heterogeneity, is associated with response to immune ther-
apy in the context of hepatocellular carcinoma (32). The results here 
however show no significant difference between short-term and long- 
term groups (Fig. 2H). Univariate analysis on the aforementioned 
first-order features included immune population densities and 
Shannon entropy (Supplementary Fig. S3A). We first aggregated 
features from core level to patient level by taking the mean. Univariate 
Cox regression analysis revealed that none of the features significantly 
associated with survival (P > 0.05) with four features conferred HRs ¼
1, suggesting these features provide zero risk reduction. Similarly, 
none of the features was prognostic in multivariate Cox regression 
analysis (Supplementary Fig. S3B). It is noteworthy that Shannon 
entropy yields a relatively higher HR (mean ¼ 4.21); however, the 
95% CI extended over a wider range, suggesting less clinical interest. 

Together, these findings may potentially indicate that character-
ization of TiME at low resolution is not able to make distinctions 

among patients and it requires higher-order, more complex char-
acterizations to establish potential biomarkers in separating short- 
versus long-term survivors, though validations on additional cohort 
is required to eliminate overfitting issues due to small sample size. 

Spatial correlation analysis of PDAC delineates orchestrated 
architecture of immune cell phenotypes 

To further model the spatial organization of the immune land-
scape in PDAC, we applied spatial G(r)-cross function (Gcross) to 
evaluate cell-cell colocalizations. At this point, CD45+ other cells 
were not included because their phenotype and functional states 
were not determined. Gcross was applied to each pair of immune 
cell phenotypes with both directions (Fig. 3A; Materials and 
Methods). For instance, Gcross (CD4+–myelomonocyte) evaluates 
the likelihood of observing CD4+ T cells colocalized with at least 
one myelomonocyte within a series of radii. High Gcross (CD4+– 
myelomonocyte) values indicate clustering of myelomonocytes 
around CD4+ T cells, reflected by steep climbing curves along with 
the radius gradient (Fig. 3B). Because Gcross is not a symmetrical 
metric, cell type pairs were evaluated in both directions, where CD4+ 

T cells or myelomonocytes, were evaluated as the focal cell type. Gcross 
values were computed with a radius gradient and then binned into four 
categories for every 10 μm (Materials and Methods) and compared 
between survival groups within each category. Comparisons identified 
three pairs that were significant in each category spanning all distances 
(FDR-adjusted Wilcoxon rank-sum test P < 0.05; Fig. 3C; Supple-
mentary Table S5). Here, we focused on two-way clustering involving 
CD4+ T cells and myelomonocytes, indicating a spatial mutual signaling 
axis, and one-way clustering from B cells to CD8+ T cells, highlighting 
lymphoid aggregate (LA)-like structures. Indeed, the prognostic sig-
nificance of both patterns has been reported in broader contexts 
(33–35). Specifically, Gcross values were significantly higher in long- 
term survivors for both directions between CD4+ T cells and myelo-
monocytes, while only Gcross (B cell–CD8+ T) was significantly higher 
in short-term survivors. These results indicate that CD4+ T cells and 
myelomonocytes exhibited a higher level of mutual colocalization in 
long-term survivors, while short-term survivors tended to reflect in-
creased density of CD8+ T cells in areas containing B cells (Fig. 3D). 

Spatial proximity signature of CD4+ T cell, CD8+ T cell, and 
myelomonocyte subpopulations associated with PDAC survival 

To further decipher the underlying biology of the association 
between survival and mutual clustering of CD4+ T cells and 
myelomonocytes, we studied each pair of the relevant cell types 
and presence of key mediators they express (e.g., PD-L1, PD-1, 
IL10, granzyme B, Ki67, EOMES, ICOS) to evaluate their influence 
on the clustering. We first quantified the composition for each 
immune cell phenotype within the cohort and revealed similar 
patterns across cell types: a majority of myelomonocytes, B cells, 
CD4+ and CD8+ T cells, were IL10 positive, with GZMB positivity 
in a minority of these subsets (Fig. 3E). On the basis of this, we 
investigated the enrichment score to account for such potential 
bias caused by the skewness of positive-protein distribution. For 
each ROI, we repeatedly randomized the geolocations of cell of 
type X positive for protein α and recorded the ratio of positive cells 
within 50 μm of all cells of type Y (neighbors). The enrichment 
score SEn of the ROI is formally defined as the ratio of the times 
that the randomization ratio is smaller than the ratio derived from the 
real point pattern (Fig. 3F; Materials and Methods). The benefit 
of this approach lies in the fact that the proportion of cells positive 
for each protein within the ROI is kept consistent throughout 

4364 Cancer Res; 82(23) December 1, 2022 CANCER RESEARCH 

Mi et al. 



Figure 3. 
Spatial correlation analysis identifies topological features associated with prognosis. A, schematic of spatial G(r) function (Gcross). B, Exemplary Gcross curves 
computed for ROIs associated with short-term (red) and long-term (blue) groups. C, Comparisons of Gcross values between short- and long-term groups at four 
distance intervals identifies three spatial clustering pairs; ****, P < 0.0001 (Wilcoxon rank-sum test). D, Aforementioned spatial clustering pairs were summarized 
into a two-way clustering involving myelomonocytes and CD4+ T cells, and a one-way clustering involving B cells to CD8+ T cells. E, Functional marker 
expressions across immune phenotypes. F, Schematic of computation of enrichment score. G, Enrichment score computed for each functional marker on both 
myelomonocytes and CD4+ T cells. H, Schematic of imRS, derived from the relative distances from IL10+ myelomonocytes (mean of five nearest neighbors, if 
any) to PD-1+ CD4+ T cells and GZMB+ CD8+ T cells (mean of five nearest neighbors, if any). I, imRS was computed at per-cell basis and compared between short- 
and long-term groups; ****, P < 0.0001 (Wilcoxon rank-sum test). J, Exemplar topological graph of IL10+ myelomonocytes, PD-1+ CD4+ T cells, and GZMB+ CD8+ 

T cells in short- and long-term groups. (Schematics created with BioRender.com.) 
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the randomization, resulting in the global proportion bias becoming a 
recurrent constant factor. Under such conditions, high SEn indicates 
that more neighbors are observed than at random. Given that the global 
proportion always has the same weight, such close proximity is likely 
driven by an underlying biological process rather than bias or coinci-
dence. We computed SEn for all ROIs and found that PD-1 positivity 
had the highest mean for CD4+ T cells (median SEn ¼ 1, mean SEn ¼

0.65) whereas IL10 had the highest mean for myelomonocytes (median 
SEn ¼ 1, mean SEn ¼ 0.70) compared with other markers; the con-
clusion held under different simulation rounds (Supplementary Table 
S6), indicated that PD-1+ CD4+ T cells and IL10+ myelomonocytes 
were key contributing factors to the clustering (Fig. 3G). 

Previously, Phillips and colleagues developed SpatialScore and 
reported relationships between spatial proximity of immune sub-
populations and response to immunotherapy in cutaneous T-cell 
lymphoma (36). Of note, the concept of SpatialScore is to charac-
terize the balance between CD4+ T-cell effector and immunosup-
pressive activity. Here, we propose a modification to represent the 
relative distance of PD-1+ CD4+ T cell to IL10+ myelomonocyte and 
GZMB+ CD8+ T cell. To recapitulate this proxy, we included 
GZMB+CD8+ T cells given that IL10+ myelomonocyte have been 
reported to inhibit CD8+ T-cell cytotoxicity by direct and indirect 
mechanisms (immunosuppressive activity; refs. 37, 38). In this 
study, the prediction is that closer proximity between CD4+ T cells 
and myelomonocytes will correlate with better survival (inhibited 
immunosuppressive activity). In practice, we first identified the 
mean distance of each IL10+ myelomonocyte (evaluable interaction 
pairs n ¼ 13,451) to its k-nearest PD-1+ CD4+ T cell and k-nearest 
GZMB+ CD8+ T cell for each ROI (evaluable n ¼ 141), then 
computed the relative distance ratio to generate the IL10+ imRS 
(Fig. 3H; Materials and Methods). Here, we set the threshold k ¼ 5 
(or equals to the total number of candidates if not abundant) to 
reduce the sensitivity to outlier or misclassified cells. Quantitative 
results revealed that the imRS was significantly higher in short-term 
survivors (mean imRS ¼ 0.44) than long-term survivors (mean 
imRS ¼ 0.23). It is also noteworthy that the distribution of imRS 
from long- and short-term groups indicated a distinct IL10+ mye-
lomonocyte behavior, as they were clearly separated by the 0.5 
threshold (Fig. 3I). Visualizations further corroborated such find-
ing: we linked IL10+ myelomonocyte to their nearest PD-1+ CD4+ 

T cell and GZMB+ CD8+ T cell on a per-cell basis and visualized the 
proximity of IL10+ myelomonocyte adjacent to PD-1+ CD4+ T cells, 
while remaining distal to GZMB+ CD8+ T cells in long-term sur-
vivors (Fig. 3J). Given that the sample size is relatively modest, we 
sought to test whether such signal was biased that originated from a 
single ROI or patient. Therefore, we further performed exclusion 
analysis on the imRS data. We iteratively excluded data from a 
patient (evaluable N ¼ 31). For each iteration, imRS between short- 
and long-term survivors was compared using Wilcoxon rank-sum 
test and P values were recorded. Results showed that the statistical 
significances retained over all iterations under both conditions, 
therefore confirmed the robustness of imRS (Supplementary Table 
S7). Collectively, we demonstrated that the spatial proximity sig-
nature of IL10+ myelomonocyteto PD-1+ CD4+ T cell and GZMB+ 

CD8+ T cell correlates with patient survival in PDAC. 

Compositions of B-cell and CD8+ T-cell clustering associated 
with PDAC survival 

Next, we sought to further interrogate the second significant pattern 
identified previously, that is, one-way colocalization between CD8+ 

T cells and B cells. Visual inspections indicated that the clustering 

patterns resembled LAs (Fig. 4A). Here, we quantified the CD8+ T–B- 
cell aggregates by applying the HDBSCAN algorithm to identify ag-
gregates (n ¼ 125). For all cells within each identified aggregate, a 
network was constructed by first generating the Voronoi tessellation 
and then connecting all neighboring cells (Materials and Methods). For 
each network, we measured the following metrics: convex hull area, 
CD8+ T-cell density, B-cell density, circularity, eccentricity, and con-
vexity. While results revealed that cluster morphometrics did not as-
sociate with survival (Wilcox rank-sum test P > 0.05), CD8+ T-cell 
density per aggregate was significantly higher in long-term survivors 
(Fig. 4B). In addition, we aggregated the density from per-LA basis to 
patient level and fitted a univariate Cox regression model. Results 
revealed that the density feature significantly contributed to the risk 
reduction (Wald test P ¼ 0.03) with HR ¼ 0.997 (95% CI, 0.9938– 
0.9997). Correlation analysis using Spearman method demonstrated 
same pattern that the density positively correlated with OS (ρ ¼ 0.3658, 
P ¼ 0.35; Supplementary Fig. S3C). 

To further characterize the CD8+ T-cell–B-cell aggregates, we 
computed the percentage of CD8+ T cells and B cells that are positive 
for each functional marker and then applied hierarchical clustering to 
group networks with similar compositions (Fig. 4C). Results indicated 
that the clustering algorithm identified three major clusters: in cluster 
1, all networks were dominated by IL10+ B cells and CD8+ T cells; in 
cluster 2, an accumulation of EOMES positive cells was identified and 
the majority of aggregations associated with short-term survivor 
samples (30/36) from 11 patients; in cluster 3, diversified dominancy 
was observed. Of note, the distribution of clusters indicated a signif-
icant association to survival (χ2 test P ¼ 0.00018; Fig. 4D). 

Validation of the spatial TiME architectures with a 
presurgically treated PDAC cohort 

In this study, we selected an independent cohort (evaluable N ¼
12) that had received presurgically treatment to validate our pre-
vious findings. The cohort composed of 6 patients treated with 
(chemo) radiation and chemotherapy (class 1), 5 patients treated 
with chemo-therapy only (class 2), and 1 patient treated with ra-
diation or chemo-therapy only (class 3), prior to resection surgery 
(Supplementary Table S3). We first characterized the differences in 
survival and TiME compositions between classes. Class 3 was re-
moved from this analysis since it only contains 1 patient. Impor-
tantly, we observed trend toward better prognosis in class 2 patients 
(mean OS days ¼ 809.4) compared with class 1 (mean OS days ¼
531.8) but such survival advantage is not significant (log-rank test 
P ¼ 0.07; Supplementary Fig. S4A). TiME composition analysis 
revealed no significant differences in immune populations (Wil-
coxon rank-sum test P > 0.05). However, it is noteworthy that class 
2 patients tended to have global higher numbers of CD4+ T cells and 
CD8+ T cells, suggesting that chemotherapy may be more effective 
in activating the antitumor immunity (Supplementary Fig. S4B). 

Among 12 patients, 3 had marked response/minimal residual 
disease (grade 1), 3 had moderate response (grade 2), and 3 had poor 
or no response (grade 3). In this study, we define patients with grade 1 
and 2 as responders (R) and patients with grade 3 as nonresponders 
(NR). While we recognize that this presurgically treated validation 
cohort does not represent the discovery cohort in terms of clinical 
scenario, due to limitations in data availability, the neoadjuvant co-
hort provided the best option for further investigation. Importantly, 
we demonstrated that the presurgical treatment-naїve long-term and 
presurgically treated validation groups both had significantly longer 
OS than the treatment-naїve short-term group, with no statistical 
difference in OS between the treatment-naїve long-term and 
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Figure 4. 
Spatial correlation analysis revealed prognostic significance of LAs. A, First-order properties (cell densities) and morphometrics were computed and compared 
between short- and long-term groups; **, P < 0.005; ns, not significant (Wilcoxon rank-sum test). B, Exemplar circular (criteria: eccentricity < 0.8 and convexity > 0.8 
and circularity > 0.5) and elongated (criteria: eccentricity > 0.8 or convexity < 0.3 or circularity < 0.3) LA. C, Hierarchically clustered heatmap of marker expression 
compositions in LAs, for example, PD1._CD8T represents PD-1+ CD8+ T cells. Bar plot shows the B-cell and CD8+ T-cell densities for each LA, respectively. D, 
Comparison of cluster distribution in different survival groups (χ2 test). 
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presurgically treated groups (Fig. 5A). Therefore, we sought to de-
termine whether the presurgically-treated cohort also resembled the 
long-term survival group in terms of the spatial features described 
above. We first computed the imRS for all IL10+ myelomonocytes 
(evaluable interaction pairs n ¼ 102) using the same ROI selection 
criteria and protocol (evaluable ROI n ¼ 16). Results revealed that the 
mean imRS in the validation cohort was significantly lower than both 
short-term (Wilcoxon rank-sum test P < 0.001) and long-term sur-
vivors (Wilcoxon rank-sum test P < 0.05), validating our hypothesis 
that the imRS is indeed associated with improved OS (Fig. 5B). 
Again, visualization recapitulated the same proximity pattern ob-
served in long-term survivors (Fig. 5C). However, it is noteworthy 
that presurgically treated group that bear significantly higher imRS 
seems to not benefit from further improved survival (log-rank test 
P ¼ 0.11), likely due to other changes in TiME altered by the therapy 
and warrants further analysis to confirm. 

Next, we identified CD8+ T cell–B cell aggregates (n ¼ 31) from 
the validation cohort and compositions were quantified (Fig. 5D). 
Similar to the discovery cohort, results revealed no significant dif-
ference in terms of B-cell density per cluster; however, CD8+ T-cell 
density was significantly elevated in the validation cohort compared 
with short-term survivors (Fig. 5E). Of note, hierarchical clustering 
demonstrated that the majority of aggregates in the validation co-
hort were EOMES dominant, which was contrary to the findings 
from the discovery cohort (Fig. 5F). 

In addition, we explored the prognostic values of imRS and CD8+ 

T-cell density in LAs in predicting presurgical treatment efficacy. 
We observed that imRS in Rs group (mean ¼ 0.179) is significantly 
lower compared with NRs (mean 0.303, Wilcoxon rank-sum test 
P ¼ 4.098 10�7; Fig. 5G), However, we did not observe the same 
significance of CD8+ T-cell density in Rs (Wilcoxon rank-sum test 
P ¼ 0.4945; Fig. 5H). This is likely related to the limited sample size 
because LAs were identified in only 6 of 12 patients. Specifically, 15 
LAs were detected in 3 Rs and 16 in 3 NRs, hence limiting the 
statistical power of the comparison. It is worth noting, the mean 
CD8+ T-cell density in Rs is 297.4 cells � mm�2, which is much 
higher compared with the density in NRs of 176.4 cells � mm�2. 
Univariate Cox regression model indicated that R group with higher 
density trended toward lower risk (HR 0.981; CI 0.94–1.02; Wald 
test P > 0.05). Correlation analysis revealed the same trend that 
CD8+ T-cell density positively correlated with OS compared with 
the discovery cohort (ρ ¼ 0.6, P ¼ 0.35; Supplementary Fig. S5). 

Collectively, the validations indicated that the stratification power 
of imRS was in agreement with both the presurgically treated cohort 
and long-term survival group, hence suggesting prognostic values. 
However, the LA-associated features were not recapitulated in the 
validation cohort and responders to presurgical treatment, dem-
onstrating that these patterns shall be interpreted with caution and 
further validations on extended dataset are required. 

Collectively, these results indicated that pretreatment differences 
in immune architectures within TiME likely possess prognostic 
values in patient with pancreatic adenocarcinoma. We observe that 
PD-1+ CD-4+ T cells appear to present adjacent to IL10+ myelo-
monocytes in long-term survivors but adjacent to GZMB+ CD8+ 

T cells in short-term survivors. Though the signaling insights re-
mains unknown, we proposed two hypothesis models that likely 
reflect the underlying biology (Fig. 6). Previous research provides 
evidence of the immunosuppressive role of IL10 by downregulating 
the cytotoxicity of CD8+ T cells (38). Meanwhile, activated CD4+ 

T cells, signatured by expression of PD-1, are able to secrete IFNγ 
that can inhibit the production of IL10 (39–41). Taken together, we 

hypothesized that in the long-term survivors, the immunosuppres-
sion of IL10+ myelomonocytes is impeded by the IFNγ production 
on activated CD4+ T cells; whereas in short-term survivors, IL10+ 

myelomonocytes may inhibit the cytotoxic CD8+ T cell to promote 
tumor progression. We also reported that the CD8+ T-cell densities 
in lymphocytes aggregates are significantly elevated in long-term 
survivors. Therefore, distinct functional states of immune pop-
ulations, coupled with their spatial topology, can likely to predict the 
survival of patients with PDAC. 

Discussion 
In this study, we investigated features of immune contexture and 

the spatial landscape of archival PDAC specimens from 
45 treatment-naїve PDAC surgical resections, using an mIHC 
pipeline followed by quantitative spatial characterizations using a 
computational image processing workflow. The imaging approach 
and computational pipeline enable simultaneous profiling of mul-
tiple leukocyte populations and quantitative assessment of their 
spatial architectures to identify potential prognostic biomarkers. 

Using sequential mIHC on 45 archival pathologic formalin-fixed 
paraffin-embedded (FFPE) samples with a panel of 27 antibodies 
enabled identification of cell lineages and their functional states 
from at least three ROIs per patient and ensuring tumor-immune 
heterogeneity was captured. The image processing workflow was 
then applied to extract a single-cell database of 4,026,079 cells fea-
turing CD4+ T cells, CD8+ T cells, CD20+ B cells, myelomonocytes, 
and neoplastic tumor cells. Their functional states were also deter-
mined, reflecting expression of PD-L1, PD-1, IL10, GZMB, Ki67, 
EOMES, and ICOS. The methodology described in this study rep-
resents a multiscale analysis of the tumor TiME ecosystem spanning 
from single-cell level properties to spatial clustering patterns. In 
addition to the PDAC specimens evaluated herein, elements of this 
platform have been used for biomarker discovery in the context of 
triple-negative breast cancer, muscle-invasive bladder cancer, and 
hepatocellular carcinoma, and revealed efficacy in predicting re-
sponse to cancer treatment, thus providing a general digital pa-
thology framework for deciphering complex spatial biology (22, 23, 
32). Given that FFPE specimens are ubiquitously available in lab-
oratories that conduct diagnostic clinical tasks, the merit of the 
methodology also lies in the minimal materials required for analysis, 
enabling broad applicability using archival tissue samples. Consid-
ering the current advancements in single-cell multiplex proteomics, 
the framework can also be easily adapted to high-dimensional im-
aging systems for detailed immune phenotyping that further ac-
celerates biomarker studies with increased profiling bandwidth. 

The major goal of this study was to discern subtle biological dif-
ferences between patients with poor and improved survival for the 
establishment of prognostic biomarkers. Although PDAC is an ag-
gressive cancer with poor survival, we split the patients into long-term 
and short-term groups with near equivalent sizes (42). It is important to 
note that long-term survivors are significant only at statistical level and 
do not necessarily possess clinical meaning since the median OS is 832 
days. This limitation in searching for predictive biomarkers could apply 
to PDAC generally. Nevertheless, we reasoned that the distinction in 
OS between long- and short-term survivors was driven by underlying 
biological behaviors, considering the strong statistical difference. 

Here, we focused on the immune populations within the PDAC 
TiME. To start, we quantified the first-order properties of each 
immune phenotype. Specifically, we observed that short-term and 
long-term survivors tended to have similar compositions of immune 
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Figure 5. 
Validation of potential spatial biomarkers with an independent cohort (presurgically treated). A, Validation of imRS by comparing of OS between short-term group, 
long-term group, and the validation cohort (log-rank test). B, Comparisons of imRS between the short-term group, long-term group, and validation cohort. *, P < 
0.05; ****, P < 0.0001 (Wilcoxon rank-sum test). C, Exemplar topological graph of IL10+ myelomonocytes, PD-1+ CD4+ T cells, and GZMB+ CD8+ T cells in the validation 
cohort. D, Immunodetection of CD8 and CD20 featuring LAs of B cells and CD8+ T cells. E, Validation of immune cell density by comparing B-cell and CD8+ T-cell 
densities between short-term and long-term groups, and the validation cohort; ns, not significant; **, P < 0.01 (Wilcoxon rank-sum test). F, Hierarchically clustered 
heatmap of marker expression compositions in LAs. Bar plot show the B-cell and CD8+ T-cell densities for each LA, respectively. G, imRS was computed at per-cell 
basis and compared between R and NR groups; ****, P < 0.0001 (Wilcoxon rank-sum test). H, Comparison of CD8+ T-cell density in LAs between R and NR groups. 
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populations. Although the immune infiltration levels varied across 
tissue regions, highly immune-infiltrated regions existed in TiME from 
both long-term and short-term groups. By computing spatial Shannon 
entropy, we observed that the TiME from both groups were equally 
heterogeneous. Taken together, these results support the notion that 
the high intertumoral and intratumoral heterogeneity is a hallmark of 
PDAC independently of survival status (43). Previous studies reported 
that immune components within TiME were highly coordinated to 
orchestrate antitumor immunity, thus we further sought to study the 
TiME as an ecosystem (25). Using spatial G(r) function, we identified 
two pairs of immune phenotypes that exhibited spatial clustering and 
associated with survival: CD4+ T cell–myelomonocyte and CD8+ 

T cell–B cell. CD4+ T cell and myelomonocyte pairs were a two-way 
clustering, that is, cells accumulated around cells of different pheno-
types. To interrogate the clustering pattern, we developed enrichment 
scores and discovered that IL10-expressing myelomonocytes and PD- 
1–expressing CD4+ T cells were key determinants of the spatial de-
pendence. In addition, we proposed an imRS and found that long-term 
survivors associated with decreased distance between IL10+ myelo-
monocytes and PD-1+ CD4+ T cells; whereas decreased distance 

between IL10+ myelomonocytes and GZMB+ CD8+ T cells instead 
associated with short-term survivors. imRS revealed the balance of 
IL10+ myelomonocytes between high and low risk of immunosup-
pression for patient prognosis. Previous research provides evidence of 
the immunosuppressive role of IL10 by directly and indirectly 
impacting cytotoxicity of CD8+ T cells (38). Moreover, activated CD4+ 

T cells, indicated by expression of PD-1, can secrete IFNγ and thereby 
inhibit neighboring production of IL10 (39–41). Taken together, we 
hypothesized that in the long-term survivors, immunosuppression of 
IL10+ myelomonocytes is impeded by the IFNγ production from ac-
tivated CD4+ T cells; whereas in short-term survivors, IL10+ myelo-
monocytes in turn inhibit the cytotoxic properties of CD8+ T cells and 
thereby foster tumor progression. It is worth mentioning that some 
studies report contradictory findings: Wang and colleagues found that 
instead of being immunosuppressive, IL10 could enhance antitumor 
immunity by hampering suppressive CD4+ T cells, thus indicating an 
opposite signaling axis as compared to the aforementioned hy-
pothesis (44). Therefore, this finding should be interpreted with 
caution, as we were not able to also evaluate FOXP3 expression to 
differentiate suppressive T-regulatory CD4+ T cells from Th cells. 

Figure 6. 
Proposed TiME landscape modeling the differences between patients with long-term survival and short-term survival PDAC with regard to immune population 
activities. In long-term survivors, the immunosuppression activity of IL10+ myelomonocytes were hypothesized to be inhibited by their adjacent PD-1+CD-4+ T cells 
through IFNg production; in short-term survivors, IL10+ myelomonocytes were hypothesized to suppress their adjacent GZMB+ CD8+ T cells by direct inhibition on 
cytotoxicity; in addition, low density of CD8+ T, rather than B cells, in LAs was also observed in short-term survivors. (Schematics created with BioRender.com.) 
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Second, we examined the one-way clustering pattern of CD8+ 

T cell–B cell, also termed as LAs in this study. We found that the 
high CD8+ T-cell density in LA was associated with long-term 
survival. Similarly, Gunderson and colleagues reported a distinct 
type of T- and B-cell aggregates, namely early-stage tertiary lym-
phoid structure, featuring high CD8+ T-cell infiltration that asso-
ciated with improved survival in PDAC (45). 

There are important limitations in our study. First, the discovery 
dataset (treatment-naїve) is relatively small. However, it is note-
worthy that we sampled multiple regions from each patient, sam-
pling on average 89,469 cells per patient. The approach also 
preserved the intratumoral heterogeneity, thus entailing a general-
ized platform less sensitive to sampling bias. In addition, the biology 
of IL10 in PDAC is still poorly understood and limits us to cor-
roborating the connection of PD-1+ CD4+ T cell – IL10+ myelo-
monocyte – GZMB+ CD8+ T-cell signaling axis to overall patient 
survival. Although we did validate our findings with an independent 
cohort, the clinical parameters of the validation cohort were not 
identical to the discovery cohort, thus the hypothesis requires fur-
ther validation on larger external datasets. 

In conclusion, we developed a multiscale quantitative assay 
combining sequential IHC imaging and spatial analysis to study the 
TiME in patients with PDAC in search of potential prognostic 
biomarkers. While the platform still requires intensive validation on 
external cohort, it might complement current standard pathology 
staging and serve as a research tool for quantitative immuno- 
oncology domain. The proposed platform also reveals a broad ap-
plicability and represents a novel application in the field of trans-
lational medicine, as well as prospects in initialization and 
parameterization of computational models (46–52). 
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