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1  |  INTRODUC TION

Colorectal cancer (CRC) is globally the third most common and the 
second deadliest tumour in humans regardless of gender.1 Some of 
its fatality can be attributed to its strong ties to genetics and environ-
mental effects. In the past years, incidence and mortality of CRC has 
been steadily decreasing, partly accreditable to the health-conscious 
society's increased tumour surveillance and better treatment.2 The 
typical CRC begins as an adenomatous polyp in the normal colonic 
epithelium as it accumulates mutations in known targetable onco-
genes, tumour suppressor genes, and genes related to DNA repair.3 
CRC is subclassified into stage 0, stage I, stage II, stage III, and stage 

IV depending on its depth of invasion, lymph node involvement, and 
metastasis, with stage 0 being the earliest, while stage IV signifying 
the most advanced. The prognosis of CRC is directly related to its 
staging, as well as the treatment available. As a rule of thumb, stage 
0 is curable through operation, stage II requires a combination of 
adjuvant chemotherapy or radiotherapy along with a wider surgical 
resection to improve the success rate of treatment.4 Chemotherapy 
plays a pivotal role in CRC treatment regimens, specifically platinum-
based chemotherapeutic agents.5 Presently, there are many studies 
on the drug resistance in these platinum-based agents for CRC, in-
cluding fields such as DNA repair, tumour stem cells and epithelial-
mesenchymal transition (EMT), tumour microenvironment, etc.6
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Abstract
Platinum-based chemotherapy drugs play a very important role in the treatment of 
patients with advanced colorectal cancer, but the drug resistance of platinum-based 
chemotherapy drugs is an important topic that puzzles us. If we can find mechanisms 
of resistance, it will be revolutionary for us. We analysed the differential genes, core 
genes and their enrichment pathways in platinum-resistant and non-resistant patients 
through a public database. Platinum-resistant cell lines were cultured in vitro for 
in vitro colony and Transwell analysis. Tumorigenesis analysis of nude mice in vivo. 
Verify the function of core genes. Through differential gene and enrichment analysis, 
we found that CUL4B was the main factor affecting platinum drug resistance and 
EMT. Our hypothesis was further verified by in vitro drug-resistant and wild-type cell 
lines and in vivo tumorigenesis analysis of nude mice. CUL4B leads to platinum drug 
resistance in colorectal cancer by affecting tumour EMT.
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At this point in time, EMT is the importance research hotspot, 
hence worthy of exploration. During the EMT process, epithelial cells 
lose their apex-basal polarity and cell connection, reorganize their 
cytoskeleton, and regulate the signalling pathways responsible for 
cell shape and movement. Concurrently, while the epithelial marker 
E-cadherin is downregulated, the mesenchymal markers (such as vi-
mentin, fibronectin) are upregulated. Not only that, cell migration and 
invasion also are increased, secretion of degrading enzymes are in-
creased, and potential extracellular matrix is digested along the pro-
cess.7 There are many studies that have proved that EMT is closely 
related to drug resistance in tumour.8 Paola et al. found that Gata6 
made tumours easier to be killed by chemotherapy drugs by inhib-
iting EMT.9 However, how is EMT connected to the development of 
drug resistance of platinum-based chemotherapeutics in tumour? 
In order to provide solid proof for future clinical decisions, we ana-
lysed the differential genes and enrichment status in recurrent and 
non-recurrent patients who used platinum-based drugs in order to 
identify the mechanism of platinum-based drug resistance in CRC. 
And we found CUL4B increases platinum-based drug resistance in 
colorectal cancer through EMT. The genes encoding a family of genes 
in this family of proteins form a complex that acts as an intracellular 
specific linker substrate for enzymatic activity, with a RING-finger 
protein polygenic protein.10 The staining components of several reg-
ulators (including quality permitting DNA replication factor 1 in e).11

2  |  MATERIAL S AND METHODS

2.1  |  Cell culture and managements

Cell culture and lentivirus packaging was completed as described 
in previous study.12 SW480 and HCT116 cells were purchased 
from the American Type Culture Collection (ATCC, Rockville, MD). 
Lipofectamine 2000 (Life Technologies, California, USA) was used 
for shRNA transfection according to the manufacturer's instruc-
tions. shRNA-targeting CUL4B (shCUL4B) and negative control 
shRNA (shNC) were purchased from GeneChem. The lentivirus 
shCUL4B and its control were prepared in HEK293T. The infection 
was completed as described in previous study.9

Establish a stable oxaliplatin-resistant colon cancer cell line as 
described in previous study.13

2.2  |  Colony formation assay

A colony formation assay was performed as described in previous 
study.12 After incubation at 37°C for 10–14 days, the cells were fixed 

with methanol and stained with Giemsa. The number of colonies 
containing more than 50 cells were recorded. All experiments were 
performed in triplicate, and the final statistical results were based on 
the number of colonies formed per well.

2.3  |  Transwell assay

The Transwell assay was performed as described in the previous 
study.12 For the cell invasion assay, Matrigel was diluted to a 5 mg/
mL serum-free medium and applied to the polycarbonate mem-
brane filter of the reaction chamber at 37°C for 1 hour. 10 × 104 
cells suspended in 200 μl serum-free were seeded into the inva-
sion chamber. For migration assays, the process was similar, with 
5 × 104 cells spread on the top chamber, except without matrigel. 
All experiments were repeated three times, and the results were 
expressed as the percentage of cells that passed through the 
membrane.

2.4  |  Western blot

Western blot was performed as described in previous study.14 
Afterwards, the membrane was incubated with the enzyme-labelled 
secondary antibody at room temperature for 1  hour, and the ECL 
kit (Thermo Scientific, Rockford, IL, USA) was used for detection. 
Antibodies used: rabbit anti-CUL4B (Proteintech, 12,916-1-AP), rab-
bit anti-E-Cadherin (Proteintech, 20,874-1-AP), rabbit anti-Vimentin 
(Proteintech, 10,366-1-AP), and mouse anti-GAPDH (Proteintech, 
60,004-1-Ig). For proteins with significantly different molecu-
lar weights, PVDF membranes are tailored to incubate different 
antibodies.

2.5  |  Immunohistochemical staining

Immunohistochemical staining was completed as described in the 
previous study.15 The antibody is rabbit anti-CUL4B antibody (dilu-
tion 1:1000), rabbit anti-VIM antibody (dilution 1:1000) and rab-
bit anti-ECAD antibody (dilution 1:1000). SP-9000 kit (ZSGB-BIO, 
Beijing, China) and DAB detection kit (ZSGB-BIO) was used for 
staining according to the manufacturer's instructions. The expres-
sion of CUL4B, ECAD and VIM was quantitatively analysed by their 
staining intensity and positive rate. Staining intensity score and the 
positive rate score were multiplied to calculate the total expression 
of CUL4B and VIM: final value greater than 6 is considered high 
expression.

F I G U R E  1  CUL4B is the core gene that affects oxaliplatin resistance in colorectal cancer. (A) Module-trait relationships between 
platinum-based drug resistance and non-drug resistance. (B) Module Membership in ‘lightyellow’ module. (C) ‘lightyellow’ module protein 
interaction network. (D) Bubble chart of enrichment analysis of platinum-based drug resistance and non-drug resistance. The bubble size 
is related to the enrichment correlation. (E) Distribution chart of enrichment analysis of platinum-based drug resistance and non-drug 
resistance. The size of the loop is related to the enrichment correlation. (F) Volcano plot of the differential gene analysis of platinum-based 
drug resistance and non-drug resistance. Red dots are related to resistance genes
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F I G U R E  2  WGCNA analysis and verification of platinum-based drug resistance and non-drug resistance. (A) Cluster dendrogram with 
platinum-based drug resistance and non-drug resistance. (B) Dendrogram of platinum-based drug resistance and non-drug resistance. (C) 
Correlation analysis diagram of each module of platinum-based drug resistance and non-drug resistance. (D) Scale independence graph of 
platinum-based drug resistance and non-drug resistance. Six cut-off points are in the diagram. (E) Sample clustering of platinum-based drug 
resistance and non-drug resistance to detect outlier. (F) Cluster dendrogram of platinum-based drug resistance and non-drug resistance
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F I G U R E  3  CUL4B expression is related to pathways such as EMT and drug resistance. (A) Bubble chart of enrichment analysis of high vs 
low CUL4B expression. The bubble size is related to the enrichment correlation. (B) The enrichment analysis distribution chart between high 
and low CUL4B expression. The size of the loop is related to the enrichment correlation. (C) Gene differential expression analysis of high 
and low CUL4B expression. (D) Functional enrichment analysis of high and low CUL4B expression. (E) Histogram of degree of enrichment. 
(F) The volcano plot of differential gene expression analysis of high and low CUL4B expression. The red dot is associated with low CUL4B 
expression. The green dot is associated with high CUL4B expression
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2.6  |  Tumour xenografts

In vivo tests were carried out as described in the previous study.8 
Twelve male BALB/c nude mice aged 4–6 weeks were selected and 
randomly divided into two groups: control group and CUL4B knock-
down group. Starting from Day 4, the mice from the CUL4B knock-
down group were injected with oxaliplatin 5 mg/kg intraperitoneally 
every three days, as described in a previous study.13 The control 
group mice were intraperitoneally injected with the same amount of 
DMSO instead. Animal handling and experimental procedures were 
approved by the Ethics Committee of the first affiliated hospital of 
Jinan University.

2.7  |  Bioinformatic analysis

Bioinformatic analysis methods are as described.15 The transcrip-
tome data and follow-up data (recurrence post chemotherapy, etc) 
of CRC patients were obtained from the TCGA database (https://
www.cancer.gov/about​-nci/organ​izati​on/ccg/resea​rch/struc​tural​
-genom​ics/tcga).

Differential gene analysis was performed using ‘limma’ v3.28.14 
of R software (https://www.bioco​nduct​or.org/packa​ges/devel/​
bioc/vigne​ttes/limma/​inst/doc/users​-guide.pdf). Enrichment anal-
ysis was performed using the GO database (DAVID 6.8; https://
david.ncifc​rf.gov/). Gene co-expression network was constructed 
through WGCNA package in R software using the gene expression 
data.16 The prognostic correlation and gene correlation analysis of 
TCGA patients are statistically analysed by GEPIA (Gene Expression 
Profiling Interactive Analysis) (http://gepia.cance​r-pku.cn/detail.
php?gene). PPI: Hub genes are highly interconnected with nodes in 
the module and are considered to have important functions. The 
top 30 hub genes in the module network were selected as candi-
date genes for further analysis and validation. The STRING dataset 
(https://strin​g-db.org/) is an online biological resource that decodes 
interactions between proteins to obtain the true function of real 
proteins.16

2.8  |  Statistical analysis

The results were expressed as mean ± standard deviation (SD). All 
statistical analysis were completed via SPSS statistical software 
program (Version 22.0). The data were normally distributed, and the 
differences between groups were tested with Student's t-test, two-
way analysis of variance was used instead if the variance was not 
uniform. The difference in survival was analysed through log-rank 

test of Kaplan–Meier analysis. p value of < .05 was considered sta-
tistically significant (*p < .05, **p < .01, ***p < .001).

3  |  RESULTS

3.1  |  CUL4B is the core gene affecting oxaliplatin 
resistance in colorectal cancer

Through WGCNA R package, we analysed oxaliplatin tolerant and 
non-tolerant patients in the TCGA database and found that the 
‘lightyellow’ module is an important computing core module that 
affects oxaliplatin tolerance through the Module-trait relation-
ships method (Figure  1A). A comparison of Module membership 
vs. gene significance found that the ‘lightyellow’ module is indeed 
the core gene expression module that affects oxaliplatin tolerance 
(Figure 1B). Through the relevant verification as shown in Figure 2, it 
is found that our calculation model is indeed scientific.

In order to further seek the most important core genes in the 
‘lightyellow’ module, we used the string database method. We found 
that CUL4B is in fact the core gene that affects the ‘lightyellow’ 
module (Figure  1C). Through enrichment analysis, we studied the 
potential pathways related to oxaliplatin tolerance, and found that 
DNA repair-related pathways are significantly related to oxaliplatin 
tolerance (Figure 1D, E), and the expression of CUL4B in oxaliplatin 
tolerant group was significantly increased (Figure 1F). The WGCNA 
process is shown in Figure 2A–F.

3.2  |  CUL4B expression is associated with 
pathways such as EMT and drug resistance

In order to study the function of CUL4B, we analysed the pathway 
of CUL4B expression in the TCGA database through enrichment 
analysis, and found that high expression of CUL4B was not only re-
lated to the chemotherapy resistance-related pathways (DNA repair, 
response to drug, double-strand break repair via nonhomologous 
end joining), it was also significantly related to EMT-related path-
ways (negative regulation of cell–cell adhesion, SMAD protein signal 
transduction, extracellular matrix disassembly, focal adhesion, cad-
herin binding involved in cell–cell adhesion) (Figure 3A,B). When we 
explored the correlation between genes and pathways, we found 
that genes related to CUL4B expression, such as CDH1 and VIM, are 
important genes that affect these pathways (Figure  3C–E). When 
the expression of CUL4B and EMT-related genes were analysed, it 
was found that the expression of CDH1 and VIM was correlated with 
the expression of CUL4B (Figure 3F).

F I G U R E  4  The expression of CUL4B is closely related to tumour development and progression. (A) The expression of CUL4B in cancer 
tissue obtained from TCGA database is significantly higher than that of normal tissues adjacent to tumour. (B) The expression of CUL4B 
in cancer tumour. (C) CUL4B expression in different stages of colorectal cancer obtained from the TCGA database. (D) Comparison of 
recurrence and survival time of colorectal cancer patients and their CUL4B expression. (E) Comparison of overall survival time of colorectal 
cancer patients and their CUL4B expression

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
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https://david.ncifcrf.gov/
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3.3  |  CUL4B expression is closely related to tumour 
development and progression

In order to study the relationship of CUL4B in the development of 
CRC, we analysed the difference in expression of CUL4B between 
tumour tissue and normal tissue adjacent to the tumour (NAT) in 
TCGA, and found that the expression of CUL4B in tumours was 
significantly higher than that of its NAT (Figure 4A). By additionally 
comparing normal colorectal tissues and CRC tissues, it was also 
found that the expression of CUL4B was significantly higher in the 
cancer tissues (Figure 4B). A further study of relationship between 
CUL4B and tumour staging found that the expression of CUL4B was 
significantly increased in advanced gastric cancer (Figure 4C). Next, 
we analysed the survival and prognosis of tumour patients against 
CUL4B expression, and we found that the expression of CUL4B was 

closely related to recurrence and death of the patient (Figure 4D, E), 
indicating a huge impact.

3.4  |  In vitro experiments prove that CUL4B is an 
important factor in oxaliplatin resistance

After successfully constructing the CRC drug-resistant cell lines 
HCT116r and SW480r in vitro, we knocked down CUL4B using 
lentivirus (Figure 5A). We conducted colony formation assay after 
applying oxaliplatin on both knockdown groups and the normal con-
trol groups, and found that after CUL4B knockdown, the resistance 
of drug-resistant cell lines to oxaliplatin was significantly reduced 
(Figure 5B, C). Furthermore, by studying the effect of CUL4B on cell 
invasion of drug-resistant cell lines, we found that knocking down 

F I G U R E  5  CUL4B function verified 
by drug-resistant cell lines in vitro. (A) 
WB verified the knockdown effect 
of our drug-resistant cell line. (B, C) 
proliferation of drug-resistant cell lines 
with knockdown CUL4B was verified 
by cell colony test. (D, E) the invasion of 
CUL4B resistant cell lines was verified by 
cell Transwell test. *p < .05. **p < .01
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CUL4B can significantly reduce the invasion ability of drug-resistant 
tumour cells (Figure 5D, E), indicating that CUL4B is an important 
cause of oxaliplatin resistance.

3.5  |  In vivo experiments found that CUL4B 
knockdown can affect the effect of oxaliplatin on 
tumour volume and proliferation

After proving the importance of CUL4B in oxaliplatin resistance in 
vitro, we then performed subcutaneous tumour formation experi-
ments in nude mice. We subcutaneously injected CUL4B knock-
down cells and control drug-resistant cells into nude mice, and later 
intraperitoneally injected oxaliplatin into nude mice on the fourth 
day. Finally, by comparing the tumour size and weight, we found that 

the tumour volume in the CUL4B knockdown group was significantly 
higher than that of the control (Figure 6A–C). Through immunohis-
tochemistry, we found that the proliferation ability of the CUL4B 
knockdown group was significantly lower than that of the control 
(Figure 6D, E). It shows that CUL4B in vivo can indeed affect the oc-
currence of oxaliplatin resistance in tumours.

3.6  |  CUL4B affects drug resistance by 
affecting the occurrence and development of 
tumour EMT

The studies above have shown that CUL4B can regulate the occur-
rence of chemotherapeutic drug resistance, especially those of oxali-
platin, by affecting the occurrence of EMT. In order to verify in vivo 

F I G U R E  6  CUL4B function was 
verified by subcutaneous tumour model 
of drug-resistant cell lines in vivo. (A, 
B and C) After CUL4B knockdown by 
the resistance to oxaliplatin decreased 
significantly. (D, E) oxaliplatin can 
significantly inhibit the proliferation 
and growth of tumour cells after CUL4B 
knockdown. *p < .05. **p < .01. The ruler is 
200 um in length sh-CUL4B(oxa)
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and in vitro, we compared the EMT-related markers ECAD and VIM 
between CUL4B knockdown and control variants of drug-resistant 
strains and found that after knocking down CUL4B, mesenchymal 
cells decreased while epithelial cells increased (Figure  7A). In vivo 
tumour formation assay also found that after CUL4B knockdown, 
the tumour was composed of significantly more epithelial cells than 
mesenchymal cells (Figure  7B–D), showing that CUL4B can affect 
EMT and thereby affect drug resistance.

4  |  DISCUSSION

The Cullin4 (CUL4) family has two members, namely CUL4A and 
CUL4B. These 2 proteins have a high degree of homology of 83%.17 
In recent years, the role of CUL4B in solid tumours has been gradually 
uncovered and thus attracted widespread attention in our scientific 

community. Among them, many studies have shown that CUL4B 
is abnormally expressed in a variety of diseases and physiological 
processes.18 These studies have clearly demonstrated the various 
roles of CUL4B in cell proliferation, DNA damage and repair, cell 
cycle progression, cancer metastasis and invasion, DNA methylation 
and histone acetylation modification, and signalling pathways.19 Our 
study has for the first time found that CUL4B is an important tar-
get gene for resistance of platinum-based drugs in colorectal cancer. 
Through in vitro and in vivo experiments, we revealed that CUL4B 
influences the occurrence of EMT and regulates the progression of 
platinum-based chemotherapeutic resistance in CRC and is of great 
significance to the survival and prognosis of these patients.

Epithelial–Mesenchymal Transition (EMT) is a process in which 
epithelial cell loses its apical-basal polarity and cell–cell adhesion, and 
transition into the more aggressive mesenchymal cell. On the contrary, 
Mesenchymal-Epithelial Transition (MET) is its reverse. MET includes 

F I G U R E  7  EMT was significantly 
inhibited after CUL4B was knocked 
down. (A) after CUL4B knockdown, the 
expression level of ECAD in drug-resistant 
cells increased and VIM expression 
was down-regulated. (B, C, D) After 
knockdown CUL4B, the expression of 
ECAD increased and VIM down-regulated 
in nude mice. *,p < .05. The ruler is 200 um 
in length
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the transformation of cells from a motile, multipolar mesenchymal type 
to a polarized epithelial type. EMT is involved in many biological and 
pathological processes, its vital in embryonic development, wound 
healing, cancer cell metastasis and drug resistance.20 The link between 
EMT and cancer cell drug resistance has been suggested since the early 
1990s. Sommers et al. found signs of EMT in two MCF-7 cell lines resis-
tant to doxorubicin and one ZR-75-B cell line resistant to vinblastine.21 
More and more researchers realize that many cancers like pancreatic 
cancer, bladder cancer, breast cancer and others, drug resistance is 
often accompanied by EMT.22 One of the main function of CUL4B is 
to affect the DNA repair process.23 The latest study has found that 
CUL4B also plays an important part in the occurrence and develop-
ment of EMT, with several distinct studies finding CUL4B regulating 
EMT via multiple pathways.24–26 EMT seems unlikely to malfunction 
and appears to be an important component, but MT can present all 
its difficulties in a tumour-like manner to a large number of antican-
cer drugs.27 Important histological characteristics of different types 
of genes, different types of genes, such as other cancer drug clinical 
studies may be possible if the expression or histological characteristics 
of tumours are measured.28 However, there was no research on the ef-
fect of CUL4B on platinum-based chemotherapeutic drug resistance. 
Our research has filled in that gap of knowledge and has found that 
CUL4B can affect the development of platinum-based drug resistance 
through regulation of EMT.

In summary, through our current study, we found that CUL4B 
can affect the progression and prognosis of colorectal cancer by 
playing a vital role in oxaliplatin resistance. In the follow-up study, 
we designed in vivo and in vitro experiments and found that CUL4B 
can regulate the occurrence and development of oxaliplatin resis-
tance in CRC by affecting the EMT in CRC.
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