Skip to main content
. 2022 Sep 9;51(8):20220244. doi: 10.1259/dmfr.20220244

Table 1.

Detection performance of each model

Models mAP@0.5 mAP@0.5:0.95 Average Recall
MultiStage Methods
 Faster R-CNN ResNet-50 0.958 0.677 0.732
 Faster R-CNN ResNet-101 0.930 0.705 0.745
 Faster R-CNN XCeption-101 0.941 0.682 0.720
 Libra RCNN Xception-101 0.938 0.711 0.767
 Faster R-CNN RegnetX 3.2GF 0.973 0.723 0.771
 Cascade RCNN Resnet-101 0.917 0.689 0.749
 Dynamic R-CNN 0.934 0.688 0.736
Single-Stage Methods
 SSD512 VGG16 0.875 0.623 0.721
 YOLO DarkNet-53 0.755 0.442 0.605
 RetinaNet Resnet-101 0.903 0.665 0.751