Table 1.
Models | mAP@0.5 | mAP@0.5:0.95 | Average Recall |
---|---|---|---|
MultiStage Methods | |||
Faster R-CNN ResNet-50 | 0.958 | 0.677 | 0.732 |
Faster R-CNN ResNet-101 | 0.930 | 0.705 | 0.745 |
Faster R-CNN XCeption-101 | 0.941 | 0.682 | 0.720 |
Libra RCNN Xception-101 | 0.938 | 0.711 | 0.767 |
Faster R-CNN RegnetX 3.2GF | 0.973 | 0.723 | 0.771 |
Cascade RCNN Resnet-101 | 0.917 | 0.689 | 0.749 |
Dynamic R-CNN | 0.934 | 0.688 | 0.736 |
Single-Stage Methods | |||
SSD512 VGG16 | 0.875 | 0.623 | 0.721 |
YOLO DarkNet-53 | 0.755 | 0.442 | 0.605 |
RetinaNet Resnet-101 | 0.903 | 0.665 | 0.751 |