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A B S T R A C T

Objective: To explore the use of lipidomics for prediction of prednisolone treatment response in patients with
inflammatory hand osteoarthritis.
Design: The Hand Osteoarthritis Prednisolone Efficacy (HOPE) study included patients (n ¼ 92) with symptomatic
inflammatory hand osteoarthritis, fulfilling the ACR criteria. The present analyses comprised only patients ran-
domized to prednisolone treatment (10 mg daily, n ¼ 40). Response to prednisolone treatment was defined ac-
cording to the OARSI-OMERACT responder criteria at six weeks. Baseline blood samples were obtained non-
fasted. Lipid species were quantified in erythrocytes with the Lipidyzer™ platform (Sciex). Oxylipins were
analyzed in plasma using an in-house LC-MS/MS platform. Elastic net regularized regression was used to predict
prednisolone treatment response based on common patient characteristics alone and including the patients’ lipid
profile. ROC analyses with 1000 bootstrapped area under the curve (AUC) was used to determine the discrimi-
natory accuracy of the models.
Results: Among included patients, 78% fulfilled the OARSI-OMERACT responder criteria. From the general patient
characteristics, elastic net selected baseline hand function as only predictor of treatment response, with an AUC of
0.78 (0.56; 0.97). Addition of lipidomics resulted in an AUC of 0.92 (0.78; 0.99) and 0.85 (0.65; 0.98) for in-
clusion of the Lipidyzer™ platform and oxylipin platform, respectively.
Conclusion: Our results suggest that the patients’ lipid profile may improve the discriminative accuracy of the
prediction of prednisolone treatment response in patients with inflammatory hand osteoarthritis compared to
prediction by commonly measured patient characteristics alone. Hence, lipidomics may be a promising field for
biomarker discovery for prediction of anti-inflammatory treatment response.
1. Introduction

Hand osteoarthritis (OA) is one of the most prevalent OA phenotypes,
and it is associated with pain, stiffness, functional impairment and a loss
in quality of life [1–4]. Currently, there is a high unmet need for disease
modifying drugs for the treatment of osteoarthritis (OA). The role of
inflammation in hand OA and its association with pain [5,6] has sparked
increasing interest for targeting inflammation in therapeutic research. To
this regard, the Hand Osteoarthritis Prednisolone Efficacy (HOPE) study
was set up. The HOPE study is a blinded, randomized placebo-controlled
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trial, that investigated the effect of prednisolone treatment in patients
with painful, inflammatory hand OA. The HOPE study showed a clini-
cally relevant decrease in pain in patients using prednisolone [7]. Since
pharmacological treatments usually show marked variation in treatment
response, it is important to carefully select patients who will most likely
benefit from treatment, to maximize the desired therapeutic effect, and
minimize overtreatment and potential adverse effects. Metabolomics
may aid the identification of biomarkers of therapeutic responsiveness
[8].

Lipids are essential for joint physiology [9,10]. However, to maintain
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normal physiology, a tight control of lipid species is warranted. In
addition, various lipids and their metabolites are involved in patho-
physiological settings, in particular in inflammation. Moreover, they
have been shown to play an important role in inflammation in
auto-immune diseases [11], as well as in OA [12,13]. Therefore, lip-
idomics, involving the identification and quantification of lipid metab-
olites, may be particularly relevant as biomarker of therapeutic
responsiveness to anti-inflammatory medication. In addition, previous
lipid profiling studies have suggested an altered lipid metabolism in
patients with OA [14–16]. In particular, associations between differing
levels of phospholipids and OA have been observed [16–18]. Hence, the
patients’ lipid profile may be predictive of response to anti-inflammatory
treatment in patients with inflammatory hand OA. To our knowledge, the
use of lipidomics for prediction of treatment response in patients with OA
has not previously been studied.

Therefore, we explored the patients’ lipid profile for the prediction of
prednisolone treatment response in patients with inflammatory hand OA.

2. Methods

2.1. Study design

The HOPE study included patients with symptomatic hand OA, ful-
filling the American College of Rheumatology criteria [19] and pre-
senting signs of inflammation in the distal and proximal interphalangeal
(DIP/PIP) joints. Full description of patient inclusion and procedures can
be found elsewhere [7]. Briefly, patients were required to have: finger
pain of �30 mm on a 100 mm visual analogue scale (VAS) and flaring
upon 48-h NSAID washout (defined as �20 mm worsening), �4 DIP/PIP
joints with osteoarthritic nodes, �1 DIP/PIP joints with soft swelling or
erythema, and �1 DIP/PIP joints with positive power Doppler signal or
synovitis grade �2 on ultrasound. Patients were excluded from partici-
pation in case of chronic inflammatory rheumatic diseases, psoriasis,
uncontrolled serious comorbidities, malignancy, infectious disease, and
immune modulating drug use within 90 days before baseline. Patients (n
¼ 92) were randomly assigned (1:1) to receive 10 mg prednisolone daily,
or placebo, for six weeks. The present study comprised of patients ran-
domized to prednisolone treatment only (n ¼ 40). Treatment adherence
has been reported previously [7]. The HOPE study (Netherlands Trial
Registry (NTR5263)) was approved by the local medical ethics com-
mittees and conducted in accordance with Good Clinical Practice
guidelines and Declaration of Helsinki. All patients provided written
informed consent.

2.2. Patient reported outcomes

At baseline and week six, patients completed a VAS for finger pain
and VAS global assessment on a 0–100 mm scale, and the Australian/
Canadian Hand Osteoarthritis Index (AUSCAN) pain (scored as 0–20) and
function (scored as 0–36) subscales (higher scores are worse). At week
six, fulfilment of the OMERACT-OARSI responder criteria was assessed,
which was defined as a relative improvement�50% and absolute change
�20/100 in AUSCAN pain or function, or a relative improvement �20%
and absolute change �10/100 in �2 of the following: AUSCAN pain,
AUSCAN function or VAS patient global assessment [20]. In the
OMERACT-OARSI criteria, the AUSCAN pain and function subscale
scores are used on a 0–100 scale. The AUSCAN pain and function sub-
scale scores were rescaled from 0 to 20 and 0–36, respectively, to 0–100.
We calculated absolute change as the baseline score minus the follow-up
score, and relative change as the absolute change divided by the baseline
score.

2.3. Baseline imaging

All interphalangeal and metacarpophalangeal joints were assessed on
baseline radiographs of both hands (30 joints). Radiographic OA severity
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was investigated using the Kellgren and Lawrence (KL) grading system on
a 0–4 scale [21]. Erosive OAwas defined as having�1 joint in the erosive
or remodelling phase according to the Verbruggen-Veys score [22]. Sy-
novial thickening was assessed on ultrasound on a 0–3 scale [6]. A sum
score adding the scores of all investigated joints was calculated for KL
(0–120) and synovitis (0–90). The reliability of all scoring methods was
good [7].

2.4. Lipidomics measurements

Blood samples were obtained non-fasted at baseline at various time
points during the day in EDTA-tubes, following a standardized protocol.
The blood samples were centrifuged for 10 min at 2200�g to separate
plasma from the cellular fraction. Erythrocytes were isolated by ficoll
density gradient centrifugation and washed 3x with PBS. Plasma samples
were quenched using 600 μL MeOH (Honeywell, 349661 L), and 8 μL IS
was added (containing: 500 pg/mL PGE2-d4, 5 ng/mL DHA-d5, 500 pg/
mL LTB4-d4 and 500 pg/mL 15 S-HETE-d8). Samples were stored at �80
�C topped with argon until further analyses [23].

The Lipidyzer™ platform (Sciex) was used to quantify total lipid
content in erythrocytes (nmol/mL). Lipid extraction was performed using
methyl-tert-butylether as described by Matyash et al. with some modi-
fications [24]. To 25 μL of erythrocyte sample the following was added:
160 μL MeOH, 50 μL internal standard solution (Lipidyzer™ internal
standard kit, containing > 50 labeled internal standards for 13 lipid
classes), and 550 μL methyl-tert-butylether. Samples were vortexed and
left at room temperature for 30 min. Subsequently, 200 μL water was
added for phase separation and the samples were centrifuged at
13.100�g. The upper layer was transferred to a glass vial and lipid
extraction was repeated by adding 300 μL methyl-tert-butylether, 100 μL
MeOH and 100 μL water. The organic extracts were combined and dried
under a gentle stream of nitrogen. Lipidyzer running buffer (250 μL) was
added and samples were transferred to a glass vial with insert for injec-
tion. Briefly, the Lipidyzer platform is a flow-injection-based ion-mobility
triple quadrupole system consisting of a Sciex 5500 QTrap equipped with
SelexIon technology coupled to a Shimadzu Nexera series UHPLC system
used for injection and delivering running buffer at 7 μL/min. Two
methods were used for the injection of a total of 50 μL of the resuspended
samples. First, PC, PE, (L)PC, (L)PE, and SM lipid classes were analyzed
using method 1, operating with active DMS separation under the
following conditions: DMS temperature low, modifier (propanol)
composition low, separation voltage 3500 V, DMS resolution enhance-
ment low. Next, FFA, TAG, DAG, CER, dihydroceramide (DCER), lacto-
sylceramide (LCER), hexosylceramide (HCER), and CE lipids were
analyzed applying method 2, for which the DMS cell was not activated.
The MS operated under the following conditions: curtain gas 17, CAD
gas medium, ion spray voltage 4100 V in ESI þ mode and �2500 V in
ESI� mode, temperature 200 �C, nebulizing gas 17, and heater gas 25.
Further technical detail can be found elsewhere [25–27]. Lipid concen-
trations were corrected for the erythrocyte protein pellet content, which
was quantified using a Micro BCA Protein Assay Kit (Thermo Scientific,
Waltham, MA, USA). Samples were measured in a randomized batch
controlled fashion. The lipid concentrations were corrected for the
erythrocyte protein pellet content. After preprocessing of the Lipidyzer™
data (Supplementary file, figure S1), 286 lipid species were available for
further analyses (Supplementary file, table S1).

Oxylipins were measured in plasma, using liquid-chromatography
combined with mass spectrometry (LC-MS/MS) analysis in negative
electrospray ionizationmode as described previously [28]. A QTrap 6500
mass spectrometer in negative ESI mode (Sciex, Nieuwerkerk aan den
Ijssel, The Netherlands) was used, coupled to a LC system employing
LC-30AD pumps, a SIL-30AC auto sampler, and a CTO-20AC column oven
(Shimadzu, ‘s-Hertogenbosch, The Netherlands). A Kinetex C18 50 � 2.1
mm, 1.7 μm column, combined with a C8 pre column (Phenomenex,
Utrecht, The Netherlands) was used, kept at 50 �C. A gradient of water
and Methanol with 0.01% acetic acid was used. An injection volume of
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40 μL was used, with a flow rate of 400 μL/min [34]. Oxylipins were
identified using characteristic mass transitions and relative retention
times. Only peaks with a signal to noise >10 were included, resulting in
identification of 25 oxylipins. For a subset of these, synthetic standards
were available, allowing for quantification (ng/mL). Area ratios were
calculated for all other oxylipins.
2.5. Statistical analyses

Descriptive statistics were used for baseline patient characteristics.
Two-sample t-tests and Chi-square tests were used as appropriate to
assess differences in baseline general patient characteristics. We used
elastic net (EN) regularized regression for selection of predictors [29]. EN
uses an additional tuning parameter (alpha) to combine the properties of
ridge regression and lasso by applying both L1 and L2 penalties. Thereby,
it simultaneously performs automatic variable selection and continuous
shrinkage, while also dealing with high correlations amongst predictors.
Prior to fitting the model, lipid measurements below the detection limit
were imputed with the minimum measured value divided by two, all
lipid variables were logarithmically transformed due to a non-normal
distribution, and were mean scaled to ensure comparability by giving
the metabolites equal weight. We performed EN regularization with a
logit model, defining the OARSI-OMERACT responder status as the
outcome. Prior to fitting the EN models, we performed a 10-fold
cross-validation (CV) for selection of the optimal tuning parameters
based on the smallest CV mean prediction error. In addition, we used
manual alpha selection based on the out-of-sample deviance ratio and CV
mean deviance to investigate the performance of more comprehensive
models. First, a model was fit with commonly assessed patient charac-
teristics and patient reported outcomes, measured at baseline (model 1).
Second, we fitted model 2 by adding the Lipidyzer™ platform lipids to
model 1. Third, we fitted model 3 by adding the oxylipins to model 1.
Fourth, we combined the general patient characteristics with both lipid
platforms in model 4. Lastly, we fitted a model with the predictors
selected by model 2 and 3. We used the Stata command: elasticnet logit
depvar othervars, alpha(0.1(0.1)1) selection(cv, fold(10) alllambdas). The
discriminatory accuracy of the model was estimated by receiver
Fig. 1. Flowchart of patient numbers The present analyses included only patients ran
the study due to poor efficacy or an adverse event. Four patients were excluded due
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operating characteristic (ROC) analyses (Stata command: rocreg). The
area under the curve (AUC) and corresponding 95% confidence intervals
(CI) were calculated using 1000 bootstrap replications. Additionally, we
performed sensitivity analyses investigating the association between the
lipid predictors and treatment response using univariable logistic
regression. Stata V16.1 (StataCorp LP, TX, USA) was used for all analyses.

3. Availability of data and materials

The data underlying this article cannot be shared publicly due to the
privacy of the participants of the HOPE study and legal reasons (HOPE
study participants did not sign informed consent to make their data
publicly available). The data is available upon request to interested
qualified researchers. Data requests should be sent to the corresponding
author.

4. Results

4.1. Study population

Baseline lipid measurements and the OARSI-OMERACT responder
status at week six were available in 40 prednisolone-treated patients.
Fig. 1 shows a flowchart of included patients. Of these patients, 31 (78%)
fulfilled the OARSI-OMERACT responder criteria. The percentage of
patient fulfilling either the major criteria or a particular combination of
minor criteria is presented in supplementary figure 2. Patients respond-
ing to prednisolone treatment showed statistically worse baseline AUS-
CAN function scores (19.6 � 6.6) than non-responders (11 � 7.5). None
of the other general characteristics differed between responders and non-
responders (Table 1).
4.2. Prediction of treatment response using general patient characteristics

The general characteristics presented in Table 1 were entered in
model 1 as predictors of OARSI-OMERACT responder status. Only AUS-
CAN function was selected in the model (worse function associated with
response), resulting in an AUC with 95% CI of 0.78 (0.56; 0.94).
domized to prednisolone treatment. Of the 46 patients assigned, 2 discontinued
to missing lipid measurements at baseline.



Table 1
Baseline characteristics of prednisolone-treated patients in the HOPE study.

All prednisolone
treated n ¼ 40

Responders n ¼
31 (78%)

Non-responders
n ¼ 9 (23%)

General characteristics
Age, year 62.4 (9.3) 62.9 (9.4) 60.8 (9.4)
Sex, % women 85 84 89
BMI, kg/m2 27.4 (4.4) 27.8 (4.2) 26.2 (5.0)
Education, % high 46 42 56
Disease duration 6.7 (7.1) 7.2 (7.4) 4.9 (5.8)
Erosive OA, % 71 74 56
Kellgren-Lawrence
sum score, 0-120

35.1 (16.4) 34.1 (16.5) 37.5 (14.7)

Ultrasound
synovitis sum
score, 0-90

16.2 (6.6) 15.5 (6.4) 18.7 (7.2)

VAS global
assessment, 0-100

52.3 (20.6) 54.2 (16.8) 45.6 (30.8)

AUSCAN pain, 0-20 11.0 (3.3) 11.3 (2.4) 10 (5.4)
AUSCAN function,
0-36

17.7 (7.6) 19.6 (6.6) 11 (7.5)

Numbers represent mean (SD) unless otherwise specified. Abbreviations: AUS-
CAN ¼ Australian/Canadian Hand Osteoarthritis Index, BMI ¼ body mass index,
VAS ¼ visual analogue scale.

Table 2
Baseline levels of selected lipids.

All prednisolone
treated n ¼ 40

Responders n ¼
31 (78%)

Non-responders n
¼ 9 (23%)

Levels selected LipidyzerTM lipids
DAG(16:0/16:0),
nmol/mL

0.28 (0.12) 0.30 (0.12) 0.18 (0.084)

PE(O-18:0/
20:4), nmol/
mL

66.01 (12.20) 63.26 (10.65) 75.48 (13.04)

Levels selected oxylipins
9-HOTrE, area
ratio

0.12 (0.09) 0.093 (0.059) 0.20 (0.14)

5-HEPE, area
ratio

0.011 (0.015) 0.014 (0.016) 0.0043 (0.0032)

10-HDHA, ng/
mL

0.0039 (0.0044) 0.0046 (0.0048) 0.0019 (0.0020)

Numbers represent mean (SD). Abbreviations: DAG ¼ diacylglycerol, PE ¼
phosphatidylethanolamine, 9-HOTrE ¼ 9-hydroxy-octadecatrienoic acid, 5-
HEPE ¼ 5-hydroxy-eicosapentaenoic acid, 10-HDHA ¼ 10-hydroxy-docosahex-
aenoic acid.
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Predictors entered in the model, predictors selected by EN, and corre-
sponding ROC curves of the models are shown in Fig. 2. Table 2 presents
the baseline concentrations of the selected lipids. Tuning parameters and
model deviances of all models are provided in Table 3.
4.3. Added value of lipidomics for prediction of treatment response -
Lipidyzer™

In model 2, we added the 286 Lipidyzer™ platform lipid species to
model 1. Cross-validated parameter tuning selected an alpha of 0,
Fig. 2. Prediction model characteristics. A) shows the variables included for model fi
curves in B). Of model 2, only the lipid classes are shown. Variables in bold font wer
model 1 þ Lipidyzer™ platform, model 3: model 1 þ oxylipin platform, model 4: a
Australian/Canadian Hand Osteoarthritis Index, CE ¼ cholesteryl ester, CER ¼ cera
HCER ¼ hexosylceramide, KL ¼ Kellgren-Lawrence, LCER ¼ lactosylceramide, (L)PC
osteoarthritis, SM ¼ sphingomyelin, TAG ¼ triacylglycerol, VAS ¼ visual analogue
sapentaenoic acid, 10-HDHA ¼ 10-hydroxy-docosahexaenoic acid. (For interpretation
version of this article.)
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resulting in the inclusion of all predictors in the model with an AUC of
0.95 (0.85; 0.99). With only minor increase in deviance (CV mean
deviance 1.096 vs 1.095), a model (2a) with an alpha of 1 resulted in the
selection of three variables: AUSCAN function and two lipids: diac-
ylglycerol(DAG)(16:0/16:0) (higher levels associated with response),
and phosphatidylethanolamine(PE)(O-18:0/20:4) (lower levels associ-
ated with response), with an AUC of 0.92 (0.78; 0.99).

4.4. Added value of lipidomics for prediction of treatment response –

oxylipins

In model 3, the 25 identified oxylipins were added to model 1. With
automated parameter tuning an alpha of 0 was used, selecting all
tting of the three prediction models, colours correspond to the lines of the ROC
e selected in the final models. Model 1: General patient characteristics, model 2:
ll variables included. Abbreviations: AUC ¼ area under the curve, AUSCAN ¼
mide, DAG ¼ diacylglycerol, DCER ¼ dihydroceramide, FFA ¼ free fatty acid,
¼ (lyso)phosphatidylcholines, (L)PE ¼ (lyso)phosphatidylethanolamine, OA ¼
scale, 9-HOTrE ¼ 9-hydroxy-octadecatrienoic acid, 5-HEPE ¼ 5-hydroxy-eico-
of the references to colour in this figure legend, the reader is referred to the Web



Table 3
Selected predictors and prediction model parameters.

Selected predictors Tuning
parameters
Alpha Lambda

Out-of-sample
deviance ratio

CV mean
deviance

AUC (95%
CI)

Model 1
General characteristics

1 AUSCAN function 1.00 0.113 0.0838 0.9770132 0.78 (0.56;
0.94)

Model 2
Model 1 þ Lipidyzer™

301 All variablesa 0 23.327 �0.0269 1.095027 0.95 (0.85;
0.99)

Model 2a
Model 1 þ Lipidyzer™
Manual alpha selection

3 AUSCAN function
DAG(16:0/16:0)
PE(O-18:0/20:4)

1.00 0.150 �0.0275 1.095633 0.92 (0.78;
0.99)

Model 3
Model 1 þ oxylipins

40 All variablesa 0 2.193 �0.0689 1.170265 0.88 (0.73;
0.97)

Model 3a
Model 1 þ oxylipins
Manual alpha selection

4 AUSCAN function
9-HOTrE
5-HEPE
10-HDHA

0.60 0.182 �0.0835 1.186297 0.85 (0.65;
0.98)

Model 4
All variables combined

326 All variablesa 0 8.853 �0.0505 1.150134 0.97 (0.90; 1)

Model 4a
All variables combined
Manual alpha selection

27 AUSCAN function
DAG(16:0/16:0)
DAG(18:1/20:4)
FFA(22:4)
LPE(22:5)
PC(16:0/20:1)
PC(18:0/20:5)
PE(16:0/18:2)
PE(O-16:0/22:4)
PE(O-18:0/20:4)
PE(O-18:0/22:4)
SM(24:0)
TAG(45:0)-FA(16:0)
TAG(47:1)-FA(16:0)
TAG(48:1)-FA(16:1)
TAG(49:1)-FA(17:0)
TAG(49:2)-FA(16:1)
TAG(49:2)-FA(18:1)
TAG(50:2)-FA(18:2)
TAG(51:1)-FA(16:0)
TAG(51:2)-FA(15:0)
TAG(54:0)-FA(18:0)
TAG(54:2)-FA(16:0) TAG(56:1)-
FA(18:1) 9-HOTrE
5-HEPE
10-HDHA

0.2 0.475 �0.0921 1.195637 0.99 (0.93; 1)

Model 5
Predefined model based on predictor selection of

model 2a and 3a

6 AUSCAN function
DAG(16:0/16:0)
PE(O-18:0/20:4)
9-HOTrE
5-HEPE
10-HDHA

0 0.079 0.2993 .7671022 0.95 (0.81; 1)

a See additional file 1, tables A1 and A2 for the included lipids. Abbreviations: AUSCAN ¼ Australian/Canadian Hand Osteoarthritis Index, AUC ¼ area under the
curve, CI ¼ confidence interval, CV ¼ cross-validation, DAG ¼ diacylglycerol, FFA ¼ free fatty acid, (L)PE ¼ (lyso)phosphatidylethanolamine, PC ¼ phosphatidyl-
choline, SM ¼ sphingomyelin, TAG ¼ triacylglycerol, 9-HOTrE ¼ 9-hydroxy-octadecatrienoic acid, 5-HEPE ¼ 5-hydroxy-eicosapentaenoic acid, 10-HDHA ¼ 10-hy-
droxy-docosahexaenoic acid.
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variables for the model, resulting in an AUC of 0.88 (0.73; 0.97). How-
ever, with only marginal inflation of the CV mean deviance (1.186 vs
1.184) a more comprehensible model (3a) could be fit, which included
AUSCAN function and three oxylipin predictors: 9-hydroxy-octadecatrie-
noic acid (HOTrE) (lower levels associated with response), 5-hydroxy-
eicosapentaenoic acid (HEPE) and 10-hydroxy-docosahexaenoic acid
(HDHA) (higher levels associated with response), with an AUC of 0.85
(0.65; 0.98).

4.5. Combining all predictors

Lastly, we combined the general patient characteristics with both
lipid platforms in model 4. Again, automated parameter tuning resulting
in an alpha of 0. Including all 326 variables in the model resulted in an
AUC of 0.97 (0.90; 1). A more comprehensive model (4a) could be fit
using an alpha of 0.2, resulting in the selection of 27 predictors. This
model included all previously selected predictors frommodels 2 and 3, as
5

well as 21 additional higher order (Lipidyzer™) lipids (Table 3), result-
ing in a model with an AUC of 0.99 (0.93; 1). In addition, we ran model 5
in which we included only the 6 predictors previously selected by EN in
models 2 and 3. The discriminative ability of this model was only slightly
less compared to the full model, with an AUC of 0.95 (0.81; 1), and
significantly improved the prediction compared to a model based on
general patient characteristics alone (model 1 vs model 5, p ¼ 0.03).

4.6. Sensitivity analyses

The univariable associations of baseline lipid levels with prednisolone
treatment response are shown in the supplementary file, tables S1 and S2.
The lipids included in model 2 and 3 were univariably among the lipids
most strongly associated with treatment response, supporting the selec-
tion of predictors by the EN models.
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5. Discussion

In this exploratory study we investigated the patients’ lipid profile for
the prediction of prednisolone treatment response in patients with
painful inflammatory hand OA. We showed that lipidomics improved the
discriminative accuracy of the prediction, when compared to commonly
measured patient outcomes alone. Our results suggest that lipidomics is a
promising field for further biomarker discovery for the prediction of anti-
inflammatory treatment response.

The added predictive value of lipidomics is an interesting finding.
From the Lipidyzer™ platform, lipids containing fatty acid chains of
palmitic acid (16:0), stearic acid (18:0) and arachidonic acid (20:4) were
selected as predictors. Palmitic acid is the most abundant saturated fatty
acid (SFA) in humans; under physiological conditions its concentration is
tightly controlled by desaturation to palmitoleic acid and oleic acid, or
elongation to stearic acid [30]. Pathophysiological conditions may in-
crease SFA content, leading to activation of toll-like receptor (TLR)-4
triggered inflammatory signalling cascades via nuclear factor kappa B
(NFκB) and cyclooxygenase (COX)-2, increasing proinflammatory cyto-
kine production [31]. Arachidonic acid, an omega-6 polyunsaturated
fatty acid (PUFA), is the main precursor of proinflammatory eicosanoids,
although it may also give rise to anti-inflammatory mediators. In addi-
tion, hydroxylation of the omega-3 PUFAs eicosapentaenoic acid (EPA)
and docosahexaenoic acid (DHA) may lead to hydroxyeicosapentaenoic
acids (HEPE) and hydroxydocosahexaenoic acids (HDHA), which are
precursors of anti-inflammatory and pro-resolving mediators [32].
Possibly, the lipid profile represents an indication of the patients’ in-
flammatory state, and their likelihood to respond to anti-inflammatory
treatment. However, we should be careful to avoid causal in-
terpretations of our results since no causal inferences can be drawn from
prediction analyses.

Furthermore, our results suggest that amongst other patient charac-
teristics such as pain, radiographic OA severity and synovitis, hand
function is the most contributing to the prediction of treatment response.
Despite possible influences of the small sample size and patient selection,
which likely resulted in a lack of predictive ability of characteristics such
as age and sex, as well as regression to the mean, it implies that patients’
hand function may be an important outcome to consider when making
treatment decisions.

To our knowledge lipidomics for the prediction of treatment response
in hand OA has not previously been investigated. A major strength of our
study is the use of high-quality trial data. Furthermore, we have used
lipidomics data from two different platforms, the standardized and
commercially available Lipidyzer™ platform for the measurement of a
large variety of higher order lipids, and an in-house developed platform
for the measurement of oxylipins.

However, there are also limitations to our study. Most notable is the
small sample, which has likely resulted in overfitting of the models and a
higher degree of uncertainty of the estimations. Also, since no study
population with comparable data was available, external validation was
not possible. In addition, the analyses have been performed in a specific,
carefully selected patient population, therefore results may not be
generalizable to other patient populations. The blood samples were ob-
tained non-fasted at variable time points during the day due to differ-
ences in scheduled hospital visits. Although this may be viewed as a
limitation, this procedure is a good reflection of daily practice and limits
patient burden. Moreover, the identification of predictions for treatment
response that do not required fasted or strictly scheduled sampling will
benefit the feasibility and implementation in clinical practice. However,
this may have resulted in additional variability in the lipid measure-
ments. In a recent study by our research group we described intra-day
variability (ICC) of (DAG)(16:0/16:0) of 0.62 and of (PE)(O-18:0/20:4)
ICC of 0.46 [33], representing moderate to good reproducibility of the
lipids selected in model 2a. Furthermore, we cannot exclude in vitro
auto-oxidation of lipid metabolites. However, as this would have
occurred to a similar extend in responders and non-responders, it is
6

unlikely this has influenced our findings. Hence, the use of lipidomics,
and in particular the development of a lipid biomarker, for the prediction
of prednisolone treatment response warrants further investigation.

In conclusion, this exploratory study suggests that lipidomics may
prove valuable in the prediction of prednisolone treatment response in
patients with inflammatory hand OA. Prediction of treatment response
may aid the selection of patients with a high likelihood of treatment
benefit, which is crucial to prevent overtreatment and unnecessary
exposure to adverse effects.
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