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A B S T R A C T

Objectives: By deploying a novel combination of machine learning approaches, we aim to investigate the contri-
butions of each local and systemic risk factors in multi-etiology of knee osteoarthritis (KOA) to disease onset and
deterioration.
Methods: A machine-learning-based KOA progression prediction model is developed using the data from the
National Institute of Health Osteoarthritis Biomarkers Consortium. According to Kellgren-Lawrence (KL) grade of
plain radiographs at baseline, the subjects are divided into either KOA onset or deterioration study groups. The
disease progression is defined as the changes in both joint space width (JSW) and WOMAC pain score. In addition
to radiographic and symptomatic data, the anthropological particulars, history of the knee injury and surgery,
metabolic syndrome and living habits were deployed in a multi-layer perceptron (MLP) to predict disease pro-
gression in each study group. The relative contributions of each risk factors were weighted via DeepLIFT gradient.
Additionally, statistical interactions among risk factors were identified compared.
Results: Our model achieved AUC of 0.843 (95% CI 0.824, 0.862) and 0.765 (95% CI 0.756, 0.774) in prediction
of KOA onset and deterioration, respectively. For KOA onset prediction, history of injury has attained the highest
DeepLIFT gradient except medial joint space narrowing; while for KOA deterioration prediction, diabetes and
habit of smoking obtained second and third highest gradients respectively aside from medial joint space nar-
rowing, surpassing the impact of the injury.
Conclusion: We developed a machine learning workflow which effectively dissects the risk factors’ contributions
and their mutual interactions for onset and deterioration of KOA respectively.
1. Introduction

Knee osteoarthritis (KOA) is a multi-factorial disease, subject to the
interplay between local and systemic risk factors. KOA was traditionally
conceived as a local problem of mechanics, leading to wear and tear of
articular cartilage that cushions the joint during the movement [1]. The
abnormal mechanical loading, such as joint instability after ligament or
meniscal injury, may also induce the mechanoflammation in the patho-
genesis of KOA [2,3], ultimately resulting in cartilage matrix degrada-
tion. Meanwhile, despite ageing and obesity once being conceived as the
major systemic risk factors to trigger KOA, mounting evidence suggests
that they are inadequate to explain the sharp growth of the diseased
population [4]. Recently, there emerged a growing interest in metabolic
syndromes, such as diabetes and hypertension to characterize the disease
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from a systemic perspective and improve KOA disease management
[5–10].

Given the fact that KOA was attributed to a plethora of local and
systemic risk factors, to our best knowledge, there is a lack of information
regarding their relative contributions to the disease onset and deterio-
ration. The apprehension of the underlying predominant risk factors and
their interrelationship would be instrumental in developing an effective
preventive and therapeutic plan for KOA.

The medical community has been attaching much importance to big
data analysis by its remarkable capability to uncover meaningful patterns
from large amounts of data without a prior hypothesis, which becomes an
indispensable tool to elucidate the effect of different risk factors to KOA
development [11], such as the work by Du et al. who applied neural
networks for automatic classification of KOA severity based on the knee
ering, The Hong Kong Polytechnic University, Hong Kong.
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cartilage damage index [12]. Recent attempts have leveraged this tech-
nique for KOA phenotyping and progression prediction [11,13,14].
Lamentably, only a narrow scope of risk factors was investigated, failing
to give a comprehensive insight into KOA’s disease nature. Moreover,
another limitation stemmed from the use of traditional statistical models,
namely Logistic Regression and tree-based models [13,14]. The former
one may fail to model the potential non-linearity in the clinical dataset
and implicit statistical interactions between risk factors while the latter
requires laborious feature engineering based on specific domain knowl-
edge to ensure promising prediction performance [15,16].

In this study, we aim to address the long-standing question regarding
the relative contribution of the local and systemic factors towards the
onset and deterioration of KOA by applying a novel deep learning
approach. Thus, a neural network-based KOA progression prediction
model was constructed with the database from Osteoarthritis Initiative
(OAI) in the Foundation for the National Institutes of Health Osteoar-
thritis (FNIH OA) Biomarkers Consortium. To strive for a more holistic
analysis and robust prediction model than the previous studies, three
major measures have been implemented. First, individuals with or
without KOA history at baseline were further categorized into disease
Fig. 1. (a) The progression definition adopted by t
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onset and deterioration study groups respectively [17]. Second, a more
stringent KOA progression definition was employed based on the joint
progression in symptomatic and radiographic perspectives, and over 20
well-received KOA risk factors in the realms of symptomatic information,
demographic particulars, radiographic information, living habits, meta-
bolic syndrome, and mechanical factors, were recruited. Third, our
model was built on the multi-layer perceptron (MLP) deep neural
network, which could outperform the aforementioned statistical frame-
works for its capability in modelling non-linearity, and implicit statistical
interaction among the input risk factors without intensive prior feature
engineering [18]. On top of the carefully trained model, recently devel-
oped deep learning algorithms were also applied to decipher the relative
contributions of each risk factors and the patterns of their statistical in-
teractions in the onset and deterioration of KOA.

2. Methodology

2.1. Acquisition of dataset

This project used the dataset from a publicly available source from
his paper. (b) The data selection flow diagram.
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OAI in the FNIH OA Biomarkers Consortium (https://data-archive.nimh
.nih.gov/oai). The dataset comprised features, i.e. clinical and radio-
graphic measurable properties, from 18,418 subjects, with each subject
constituting to a data point for analysis. In our study, we only consider
the knees with no, doubtful and moderate OA defined by Kellgren Law-
rence Grade (KL-grade 0, 1, 2 and 3) at baseline (first-time visit). As a
result, the entries with baseline KL-grade 4 and those having received
total knee replacement (TKR) surgery were first excluded. Moreover,
samples that showed no progression and dropped out of the study before
the 48-month follow-up were view as data with missing labels and were
subsequently ruled out. After the selection procedure, we employed the
remaining 4181 knees for our following investigations. Later, to allow for
the prediction of disease onset and deterioration separately, the dataset
was further divided to categorize the subjects with and without KOA
history by examining their KL-grade at baseline. Specifically, subjects
with KL-grade 0 or 1, which signify normal and doubtful cases, were
classified as historically unaffected by KOA (onset study group),
comprising 2640 knees. While those with KL-grade 2 or above at baseline
were regarded as pre-existing confirmed cases that form the deterioration
study group, containing 1541 knees. (Fig. 1a).

2.2. Class labelling

After obtaining the data from OAI, its data points must be labelled as
different classes to give a framework for the supervised learning algo-
rithm to be trained. KOA is usually divided into symptomatic and
radiographic as these two subtypes are not always overlapped [19].
There are two definitions for KOA development: one for pain, and one for
radiographic progression. Pain progression refers to a persistent increase
of at least 9 points under a normalized scale from 0 to 100 of McMaster
Universities Osteoarthritis Index (WOMAC) Pain Score [20,21]. While
radiographic progression is indicated by the loss in the medial knee joint
space width (JSW) of at least 0.7mm.

Here, we adopted the definition of KOA based on both radiographic
and symptomatic KOA changes, which has been demonstrated to clearly
cluster the progressors and non-progressors in the OAI dataset
[11](Fig. 1b). Progressor class consisted of subjects who demonstrated
progression in the perspectives of both JSW and Pain simultaneously
within the first 48-month period after the first clinical record while the
rest would fall under the category of non-progressor class. Altogether, in
the KOA onset study group, there are 1254 progressive and 1386
non-progressive knees. Whereas the disease deterioration study group
comprises 1,183and 358 progressive and non-progressive knees respec-
tively (Fig. 1a).

2.3. Missing data handling

In the database, there were over 60% of samples having missing en-
tries for at least one risk factor. In order to fully utilize the entire dataset
and maintain an adequate sample size for subsequent training of the
supervised learning model, instead of dropping those incomplete sam-
ples, the Multivariate Imputation by Chained Equation (MICE) algorithm
was employed. The algorithm focuses on one input variable at a time, and
leverage all other variables to predict its missing values based on a
regression model, such operation is performed recurrently for each var-
iable with missing entries [22] to complete the dataset. However, for
subjects with any missing labels to determine their progression class,
their entire entry would be excluded from the study.

2.4. Class imbalance handling

As shown in Fig. 1a, a noticeable class imbalance could be observed
among KOA Progressors and Non-progressors. In particular, the number
of data points in the Non-progressor class was extremely small, such class
imbalance could result in a highly biased model. To mitigate this prob-
lem, Synthetic Minority Over-sampling Technique (SMOTE) was
3

implemented during the training of both MLP and Logistic Regression
Models to statistically synthesise more data in the minority class [23],
thereby balancing the class distribution which ensures a better conver-
gence of the models. To be specific, SMOTE first selects a minority class
sample X randomly and finds its k-nearest minority class neighbours. The
synthetic sample is subsequently created by choosing one of the k nearest
neighbours Y at random, followed by connecting X and Y to form a line
segment in the high dimensional feature space. The synthetic instances
are generated as a convex combination of the two chosen instances X and
Y [24]. This approach is effective as new synthetic samples from the
minority class were created in a plausible manner conforming to the
geometrical distribution of the original data from the minority class.
Compared to other imbalanced data handling approaches, such as
under-sampling of the majority class or the naive over-sampling minority
class method by randomly duplicating the existing minority class data,
SMOTE ameliorates the data imbalance situation without loss of training
data, and prevents overfitting stemming from repeatedly learning on
duplicated samples [23].

2.5. Machine learning model

Two Multi-layer Perceptron (MLP) models, one for onset progression
prediction and one for deterioration prediction, were built as a binary
classifier to discern Progressors and Non-progressors. The MLP archi-
tectures, i.e. the number of hidden layers and hidden units in each layer,
were tuned to produce optimal classification results. For the KOA onset
prediction, the most optimised architecture was found to be consisting of
four hidden layers, each with 100, 100, 50 and 10 hidden units respec-
tively. Whereas the MLP for deterioration prediction contains 3 hidden
layers each has 80, 80 and 30 hidden units respectively. Both neural
networks have an output layer containing sigmoid function which gen-
erates binary classification outputs. Rectified linear unit (ReLU) was
chosen to be the activation function in each neuron. In particular, pre-
ceded by normalization with L2 norm of the input variables, the model
was trained using PyTorch 1.4.0 library in Python 3.6 environment with
the Binary Cross-Entropy (BCE) as loss function and adaptive moment
estimation (Adam) as optimisation algorithm [25]. The learning rate and
weight decay were set to be 0.01 and 0.0005 respectively. Additionally,
to avoid overfitting, dropout ¼ 0.5 was applied in every hidden-layer
during the training process. The aforementioned hyperparameters,
including the number of hidden layers, number of hidden units, dropout
probability, weight decay and number of training epochs were obtained
using random search [26] with 5-fold cross-validation. The tuning ranges
of the hyperparameters are listed in (Supplementary Table 2).

In order to demonstrate the added value of using MLP over the
traditional statistical models used in previous literature [13,14], utilizing
Scikit-learn 0.23.1 package, we additionally trained a Logistic Regression
with the same progression definition and input risk factors as the MLP for
both KOA onset and deterioration cases. Concurrently, a decision tree
was also implemented with an aim for elucidating whether MLP is more
advantageous over other non-linear classifiers in our dataset. For all
models, 60% of the data were allocated as the training set and 20% for
validation, while the remaining 20% of the samples were recruited as the
test set (see Table 1).

All the models were assessed by five performance metrics, namely
accuracy, precision, recall, F1-score and area under receiver operating
characteristic curve (AUC) to give amore holistic view and comparison of
the models’ performance (Table 2). To compute performance metrics on
the test set, stratified bootstrapping with 10 iterations was employed,
which enabled us to reliably assess the confidence intervals of each score.
In addition to the scores, ROC curves (Fig. 2) were also plotted for model
comparison in both onset and deterioration predictions of KOA.

2.6. Clustering

As a visualization of separation between the Progressor and Non-
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Table 1
Summary of statistics of risk factors employed in the study.

Risk Factor
Category

Risk Factor Onset Study
Group

Deterioration
Study Group

Demographic
Information

Age Range 45–79 45–79
Mean 59.39 62.26
Standard
Dev.

8.88 8.64

Weight Range 42.6–132.8
kg

48.3–135.5 kg

Mean 79.59 kg 85.14 kg
Standard
Dev.

15.89 kg 15.54 kg

Sex Male 42.93% 40.12%
Female 57.07% 59.88%

Race White 86.47% 74.57%
Black 11.38% 23.18%
Asian 1.36% 0.71%
Other 0.79% 1.54%

Mechanical
Factors

History of
Injury

Yes 19.22% 32.01%
No 79.68% 67.99%

History of
Surgery

Yes 4.67% 18.35%
No 95.32 81.58%

Radiographic
Information

Joint Space
Width (Medial)

Range 2.67–7.30
mm

0.48–8.49 mm

Mean 4.71 mm 3.93 mm
Standard
Dev.

0.86 mm 1.35 mm

OARSI Joint
Space
Narrowing
(Medial)

Range 0-1 (out of 3) 0-2 (out of 3)
Mean 0.1576 1.000
Standard
Dev.

0.3644 0.8150

OARSI Joint
Space
Narrowing
(Lateral)

Range 0-1 (out of 3) 0-2 (out of 3)
Mean 0.02 0.17
Standard
Dev.

0.13 0.50

OARSI
Osteophyte
(Medial
Femoral þ
Medial Tibial)

Range 0-2 (out of 3) 0-6 (out of 6)
Mean 0.13 2.19
Standard
Dev.

0.35 1.55

OARSI
Osteophyte
(Lateral
Femoral þ
Lateral Tibial)

Range 0-2 (out of 3) 0-6 (out of 6)
Mean 0.09 1.47
Standard
Dev.

0.31 1.57

Symptomatic
Information

WOMAC Total
Score

Range 0-62 (out of
96)

0-96 (out of
96)

Mean 7.43 15.60
Standard
Dev.

10.88 16.68

WOMAC Pain
Score

Range 0-15 (out of
20)

0-20 (out of
20)

Mean 1.46 3.14
Standard
Dev.

2.39 3.68

WOMAC
Stiffness Score

Range 0-8 (out of 8) 0-8 (out of 8)
Mean 1.06 1.82
Standard
Dev.

1.33 1.73

WOMAC
Disability Score

Range 0-43 (out of
68)

0-68 (out of
68)

Mean 4.91 10.64
Standard
Dev.

7.86 12.05

Metabolic
Syndromes

Body Mass
Index (BMI)

Range 17.70–43.72 18.51–48.73
Mean 27.93 30.08
Standard
Dev.

4.48 4.81

Systolic Blood
Pressure

Range 86–190 90–200
Mean 121.95 126.67
Standard
Dev.

15.83 16.16

Diastolic Blood
Pressure

Range 44–110 48–120
Mean 75.09 76.71
Standard
Dev.

9.64 9.98

Table 1 (continued )

Risk Factor
Category

Risk Factor Onset Study
Group

Deterioration
Study Group

Mean Arterial
Pressure

Range 18–98 18–106
Mean 46.86 49.96
Standard
Dev.

13.25 13.48

Diabetes Yes 5.84% 8.56%
No 91.67% 90.01%
Missing 2.49% 1.43%

Living Habits Alcohol Intake
Habit

Range 0–7 0–7
Definition 0: None; 1: less than once/week;

2: 1–3 drinks/week; 3: 4–7
drinks/week;
4: 8–14 drinks/week; 5: 15–21
drinks/week;
6: 22–27 drinks/week; 7: 28þ
drinks/week

Mean 1.81 1.76
Standard
Dev.

1.44 1.52

Beer Intake
Habit

Range 1–9 1–9
Definition 1: Never; 2: A few times per year;

3: Once/month; 4: 2–3 times/
month;
5: Once/week; 6: Twice/week;
7: 3–4 times/week; 8: 5–6
times/week;
9: Every day

Mean 2.74 2.66
Standard
Dev.

2.02 2.11

Milk Intake
Habit

Range 1–9 1–9
Definition 1: Never; 2: A few times per year;

3: Once/month; 4: 2–3 times/
month;
5: Once/week; 6: Twice/week;
7: 3–4 times/week; 8: 5–6
times/week;
9: Every day

Mean 1.54 1.64
Standard
Dev.

1.36 1.61

Smoking Habit Yes 23.37% 21.96%
No 76.63% 77.46%
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progressor Classes, the t-distributed Stochastic Neighbor Embedding (t-
SNE) was employed. This dimensionality reduction method is capable of
embedding high-dimensional data into low-dimensional representation,
leading to the easier realization of segregation of classes within a com-
plex data structure [27]. Here, t-SNE was employed to provide a visual
comparison between the raw data as well as the data projected by the
first two hidden-layers of the MLPs to demonstrate the class segregation
efficiency of the deep neural network model (Fig. 3). Additionally, we
leverage the clustering technique to visualize the class distribution of raw
data under different progression definitions, namely JSW, Pain and
JSW-Pain progressions. (Supplementary Figure 2).
2.7. Feature contribution and statistical interaction

Since the neural network is considered as a black box, in which the
complex decision process is unknown [28]. In an attempt to visualize its
decision-making rationale, a recently developed approach in the deep
learning community, namely DeepLIFT, was employed to the trained
MLP model [29,30]. In this analysis, the contribution of each risk factor
to the model prediction would be quantified by calculating their relative
backpropagated gradients, with respect to the model prediction output.
More specifically, the algorithm aims to explain the difference in the
output from some reference output in terms of the difference of the input
from some reference input where the reference is chosen in a
problem-specific manner, usually a numerical value which is absent in
the range of the input data. In our case, as all the input values are greater



Table 2
Detailed summary of performance of the statistical learning models on the test set. LR – Logistic Regression. DT – Decision Tree. MLP – Multilayer Perceptron.

Model Progression Status Accuracy Precision Recall F1 AUROC

LR Onset 0.746 (0.725–0.767) 0.728 (0.709–0.747) 0.745 (0.725–0.765) 0.736 (0.721–0.751) 0.746 (0.729–0.763)
DT 0.771 (0.752–0.790) 0.846 (0.826–0.866) 0.633 (0.612–0.654) 0.724 (0.705–0.743) 0.764 (0.742–0.786)
MLP 0.843 (0.823–0.863) 0.826 (0.809–0.843) 0.849 (0.830–0.868) 0.837 (0.816–0.858) 0.843 (0.824–0.862)
LR Deterioration 0.692 (0.669–0.715) 0.917 (0.900–0.934) 0.658 (0.638–0.678) 0.766 (0.748–0.784) 0.742 (0.719–0.765)
DT 0.680 (0.656–0.704) 0.920 (0.894–0.946) 0.637 (0.615–0.659) 0.753 (0.728–0.778) 0.710 (0.690–0.730)
MLP 0.744 (0.724–0.764) 0.943 (0.920–0.966) 0.709 (0.690–0.728) 0.810 (0.790–0.83) 0.765 (0.756–0.774)

Fig. 2. Comparison of the statistical models’ performance with ROC curves. Blue dashed lines signify the performance of a random classifier. The legends in the
subplots indicates the AUC of the statistical models with 95% confidence intervals. (a) Demonstrates ROC curves of the Multi-layer Perceptron, Decision Tree and
Logistic Regression models for prediction of KOA onset and (b) for deterioration of KOA.

Fig. 3. The t-SNE clustering visualization. The upper panel corresponds to the onset KOA progression, the lower panel shows the data distribution of the pre-existing
KOA progression. The two plots on the left reveal the distribution of the data before being processed by the MLP, whereas the plots on the right-hand side visualize the
distribution of data after projection by the MLP.
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than 0, so reference ¼ �1 was chosen. In a nutshell, the greater the
difference a unit change of an input feature exerts onto the model output,
the greater the contribution of it towards the prediction [31]. As a result,
the algorithm effectively dissects the trained neural network to readily
interpret the importance of each risk factor. We implemented DeepLIFT
algorithm using Captum library in Python 3.6 environment.
5

Statistical interaction describes a situation in which the effect of one
causal input variable on the outcome depends on a second causal vari-
able, or equivalently, the effects of the two interacting variables towards
the model prediction are non-additive. Unravelling the interaction pat-
terns within the dataset allows identification of the synergistic and joint
involvements among the risk factors [32,33]. Unlike regular additive



Fig. 4. DeepLIFT gradient plots of the input risk factors. The risk factor categories are indicated by different colors, blue for living habits, grey for demographic
information of the subjects, orange for radiographic information, pink for mechanical factors, green for metabolic syndromes and brown for symptomatic information.
(a) Demonstrates the gradient of each risk factor in the KOA onset prediction and (b) displays gradients in the prediction of KOA deterioration. Positive gradient would
indicate that as the value of the feature increases, the prediction of positive class (i.e. progressors) is favored. Contrariwise, a negative gradient implies increasing the
feature value would result in a higher tendency of prediction towards the negative class (i.e. non-progressors). Meanwhile, the magnitude of the gradient correlates to
the extent of influence and contribution in the model’s prediction.
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statistical models, neural networks inherently process the feature in-
teractions through their non-linear activation functions and densely
connected hidden units [18] in a way that the interaction information is
encoded in the weight matrices [34]. To this end, we employed the
Neural Interaction Detection (NID) method [18] to uncover the statistical
interactions between risk factors captured by the MLP model. Through
the acquisition of trained weights from the hidden layers in the neural
network, the pairwise statistically interacting candidates were discov-
ered with a special coefficient signifying the strength of the detected
interaction, the stronger it is, the larger the value. We subsequently
constructed a feature interaction network from the interaction strength
coefficients using NetworkX 2.5 library in Python. Here, the nodes and
edges represent the input risk factors and the detected pairwise statistical
interactions respectively, whereas greater interaction strengths are
highlighted by thicker and darker edges.

3. Results

Three different machine learning models have been built, including
logistic regression, decision tree and a multilayer perceptron (MLP) to
predict the onset and deterioration of KOA respectively. Their perfor-
mance was compared in Table 2 and Fig. 2. The MLP model outperforms
the logistic regression models in both disease onset and deterioration
prediction. Such a phenomenon could be attributed to the complex non-
linearity lying in the data structure. Thus, linear classification model may
fall short in handling the complexity of the data point distribution in this
dataset when compared with its non-linear counterpart. Coupled with
that, we also compared our MLP model with a decision tree, which is also
a non-linear model adopted by Lazzarini et al. [14]. It is worth noticing
that despite the non-linear nature of the tree-based model, it is still
outperformed by the MLP in most performance metrics. The result is in
line with our hypothesis that the dataset is not only non-linear by nature
but also contains confounded and interacting risk factors which could be
well-captured by the MLP.

The clustering visualization with t-SNE gave an intuitive perception
as to how are the data correspond to the progressor and non-progressor
classes distributed by projecting them on an arbitrary two-dimensional
6

plane. As shown in Fig. 3, compared to the distribution of the raw
data, two distinct clusters representing Non-progressors and Progressors
respectively, emerge in the data projected by the first two layers of the
MLPwith much less overlapping region among the two classes, especially
in the onset prediction; in the KOA deterioration prediction, although the
improvement of the clustering is not as obvious, one could still observe
that after the projection, the non-progressors are becoming more densely
localised in the upper right corner compared to the raw data. This in-
dicates the MLP’s capability in projecting the data onto latent space
where clearer decision boundaries can be found between two groups of
data in both KOA onset and deterioration predictions, thereby better
model performance could be achieved, which also conformed with the
performance scores shown in Table 2. Besides, distributions of data under
different progression definitions were also demonstrated, as shown from
Supplementary Figure 2, the Progressors and Non-progressors are largely
overlapped under the JSW and Pain progression definitions in both onset
and deterioration conditions. Despite opaque decision boundaries,
notable reductions in the overlapping region between opposite classes
can be observed under the definition of JSW-Pain joint progression. This
result may suggest the combination of both symptomatic and radio-
graphic information as OA progression definition would allow better
initial segregation of the two classes, thereby benefitting the subsequent
classification by the statistical learning models, Consistent with this
notion, as reflected by our data documented in Supplementary Table 3,
the MLP model trained based on the definition of JSW-Pain progression
significantly outperforms those using only single perspective (i.e. either
JSW or Pain) as progression definitions, in all performance metrics when
considering onset and deterioration predictions of the disease.

Fig. 4 displayed the gradients of every feature from the two MLP
models respectively. Considering the onset scenario, the greatest
contribution to non-progression (negative gradients), was seen for the
habits of milk and alcohol intake, races of white, Asian and other ethnic
minorities in the United States. On the flip, the increase in OARSI joint
space narrowing and osteophyte grades in the medial compartment, joint
space width, history of mechanical injury are found conducive to the
progression. In the perspective of KOA deterioration, the increase in
OARSI joint space narrowing score, diabetes and habits of smoking are



Fig. 5. Statistical feature interaction network. The network visualizes the non-linear interaction detected in our MLP models by the Neural Interaction Detection
algorithm. The colors signify different categories of the risk factors, blue for living habits, grey for demographic information of the subjects, orange for radiographic
information, pink for mechanical injury information and green for metabolic syndromes and brown for symptomatic information. (a) Reveals statistical interactions in
the KOA onset prediction and (b) displays statistical interactions in the prediction of KOA deterioration.
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inducive factors towards progression. While white race, female sex, in-
crease in BMI and joint space width are identified as major contributors
to non-progression.

Further efforts have been made to identify the statistical interactions
captured by the MLP. From the network in Fig. 5, it is observed that, for
onset progression, history of injury is strongly interactingwith themedial
OARSI joint space narrowing score. Other risk factors, such as the history
of surgery, diabetes, habits of milk and alcohol intake as well as medial
OARSI osteophyte score also show noticeable statistical interaction with
each other. On the other hand, in the case of disease deterioration, dia-
betes, medial OARSI joint space narrowing and osteophyte scores forged
the most significant interaction with each other, meaning a high degree
of association could be found between these factors in the context of
disease deterioration prediction. It is noteworthy that, unlike the onset
scenario, lateral OARSI joint space narrowing and osteophyte scores were
also found in the subset of risk factors having conspicuous interactions
with the medial OARSI features. Besides, distinguished interactions were
identified among other factors, such as smoking habit and history of
injury and surgery. In a greater perspective, more complex statistical
interaction structure could be observed, in which a larger subset of risk
factors was found to statistically interacting with one another in the
network of KOA deterioration than that of disease onset.

4. Discussion

In this study, through the application of an advanced data-driven
approach to the FNIH cohort database, a machine-learning-based KOA
progression prediction model was developed where a multitude of risk
factors, including symptomatic information, demographic particulars,
radiographic information, living habits, metabolic syndrome, and me-
chanical factors, were recruited simultaneously for a holistic analysis.
Deep feedforward neural network (or inter-changeably MLP) was
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developed to specifically capture the non-linearity in the dataset and
confounded interactions among the input risk factors. The model has
attained high performance of 0.843 (95% CI 0.824, 0.862) and 0.765
(95% CI 0.756, 0.774) AUC in the prediction of KOA onset and deteri-
oration respectively, which is well-exhibited by a clear separation of
progressor and non-progressor classes in the t-SNE plot after the data
were processed by the MLPs. In addition, by benchmarking with the
models, such as logistic regression and decision tree which were
employed in previous pieces of literature [13,14], we further demon-
strated the superiority of our method over the traditional statistical
learning approaches.

It is worth noticing that in this study, following Nelson et al.’s
approach [11], a joint progression definition based on both symptomatic
and radiographic perspectives were adopted. While most of the existing
machine learning models only rely on single-perspective KOA progres-
sion for model development [13,14,35]; through the visualization of the
data distribution, it was however revealed that either symptomatic or
radiographic perspective is insufficient to define a clear decision
boundary for KOA progression prediction (Supplementary Figure 2). On
the flip side, when considering both distinct perspectives simultaneously,
two clusters correspond to Progressors and Non-progressors class be-
comes more conspicuous. On top of that, the MLP models developed
based on JSW-Pain joint progression outperformed the ones trained on
single-perspective KOA progressions by a significant degree (Supple-
mentary Table 3) in both onset and deterioration predictions. These re-
sults provide a strong indication that recruiting both KOA progression
types, JSW and pain progressions would establish a more holistic and
stringent classification basis, hence providing a multiple-perspective
analysis for the prediction model to learn from.

Later, via the application of a recently developed technique from the
deep learning community, DeepLIFT on our trained MLP, we successfully
identified the relative contribution of each risk factor, where it was
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revealed that the onset of KOA is highly attributable to the mechanical
injury. This is in agreement with previous studies which identified me-
chanical injury as a major risk factor predisposing the development of
KOA [36–40]. More than that, our result further indicates mechanical
injury’s particular influence in the disease’s onset, where the early joint
injury was recently argued to trigger an inflammatory response or
abnormal mechanics, resulting in cartilage degradation. The repercus-
sion of such damage in the knee joint would be the commencement of
KOA in the end [2,3]. As one of the few modifiable or preventable risk
factors, this finding may suggest future prevention programme in
reducing the risk of knee OA onset.

On the other hand, our findings also suggest the predominant role of
metabolic syndromes, especially diabetes in triggering the deterioration
of the disease. Recent understanding of OA has been suggesting its cor-
respondence to not merely local mechanical features, but also a broader
spectrum of systemic factors. Particularly, mounting evidence has pro-
pounded a significant association between diabetes and OA [6–8]. As one
of the most instrumental risk factors identified in our study, we show
further evidence that diabetes may play a pivotal role specifically in the
deterioration of KOA. Such a result may as well be evident to a recent
hypothesis that connects diabetes and the worsening of KOA: Firstly, the
peripheral nervous system may be altered by diabetic neuropathy in the
OA patients, leading to muscle weakness and joint laxity and as a result
causing deterioration of KOA. Besides, hyperglycemia-induced low-grade
systemic inflammatory response, which is potentially associated with the
loss in cartilage and delayed tendon healing after injury [41], would also
induce further progression of OA.

Second to diabetes, smoking was found to be another highly
contributory feature conduces to KOA deterioration, which however
seemingly contradicts to a number of findings contending smoking’s
protective role towards OA [42,43], as explained by the upregulation of
glycosaminoglycan and collagen synthetic activity of articularchon-
drocytes by nicotine found in cigarettes [44]. On the flip side, nicotine
has been reported to excite corresponding receptors on neuronal cells
which could ultimately engender musculoskeletal pain [45]. Meanwhile,
increased carbon monoxide levels in arterial blood upon cigarette
smoking could contribute to tissue hypoxia, which may, in turn, hinder
cartilage repair in smokers [46]. As such, smoking might bear contra-
dictory effects in radiographic and symptomatic perspectives of OA on
account of its involvement in a multitude of pathways pertains to the
disease’s etiology [45]. As a corollary, in light of the JSW-Pain joint
progression definition, our result regarding smoking is attributed to the
summation of effects from both radiographic and symptomatic pathways
of the disease. The identification of diabetes and smoking as influential
predictors to the worsening of KOA could bring deeper hindsight to
disease management by intervening in the sufferers’ living style, for
instance, diet planning and cessation of smoking.

Finally, the interactions between risk factors were also, to our best
knowledge for the first time, being recovered in both KOA onset and
deterioration scenarios using the “Neural Interaction Detection” (NID)
algorithm. The detected pairwise statistical interactions were visualised
as network, in which the interacting risk factors would impose non-
additive effects on the prediction output owing to the confounded
high-order associations among them [47]. In the prediction of KOA onset,
history of mechanical injury and medial OARSI joint space narrowing
grade forms the most significant interaction; considering the disease
deterioration, in place of history of injury, diabetes becomes the most
profoundly interacting factor with not only the medial but also lateral
OARSI osteophyte and joint space narrowing grades, indicating the
whole joint involvement and possible coalition with systemic factors
upon KOA deterioration. Generally speaking, the interactions among
local and systemic risk factors in the deterioration cases was much more
complex and complicated than in the onset cases.
8

5. Conclusion

We have applied a novel deep learning framework to decipher the
multi-etiology of knee osteoarthritis. Our model, which is capable of
modelling nonlinearity and interactions between input factors, has ach-
ieved high performance in predicting the predisposal of disease’s onset
and deterioration. More notably, our approach has demonstrated the
discrepancy in the contribution of a variety of local and systemic risk
factors and statistical interaction patterns in the onset and deterioration
of KOA. To be concise, local risk factor such as the history of injury is
predominant in the onset of disease; whereas systemic risk factor, dia-
betes and smoking, in particular, comes to our notice regarding their
dominant role in disease deterioration. Besides, with more complex
statistical interaction patterns, the worsening process of KOA may
involve the interplay between a larger subset of risk factors than the
disease incidence. Our findings highlight the importance of injury pre-
vention and cessation of smoking in the management of KOA. Manage-
ment of the co-morbidities in KOA patients, such as diabetes, is also
essential to halt disease progression. In a broader sense, it is anticipated
that the approach presented herein may as well inspire further devel-
opment of self-efficiency and self-management programs for early
detection of KOA.
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