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A B S T R A C T

Objective: Knee osteoarthritis (KOA) is a prevalent disease with a high economic and social cost. Magnetic reso-
nance imaging (MRI) can be used to visualize many KOA-related structures including bone marrow lesions
(BMLs), which are associated with OA pain. Several semi-automated software methods have been developed to
segment BMLs, using manual, labor-intensive methods, which can be costly for large clinical trials and other
studies of KOA. The goal of our study was to develop and validate a more efficient method to quantify BML
volume on knee MRI scans.
Materials and methods: We have applied a deep learning approach using a patch-based convolutional neural
network (CNN) which was trained using 673 MRI data sets and the segmented BML masks obtained from a trained
reader. Given the location of a BML provided by the reader, the network performed a fully automated segmen-
tation of the BML, removing the need for tedious manual delineation. Accuracy was quantified using the Pearson's
correlation coefficient, by a comparison to a second expert reader, and using the Dice Similarity Score (DSC).
Results: The Pearson's R2 value was 0.94 and we found similar agreement when comparing two readers (R2 ¼
0.85) and each reader versus the DL model (R2 ¼ 0.95 and R2 ¼ 0.81). The average DSC was 0.70.
Conclusions: We developed and validated a deep learning-based method to segment BMLs on knee MRI data sets.
This has the potential to be a valuable tool for future large studies of KOA.
1. Introduction

Osteoarthritis (OA) is a highly prevalent, painful, and severely
debilitating disease with a substantial economic and social impact [1,2].
OA can affect many anatomical locations, but generally has the largest
impact on the weight-bearing joints, including the hip and knee.
Currently there are no proven disease-modifying OA drugs (DMOADS)
[3], although a great deal of effort is underway to develop and test po-
tential therapies [4]. Given the absence of effective treatments to slow or
reverse OA, joint replacement is the definitive therapeutic management.
In 2014, more than 700,000 individuals in the United Stated underwent
knee arthroplasty [5].

Clinical trials and other studies of knee OA (KOA) require objective
and efficient methods to test treatment efficacy, and to study the natural
history and epidemiology of the disease. Assessments from radiological
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imaging can provide ideal surrogate outcome measures since they are
based on the visualization of KOA-related structures. Conventional
radiography and magnetic resonance imaging (MRI) are the most com-
mon modalities used for KOA assessment, although ultrasound [6] and
computed tomography [7] have seen limited use. Radiography is ad-
vantageous due to the cost and convenience, though many of the crucial
soft-tissue structures relevant for KOA are invisible radiographically. For
example, cartilage loss is inferred indirectly on a radiograph by observing
the inter-bone joint space loss. In contrast, MRI can be used to assess soft
tissue changes directly and, as a three-dimensional modality, it is ideal
for appreciating the complex structure of the knee joint. KOA features
including cartilage, bone marrow lesions (BMLs), meniscal damage,
osteophytes, and effusion/synovitis are well-visualized on MRI.

MRI assessment of KOA for research studies generally uses one of two
approaches: semi-quantitative scoring systems and fully quantitative
.com (M.S. Sury), jwortman1245@gmail.com (J.R. Wortman), gesaneumann@
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software processing. Semi-quantitative scoring [8] uses atlas-based sys-
tems, assigning ordinal scores for a variety of structures. While such
systems are widely used and proven effective, they are time-consuming
and fundamentally based on a subjective assessment. Fully quantitative
methods using image processing software offer objective and direct
measures of the size, shape, and intensity profile of KOA-related struc-
tures [9–12]. Unlike the ordinal scales offered by semi-quantitative
scoring, the output of quantitative software techniques consists of
floating-point numbers, which is ideal for statistical analysis.

Since clinical trials and other studies of KOA often involve thousands
of subjects and multiple time points, scans requiring assessment can
number in the thousands. Software approaches generally offer time
savings compared to semi-quantitative scoring, but can still require
substantial reader time. For example, a method to assess BMLs that re-
quires an average of 5 min per scan [9] would need 250 h of reader time
for a study of bilateral KOAwith 500 subjects followed over 3 time points
(500 � 2 x 3 � 5 min).

BMLs, a form of subchondral inflammation, are seen on knee MRI as
hyperintense structures in the bone, close to the bone-cartilage interface.
BMLs are highly relevant to KOA research since they have been shown to
have a stronger association with knee pain than other structures [13].
Unlike cartilage loss, BMLs do not progress unidirectionally over time;
studies show a waxing and waning pattern of BML size at subsequent
time points [14]. For this reason, responsiveness to change is not an
appropriate metric to test the performance of methods measuring BML
volume.

Deep learning (DL), the subset of machine learning focused on
training deep artificial neural networks, has made considerable advances
over the last few years due to the availability of unprecedented
computing power through graphical processing units (GPUs), large
datasets, and a thriving open-source software ecosystem [15]. In partic-
ular, convolutional neural networks (CNNs) have become the state of the
art for image classification and segmentation. Studies have used DL
methods to segment KOA-related structures on MRI [16,17], but to our
knowledge, no published methods have been reported applying DL to
measure BML volume. The goal of this study was to develop and validate
a DL-based software method to automatically segment KOA-related BMLs
with minimal input and substantially decrease reader time for this
measurement.

Our previous approach to BML segmentation was two-fold [9]. In the
first step, a reader (JW) identified BMLs in each image slice with a single
mouse click. The second, more laborious task had a reader (MS)
semi-automatically segment each of the identified BMLs using a variable
thresholding algorithm. The average total reader time was approximately
5 min per scan; on average, less than 30 s was required for the first step.
The goal of the method reported here was to eliminate the second step
while maintaining reliance on the initial BML identification performed
by a human reader. The possibility of eliminating the second step would
offer considerable savings in time and cost. We hypothesized that a
DL-based method to measure BML volume would performwell enough to
replace the semi-automated thresholding-based algorithm.

2. Materials and Methods

2.1. Imaging subjects

We usedMRI scans from the Osteoarthritis Initiative, (OAI) a National
Institutes of Health (NIH) and industry sponsored study of KOA [18]. The
OAI image data are publicly available, fully anonymized, and include
4796 enrolled subjects followed over seven time points: baseline (BL), 12
months, 24 months, 36 months, 48 months, 72 months, and 96 months.
To train and test our DL software, we used the BL, 12-month, and
24-month data from the 600 subjects that comprise the OA Biomarkers
Consortium FNIH Project, a nested sub-study of the OAI. A single indexed
knee was assessed for each subject. Details of this project are provided
elsewhere [19]. Our semi-automated method [9] was used to segment
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BMLs on these data to provide training and test data.
TheMRI data were acquired on a Siemens 3T scanners (Trio, Siemens,

Erlangen, Germany) using the following protocol: Sagittal turbo spin
echo fat-suppressed (TSE FS) (0.357� 0.357� 3.0mm3, Repetition Time
(TR) 3200 ms. Echo Time (TE) 30 ms.). All 600 subjects had both BL and
24 month scans; 582 were also imaged at the 12 month time point.
Therefore, the dataset contained 2–3 scans for each of the 600 subjects,
totaling 1782 scans. Selecting only subjects with a BML in at least one
time point gave 1358 scans from 544 different subjects for further pro-
cessing. The 56 subjects with no BMLs at any time point were excluded.
The 544 subjects were randomly split into training, validation and test
sets of 50% (673 scans, 272 subjects), 25% (352 scans, 186 subjects),
25% (333 scans, 186 subjects), respectively. Since we used data from
three OAI time points, there was generally more than one scan per knee.

96� 96 pixel “patches” that contained the BMLs were extracted using
the initial reader marks. Through this process, a dataset of N ¼ 11,676
BML image and mask patch pairs (5673 in training set, 2875 in validation
set, 3128 in test set) was obtained for further processing by our CNN.
Intensity values alone do not provide sufficient information for an al-
gorithm to correctly segment BMLs, as they have similar gray scale in-
tensity values as the surrounding structures including cartilage and fluid.
Much of the manual effort for the semi-automated method is devoted to
separating the true BML voxels from adjacent hyperintense tissues, often
the most time-consuming component of the semi-automated process.
BMLs appear in characteristic locations, often close to cartilage, and
CNNs are a powerful method that can take such contextual information
into account. Furthermore, there is no need to manually specify these
areas, as CNNs automatically learn important features during training.

2.2. Model architecture and training

A U-Net convolutional neural network [20] (Fig. 1.) was trained on
BML patches and corresponding segmentation mask pairs. The U-Net
model is a fully-convolutional network (FCN) architecture [21] specif-
ically designed for image segmentation tasks. FCNs are similar to CNNs
but lack the final set of fully connected layers on the output normally
used to learn a scalar- or vector-valued decision function over the
extracted features. This architecture allows for end-to-end training of
image segmentation models.

The U-Net architecture consists of a series of convolution and so-
called “max-pooling” layer blocks, which gradually reduce spatial reso-
lution by a factor of two while doubling the number of output channels,
eventually reaching a spatially compressed intermediate representation
of the input. The process is followed by its deconvolutional counterpart,
which decodes the intermediate representation back into the shape of the
original image size as depicted in Fig. 1. “Skip connections” between
corresponding layers from the encoding and decoding arms support the
propagation of high-resolution information, thus avoiding loss of infor-
mation from the compression process. Fig. 1 depicts how the input of size
96� 96 pixels changes shape as it passes through the network. In the first
resolution block, the two-dimensional convolution layers enhance the
number of channels from 1 (grayscales) to 32, and the immediately
following max pooling layer reduces the spatial extent by a factor of 2.
The resulting 48 � 48 x 32 tensor is passed on to the next resolution
block, which performs a similar transformation. The example in Fig. 1
has 5 resolution levels and therefore the tensor size at the deepest level is
6 � 6 x 512. Increasing the number of layers can potentially produce a
substantially higher performing CNN, but will increase computational
cost and, more importantly, lead to overfitting as the number of model
parameters increases with the number of layers and consequently, a CNN
that actually has reduced performance on the test set.

The Dice similarity coefficient was used as the loss function [22].
Compared to the more common binary cross-entropy loss, the Dice loss is
less sensitive to the class imbalance observed in BML segmentation where
the number of foreground pixels is often significantly smaller than the
number of background pixels.



Fig. 1. Overview of the U-Net architecture used (5-level version depicted here).
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The loss was minimized using the Adam stochastic gradient descent
scheme [23] (learning rate ¼ 0.00001, β1 ¼ 0:9, β2 ¼ 0:999) on batches
of size 64. All image patches were normalized based on the mean and
standard deviation of images in the training set. An NVIDIA Titan Xp
graphics processing unit (GPU) (NVIDIA Corporation, Santa Clara, CA)
was used for accelerated training. Early-stopping was employedwhen the
validation error did not improve over 20 epochs. All experiments were
implemented in Python using Keras [24] with the Tensorflow [25]
backend.
2.3. Statistical analysis

The main test of performance was to demonstrate accuracy of the DL
method compared to the existing segmentation method, which was done
graphically and by calculating the Pearson's R2 value on a per scan basis.
Comparisons between the DL and semi-automated BMLs were also
assessed using the Dice Similarity Score (DSC) [22] for individual masks.
DSC is a measure of overlap between two ROIs where a DSC ¼ 1 means
perfect overlap and DSC ¼ 0 is no overlap. To study the relationship
betweenmodel capacity and performance on the test set, variations of the
above U-Net were assessed with convolution levels ranging from 2 to 6.
As stated above, the main goal of applying DL was to eliminate the more
time-consuming reader task. To directly test this objective, we used a
Fig. 2. (a) Scatter and (b) Bland-Altman plots of B
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second reader (GN) to segment a randomly selected subset of 25 scans
from the test set using the same marked BML locations as did Reader 1
and the DL algorithm. We hypothesized that the DL to reader agreement
would be similar to that of Reader 1 versus Reader 2.

3. Results

There was excellent agreement between the DL and semi-automated
segmented BMLs as shown in Fig. 2, scatter and Bland-Altman plots of
the BML data from the 333 scans in the test group,. Furthermore, the
Pearson's R2 value was 0.94 and there is no obvious evidence of a bias.
The average DSC was 0.7.

A U-Net with 5 levels (U-NET 5) provided the best performing algo-
rithm (Average DSC ¼ 0.70) with a 3% margin over both U-Net 4 and U-
Net 6, and the lowest standard deviation of all models (Table 1 and
Fig. 3). To gain better insight on interpreting the DSC values, Fig. 4
provides a plot of the average DSC as a function of the BML area and a
histogram of BML areas. As would be expected, the average DSC is lower
for smaller areas where a minor mismatch can cause a greater percent
difference in the overlapping regions.

A visualization of the DSC values and the segmented results are
shown in Fig. 5, which depicts typical segmentation results over a range
of DSC values. The images in the second row shows an example where
ML volumes of all 333 subjects in the test set.



Table 1
Mean and standard deviation of the Dice coefficients on test set of all evaluated
model depths. The last column lists the number of trainable parameters of each
model.

Mean Std.dev. # params

U-Net 2 0.36 0.22 100,961
U-Net 3 0.54 0.23 465,953
U-Net 4 0.67 0.19 1,925,025
U-Net 5 0.70 0.17 7,759,521
U-Net 6 0.67 0.19 26,702,497

Fig. 3. Box-plot of DSC on test set using all evaluated network depths. The
crosses additionally represent means.

Fig. 4. (a) Plot of the average DSC versus BML area in pixels and (b) a histogram
of the BML areas in pixels for all 3128 patches. Combined, these plots demon-
strate how the large number of small BMLs reduces the overall average
DSC value.

Fig. 5. Example BML patches and their predicted segmentation masks. Left to
right: image patch, ground-truth, segmentation result, overlay. Overlap is yel-
low, false positives green, false negatives red. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the Web version of
this article.)
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reader error (green pixels corresponding to the adjacent cartilage) was
actually corrected by the CNN algorithm. The results from the 25 scan
reliability analysis gave Pearson's R2 of 0.95, 0.81, and 0.85 for DL vs.
Reader 1, DL vs. Reader 2, and Reader 2 vs. Reader 1 respectively. This
showed similar correlation between human readers compared to DL, and
the inter-reader agreement.

4. Discussion

We offer strong evidence that we have achieved our main goal, which
was to obviate the need for the second reader and substantially increase
the efficiency of the method. To our knowledge, this is the first published
method applying deep learning algorithms to the segmentation of BMLs,
although there has been work using DL to grade BMLs according to semi-
quantitative scoring [26]. Fig. 2 demonstrates a strong correlation be-
tween BML areas from lesions segmented by the trained reader and the
DL algorithm. Furthermore, the reader reliability results also show that
the DL algorithm can replace a reader without loss of performance. Going
forward, we expect to assess large numbers of OAI scans and other data to
support new hypothesis-based studies of KOA.

At first glance, an average DCS of 0.7 may not compare favorably to
results from studies describing different segmentation tasks. However,
there are unique aspects to BML measurement that lead to a lower DSC.
First, the BMLs do not have clear and distinctive margins, rather they are
diffuse structures, which the DL algorithm has difficulty capturing as
exemplified in Fig. 5. More importantly, as demonstrated in Fig. 4, many
BMLs are small encompassing just a few hundred pixels or less and DCS
4
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values are lower, on average, for small regions. A comparatively high R2

value of 0.94 is not surprising since correlation coefficients are highly
dependent on the range of values, which for this analysis is large.
Probably the most relevant metrics to establish performance and confirm
our hypothesis are the inter/intra reader results.

Various network depths were evaluated to find the best model, and a
simulation was performed to test the best model in the presence of
realistic uncertainty involved in marking the BML locations in image
slices. We have shown that the proposed U-Net is good at generalizing
even in the presence of imperfections in the training data set, including
leakage in segmentation masks. The field of DL continues to evolve with
improvements to the software packages, CNN models, and associated
hardware. Future approaches leveraging these advances may potentially
yield a superior technique.

Our results show that the performance of deeper models is signifi-
cantly better than shallower models. However, the number of trainable
parameters (listed in Table 1) increases geometrically as a function of
network depth, suggesting that the lower performance of the deepest
model (U-Net 6) in our experiments may be due to overfitting. U-Net 6
has almost four times the number of trainable parameters of U-Net 5, and
we hypothesize that the bias-variance trade-off might be most favorable
for U-Net 5 in the specific problem addressed here. In general, it is
preferable to have the most compact model possible in order to reduce
the chances of overfitting, and to keep computational costs low during
training and inference.

For future studies of knee OA, it is important to consider workflow.
Although the CNN method is substantially faster, a human reader is still
required to mark each BML. By eliminating the second reader's step, our
CNN approach reduces the time needed to perform analysis of BML
volume by approximately 90%. This method also has the potential to be
used for studies to predict the incidence and or progression of KOA and as
a potentially secondary outcome measure for clinical trials of therapies.

The method is based on the U-Net convolutional neural network ar-
chitecture, and as such is general enough to be readily extended to other
relevant structures in the knee, including cartilage, osteophytes, and
effusion synovitis, for which we have developed similar semi-automated
methods [10,27,28]. For our current model, the CNN analysis was per-
formed on a slice-by-slice basis not taking advantage ot the
three-dimensional nature of MRI data. In the future, we will take the
current approach from an assessment of two-dimensional slices to
leveraging the three-dimensional nature of MRI, exploring possibilities to
replace the BML detection stage in order to fully automate the method.
Our method could potentially be used in the clinic with the possibility of
integrating the software into a digital radiography product. Combined
with other structural measures of KOA, the assessment tool could be used
to offer a single measurement of KOA progression probability similar to
the FRAX method used to predict fracture for patients with osteoporosis
[29].

Our study has several limitations. Although DL improvements are
significant, the method is still not fully automated. However, a reader
time of approximately 30 s per scan will allow for the assessment of
thousands of scans in a relatively short amount of time. Perfect agree-
ment is not possible or even necessarily desirable since expert reader
variation also occurs as we have demonstrated. We have limited the
training and testing to a single MRI standardized protocol from a single
study. Further validation and training using different MRI pulse se-
quences will be necessary to increase generalizability. Finally, our study
does little to advance the field of DL and machine learning in general
since the algorithmic approach we choose was relatively conventional.
Our focus was to document the performance of a highly useful tool that
can be used in future clinical studies of KOA and not to make significance
advances in computer science.

In conclusion, we developed a novel deep learning-based algorithm to
automatically segment BMLs on knee MRI scans. This has the potential to
be used in high-powered studies of osteoarthritis, and sets the stage for
future developments in the field of OA research.
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