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A B S T R A C T

Objective: This study aimed to develop a deep learning-based approach to automatically segment the femoral
articular cartilage (FAC) in 3D ultrasound (US) images of the knee to increase time efficiency and decrease rater
variability.
Design: Our method involved deep learning predictions on 2DUS slices sampled in the transverse plane to view the
cartilage of the femoral trochlea, followed by reconstruction into a 3D surface. A 2D U-Net was modified and
trained using a dataset of 200 2DUS images resliced from 20 3DUS images. Segmentation accuracy was evaluated
using a holdout dataset of 50 2DUS images resliced from 5 3DUS images. Absolute and signed error metrics were
computed and FAC segmentation performance was compared between rater 1 and 2 manual segmentations.
Results: Our U-Net-based algorithm performed with mean 3D DSC, recall, precision, VPD, MSD, and HD of 73.1 �
3.9%, 74.8 � 6.1%, 72.0 � 6.3%, 10.4 � 6.0%, 0.3 � 0.1 mm, and 1.6 � 0.7 mm, respectively. Compared to the
individual 2D predictions, our algorithm demonstrated a decrease in performance after 3D reconstruction, but
these differences were not found to be statistically significant. The percent difference between the manually
segmented volumes of the 2 raters was 3.4%, and rater 2 demonstrated the largest VPD with 14.2 � 11.4 mm3

compared to 10.4 � 6.0 mm3 for rater 1.
Conclusion: This study investigated the use of a modified U-Net algorithm to automatically segment the FAC in
3DUS knee images of healthy volunteers, demonstrating that this segmentation method would increase the ef-
ficiency of anterior femoral cartilage volume estimation and expedite the post-acquisition processing for 3D US
images of the knee.
1. Introduction

Knee osteoarthritis (KOA) is a progressive multifactorial joint disease
that has a current global prevalence of 22.9% among individuals above
the age of forty and is rising with increasing rates of obesity and popu-
lation aging [1]. KOA affects all components of the joint and is charac-
terized by cartilage degradation, synovitis, subchondral bone
remodeling, and changes in muscular and ligamentous structures.
Cartilage degradation is considered the defining characteristic of KOA
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and has been the focus of research efforts to characterize disease severity
and progression [2,3]. Measures of femoral articular cartilage (FAC)
thickness are integral to disease characterization, where a decrease in the
quantity or quality is interpreted as an increase in disease severity.
Semi-quantitative KOA grading scales focus on tibiofemoral joint space
narrowing (JSN) as a surrogate marker for FAC loss. Currently, radio-
graphic identification of KOA is based on the semi-quantitative Kell-
gren-Lawrence grading system, which relies on two radiographic
features, joint space width and the presence of osteophytes [4]. This has
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traditionally been visualized using weight-bearing radiography, where a
decrease in tibiofemoral JSN is equated to decrease in FAC volume.
Although radiographic JSN is used to represent cartilage loss, it is critical
to consider the fact that radiography lacks sensitivity to changes in soft
tissue structures such as FAC quantity and quality, especially in the
earlier stages of KOA. Furthermore, radiography captures
two-dimensional (2D) images of inherently three-dimensional (3D)
anatomical structures [5].

Magnetic resonance imaging (MRI) is a well-established imaging
modality that overcomes many of the limitations associated with radio-
graphic measurements of JSN in KOA. Conventional MRI allows for the
assessment of anatomical changes in KOA, while compositional MRI
techniques allow for the investigation of early biochemical compositional
changes of the articular cartilages in KOA patients. While MRI is a
promising technology, limitations including the general inaccessibility,
long image acquisition times, and high manufacturing and operational
costs limit its availability in cost-constrained healthcare systems and as a
feasible point of care method of classifying KOA.

Currently, 2D musculoskeletal ultrasound (US) is used to assess KOA
using semi-quantitative grading scales such as the Outcome Measures in
Rheumatology (OMERACT). 2D US is a useful imaging tool for real-time
point of care assessment of KOA as it provides high-resolution images
rapidly and safely at the patient's bedside. However, 2D US is limited
since the quality of the images is highly dependent on transducer
placement and operator experience. 2D US also only provides 2D images
of 3D anatomical structures and is at the mercy of a small fields-of-view
for a large joint such as the knee. Thus, the limitations of radiography,
MRI, and 2D US point to a clinical need for a new point of care imaging
methods that can overcome some of these limitations.

3D US is an attractive bed-side alternative imaging technique that
compensates for the limitations associated with MRI [6]. 3D US tech-
niques have been used for applications in cardiology, gynecology, urol-
ogy, neonatology, and most recently musculoskeletal
(MSK)/rheumatology. Adding 3D US imaging to clinical assessments
could provide clinicians with an easily accessible, time-efficient, and
cost-effective method for assessing FAC status for longitudinal disease
monitoring.

Segmentation of knee cartilage fromUS images is essential for various
clinical tasks in the diagnosis and treatment planning of KOA [7]. Seg-
mentation of the FAC is an important first step in acquiring measure-
ments to quantify joint degeneration. In current clinical practice, tissue
segmentation is typically performed manually by a highly trained rater.
This process is time-consuming, as segmentations must be completed on
each image slice [8]. Segmentations are typically performed after the
clinical session, requiring approximately 30 min for the FAC. Efficiency
and repeatability vary as inter- and intra-rater reliability is influenced by
the user's level of expertise [9].

Deep learning using convolutional neural networks (CNNs) are well
suited to solve image-based problems and have been used in an
increasing number of musculoskeletal applications, including lesion
detection, classification, segmentation, and non-interpretive tasks [10].
CNNs have already shown promising results for segmenting cartilage and
bone using several imaging modalities. Schwartz et al. showed that a
CNN can identify and classify KOA from radiographs as accurately as a
fellowship-trained arthroplasty surgeon [11]. A study by Zhou et al.
showed that a CNN trained using MR images was well-suited for per-
forming rapid and accurate comprehensive tissue segmentation of knee
joint structures [12]. They demonstrated that most musculoskeletal tis-
sues had a mean value of average symmetric surface distance less than 1
mm. While most musculoskeletal deep learning applications focus on MR
and radiographic applications, US segmentation has been explored in
recent work. Kompella et al. report on segmentation of FAC from 2D knee
US images using a mask R–CNN architecture, trained using 512 2D US
slices taken from two 3D US volumes. The best results were achieved
with Gaussian filter preprocessing and pretraining with the COCO 2016
image dataset, reporting an average DSC of 80% with a maximum of
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88%. A key limitation is the lack of 3D segmentation, with reported re-
sults limited only to segmentation in 2D US images.

We hypothesize that the addition of deep learning to 3D US imaging
will provide fast and accurate 3D segmentation of the FAC in 3D US
images of the knee. We aim to demonstrate that this is possible with a 2D
deep learning plus 3D reconstruction approach, the first of its kind for
knee 3D US imaging to our knowledge. The application of deep learning-
based automatic segmentation in 3D US-based KOA monitoring could
greatly reduce segmentation time, potentially allowing for FAC seg-
mentation to be completed during the imaging session ultimately
reducing the time for examinations and easing physician burden.

2. Materials and methods

2.1. Clinical dataset

3D US images were acquired of 25 volunteers without prior history of
knee joint pathology using a linear mechanical scanning approach
(Fig. 1). Images were acquired using an Aplio i800 US machine (Canon
Medical Systems Corporations, Otawara, Tochigi, Japan) equipped with
a 14L5 linear transducer with an operating frequency of 10 MHz and a
footprint length of 58 mm. This 2D transducer was attached to our 3D US
scanner via a custom-designed 3D printed mount. The 3D US scanning
device consisted of a motorized drive mechanism that linearly translated
the transducer over 4.0 cm along the patient's skin, continuously
acquiring 120 2D US images at regular spatial intervals (0.33 mm) and
reconstructing them using custom software to generate a 3D US image
with a size of 968 � 694 x 120 voxels and voxel sizes of 0.058 � 0.058 �
0.33 mm3 [6]. The average 3D US image acquisition time was 15 s per
knee. This 3D US scanner was previously validated in a study by Paper-
nick et al. [13], where the knees of 25 healthy volunteers were imaged at
the trochlea of the femur, with the subject in a supine position and the
knee positioned in maximum flexion. The previously described scanning
position allows for visualization of the trochlear cartilage and is acces-
sible with ultrasound. The total dataset consisted of 25 3D US images of
the knee. 20 3D US were used for training, while 5 3D US were set aside
as a hold-out testing dataset. Manual segmentations of the trochlear
femoral articular cartilage (FAC) volumes were completed by two raters
to assess inter-rater variability.

Additional 3D US images were acquired of four patients with diag-
nosed KOA using the same scanning approach and US system. These
images were selected from a database of previously acquired three-
dimensional ultrasound images from various KOA studies and a skilled
musculoskeletal sonographer identified features of OA using the
OMERACT grading scale. Demographic data for the healthy volunteers
and patients is represented in Table 1. The five clinical 3D US images
were included in the hold-out testing dataset, with the training dataset
including only healthy volunteer images. Manual segmentations were
once again completed by two raters.

2.2. Deep learning training dataset

To utilize the 3D training dataset most efficiently, each image was
resliced into 10 2D US planes extracted along the acquisition direction,
maximizing image resolution. Only 10 transverse 2D images were
resliced per 3D volume due to the similarity in FAC appearance between
2D slices. This resulted in a training dataset of 200 2D US images that was
further split into 80% training (160 2D images) and 20% validation (40
2D images). All 2D images were resized to 256 � 256 pixels with no
preprocessing. Manual segmentations completed by rater 1 (SP) were
used as the gold standard for training the neural network.

2.3. Deep learning architectures and 3D reconstruction

The widely prevalent U-Net architecture and its variants have
demonstrated high performance in various medical image segmentation



Fig. 1. (A) A schematic of our handheld mechanical three-dimensional ultrasound (3D US) device acquiring a series of images of the suprapatellar region using a
linear scanning approach. (B) An example of the resulting 3D US image with the femoral articular cartilage highlighted by arrows.

Table 1
Demographic information for four knee osteoarthritis patients and five healthy
volunteers.

Patients Volunteers

N 4 5
% Women 25 20
Age [Years] (mean � SD) 32.5 � 17.3 33.6 � 21.5
Height [m] (mean � SD) 170.6 � 9.7 174.4 � 11.8
Weight [kg] (mean � SD) 71.525 � 12.2 75.12 � 15.1
BMI [kg/m^2] (mean � SD) 24.7 � 4.24 24.5 � 3.1
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tasks [14,15]. We previously developed a modified U-Net approach
applied to prostate segmentation in transrectal 3D US images [16]. This
method was implemented using Keras with TensorFlow for FAC seg-
mentation in US images of the knee and made use of the Adam optimizer,
1� 10�4 learning rate, 100 epochs, and 600 steps per epoch [17,18]. For
comparison, a state-of-the-art U-Netþþ network was implemented with
matched hyperparameters, as it has been shown to improve segmentation
performance with small datasets [19]. Our U-Netþþ implementation
utilized a ResNet-50 network with batch normalization and a batch size
of 10 as a backbone [20]. To expand the training dataset, data
augmentation including random combinations of horizontal and vertical
flips, shifts up to 20%, rotations up to 20%, and zooms up to 20% were
applied. Neural network training and inferencing were completed on a
personal computer with an i7-9700K central processing unit (CPU) at
3.60 GHz (Intel Corporation, Santa Clara, CA, USA), 64 GB of RAM, and a
24 GB NVIDIA TITAN RTX (NVIDIA Corporation, Santa Clara, CA, USA)
graphics processing units (GPU). After inferencing the transverse 2D US
images, the resulting 2D predictions were placed back in their position
within the 3D volumewhere the boundary points between adjacent slices
were connected. A smoothing filter was applied, and the ends of the
volume were closed resulting in the complete 3D surface.
2.4. Testing dataset, evaluation metrics, and comparisons

A hold-out testing dataset, consisting of 5 3D US images of healthy
knees and 5 3D US images of knees with diagnosed KOA, was used to
evaluate the FAC segmentation performance of our method and was
resliced as described for the training dataset. Using the ATS 538NH Beam
Profile & Slice Thickness Phantom (CIRS Inc, Norfolk, VA, USA) the
spatial elevational resolution of the 14L5 transducer was found to range
from 2.35mm at 2 cm depth to 4.04mm at 4 cm depth. To account for the
maximum elevational resolution at a depth of 4 cm, 2D transverse slices
3

were extracted every 4 mm, corresponding to 10 slices per full 3D vol-
ume. This resulted in a total testing dataset of 50 transverse 2D US images
of healthy volunteers and 50 2D US images of KOA patients. The char-
acterization of our method's performance made use of both the 2D seg-
mentations and the reconstructed 3D surfaces, including computation of
standard pixel map metrics (DSC, recall, and precision). These metrics
are calculated using the confusion matrix values defined as true positive
(overlapping cartilage surface/volume between gold standard and algo-
rithm), false positive (surface/volume identified as cartilage in the al-
gorithm but not in the gold standard), true negative (surface/volume
identified as not cartilage in both the gold standard and algorithm), and
false negative (surface/volume identified as cartilage in the gold stan-
dard that was missed by the algorithm). In addition, absolute and signed
variants of area/volume percent difference (A/VPD) and boundary dis-
tance metrics including mean surface distance (MSD), and Hausdorff
distance (HD) were computed. All evaluation metrics aside from the 3D
boundary distance metrics were computed using custom software in
MATLAB R2019a (MathWorks, Natick, MA, United States). 3D MSD and
HD were computed using the open-source program CloudCompare
(v2.10.2, Girardeau-Montaut). 2D slice segmentation time, reconstruc-
tion time, and overall 3D segmentation time for our algorithm were
recorded.

Automatically generated 2D FAC segmentations and corresponding
3D reconstructions were compared to the manual segmentations gener-
ated by rater 1 (SP). In addition, reconstructed 3D FAC surfaces gener-
ated by our algorithm were compared to manual segmentations
generated by a different rater (RD). All comparisons utilized the evalu-
ation metrics described above.

2.5. Statistical analysis

All statistical analyses were performed using GraphPad Prism 9.0
(GraphPad Software, Inc., San Diego, CA, USA). Distribution normality
was assessed using the Shapiro-Wilk test. The significance level was
chosen such that the probability of making a type I error was less than 5%
(p < 0.05). Comparisons between 2D transverse slice segmentation and
3D reconstructed segmentation accuracy as well as between the U-Net
and U-Netþþ architectures were completed using two-tailed paired t-
tests, or Wilcoxon matched-pairs signed-rank tests if normality assump-
tions were violated. FAC segmentation performance compared to rater 1
and rater 2 manual segmentations were subsequently compared using
two-tailed paired t-tests or Wilcoxon matched-pairs signed-rank tests.
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3. Results

Fig. 2 depicts 2D US segmentation results at various performance
levels. A comparison between manual segmentations and segmentations
completed using our method are shown in Fig. 3.

Tables 2 and 3 show results on healthy volunteer images for our 2D
transverse slice segmentations and the 3D surface reconstructions for the
absolute and signed metrics, respectively. For the U-Net, recall was the
only metric that showed statistically significant differences when
comparing 2D predictions to the corresponding 3D reconstructed seg-
mentations. In contrast, the U-Netþþ showed a significant reduction in
performance for the precision, MSD, and a/VPD metrics between the 2D
segmentations and the 3D reconstructed surface. Overall, the results
indicated that there was a decrease in performance after 3D recon-
struction, with decreases in recall, precision, and DSC. Interestingly, A/
VPD (%) and sHD (mm) were lower for the 3D reconstructions than the
2D segmentations when using the U-Net but were not found to be sta-
tistically significant. The U-Net outperformed the U-Net þþ on all the
tested metrics, with the exception of Hausdorff distance. When
comparing the resultant volume measurements to the manually
segmented volumes, the U-Net showed a larger percent difference for the
2D predictions than observed with the U-Netþþ. The opposite was true
for the 3D reconstructed results, where the U-Net showed a smaller
percent difference than the U-Netþþ. The Computation time was 0.029 s
(U-Net) and 0.088 s (U-Netþþ) for each 2D segmentation, with 10 2D US
slices per 3D US volume. Reconstruction time was 0.27 s for a total mean
3D segmentation time of 0.56 s (U-Net) and 1.15 s (U-Netþþ).

Tables 4 and 5 show results on knee osteoarthritis patient images for
our 2D transverse slice segmentations and the 3D surface reconstructions
for the absolute and signed metrics, respectively. For the U-Netþþ,
performance on all metrics decreased for 3D reconstructed surfaces
compared to 2D segmentations, while for the U-Net, all metrics apart
from recall and HD decreased in performance, similar to results seen in
healthy volunteers.

Table 6 shows the results of our 3D reconstructions compared to
manual segmentation for two different raters for healthy volunteer im-
ages. The overall mean volume was found to be 2103.1 � 368.2 mm3 for
the manual segmentations by rater 1 and 2033.4 � 487.4 mm3 for the
algorithmic 3D reconstructions. Rater 1 demonstrated a 10.4 � 6.0 mm3

and 9.54 � 10.4 mm3 mean volume percent difference between the
manual 3D segmentations and the algorithmic 3D reconstructions for the
U-Net and U-Netþþ, respectively, and rater 2 demonstrated a volume
percent difference of 14.2� 11.4 mm3 and 11.3� 4.8 mm3, respectively.
Paired sample t-tests indicated that none of the differences observedwere
statistically significant.
4

4. Discussion

While 3D US provides a cost-effective and accurate method for
assessing FAC status, time-consuming and difficult manual segmentation
of the FAC is required for each image. To ease the physician's burden and
reduce segmentation time, we have developed a 2D deep learning algo-
rithm with a 3D reconstruction approach allowing for fast and accurate
3D segmentation of the FAC in 3D US images of the knee.

Outputs shown in Fig. 3 highlight the impact of image artifacts such
as shadowing on segmentation performance. In the top row, a high-
performance case, the FAC boundary is clearly defined, with no shad-
owing present. As performance decreases, as shown in the middle and
bottom row, shadowing artifacts are more prevalent, which obstruct FAC
boundary visibility. Our trained U-Net is robust to some amount of
shadowing, as shown in the middle row where the algorithm accurately
segmented the FAC even in the presence of shadowing artifacts. In the
bottom row, a lower-performance case, the extensive shadowing resulted
in a thin algorithmic segmentation that does not agree as closely with the
manual gold standard. It is important to note that even in this poor-
quality image, the algorithm does not confuse nearby anatomy with
the cartilage, demonstrated by the lack of characteristic “islands” in the
segmentation.

We first compared the segmentation accuracy in 2D slices to the
reconstructed 3D surfaces. As shown in Table 2, the mean segmentation
performance on the 2D US slices was higher when compared to the 3D
reconstructed segmentations for both networks. While the agreement
between the manual 3D surface and our algorithmic 3D reconstruction is
excellent in most areas of the FAC, these results also highlight a limitation
of our 3D reconstruction approach. As seen in Fig. 3, the reconstruction
method produces a rectangular surface, cutting off three regions that can
be seen in the manual segmentations (Fig. 3). In addition, when
combining 2D predictions during the reconstruction process, a smooth-
ing filter was applied which may result in the loss of fine details from
each 2D prediction. These two considerations resulted in reduced per-
formance for metrics like recall, precision, and DSC. This smoothing
process proved a benefit for the signed and absolute boundary distance
metrics (MSD and HD) and A/VPD, as outliers were removed, resulting in
similar evaluation metric values between the 2D and 3D segmentations.
The mean recall metric showed the largest difference at almost 20% for
the U-Net results. This greatly reduced mean recall for the 3D recon-
structed surfaces is the result of increased false negatives or under-
prediction. Performance for the U-Net and U-Netþþ in both the 2D
segmentations and 3D reconstructed segmentations were very similar,
demonstrating no preferred network when segmenting healthy knee
images.
Fig. 2. Example femoral articular cartilage segmen-
tation results using our modified U-Net in healthy
volunteer knee ultrasound images. The original two-
dimensional ultrasound images, manual segmenta-
tions, and algorithm segmentations are shown in the
columns from left to right. Each row shows a different
performance level based on Dice similarity coefficient
(DSC), including mean plus one standard deviation
(top row), mean (middle row), and mean minus one
standard deviation (bottom row).



Fig. 3. Manual segmentations by rater 1 (A) and rater 2 (B) for a healthy volunteer knee US image. Resultant three-dimensional (3D) reconstructed surface generated
by our algorithm after two-dimensional predictions using the modified U-Net (C). The manual and algorithm segmentations registered and overlaid in 3D Slicer (D).

Table 2
Mean � standard deviation results comparing two-dimensional (2D) U-Net and U-Net þþ healthy participant segmentations on transverse ultrasound images to
subsequent three-dimensional (3D) reconstructed segmentations. The p-value corresponds to a comparison between 2D and 3D segmentation performance.

Method Segmentation Precision (%) Recall (%) DSC (%) MSD (mm) HD (mm) A/VPD (%)

U-Net 2D Transverse 83.1 � 4.6 91.5 � 5.4 87.1 � 4.6 0.22 � 0.10 1.06 � 0.46 10.1 � 4.7
3D Reconstruction 74.8 � 6.1 72.0 � 6.3 73.1 � 3.9 0.30 � 0.06 1.55 � 0.67 1.55 � 0.67
P-value 0.062 0.015 0.063 0.256 0.256 0.946

U-Netþþ 2D Transverse 82.4 � 4.9 85.6 � 3.6 83.8 � 2.9 0.33 � 0.10 1.04 � 0.16 6.73 � 3.9
3D Reconstruction 75.0 � 4.8 74.5 � 3.7 74.3 � 1.7 0.31 � 0.06 1.76 � 0.99 11.3 � 4.8
P-value 0.014 0.458 0.064 0.032 0.159 0.012

Table 3
Signed mean � standard deviation results for healthy knee participants
comparing U-Net and U-Netþþ two-dimensional (2D) deep-learning segmenta-
tions on transverse ultrasound images to subsequent three-dimensional (3D)
reconstructed segmentations. The p-value corresponds to a comparison between
2D and 3D segmentation performance.

Method Segmentation sA/VPD (%) sMSD (mm) sHD (mm)

U-Net 2D Transverse 10.1 � 4.71 0.10 � 0.04 1.06 � 0.46
3D Reconstruction �3.01 � 13.1 0.19 � 0.07 0.59 � 1.73
P-value 0.8371 0.0566 0.5829

U-Netþþ 2D Transverse 3.92 � 7.79 0.08 � 0.13 0.56 � 1.18
3D Reconstruction 28.2 � 8.09 0.27 � 0.07 1.56 � 0.43
P-value 0.021 0.002 0.007

Table 5
Signed mean � standard deviation results for knee osteoarthritis patients
comparing U-Net and U-Netþþ two-dimensional (2D) deep-learning segmenta-
tions on transverse ultrasound images to subsequent three-dimensional (3D)
reconstructed segmentations. The p-value corresponds to a comparison between
2D and 3D segmentation performance.

Method Segmentation sA/VPD (%) sMSD (mm) sHD (mm)

U-Net 2D Transverse 13.4 � 9.41 0.14 � 0.05 1.14 � 0.45
3D Reconstruction 30.1 � 15.6 0.33 � 0.09 1.91 � 0.57
P-value 0.014 0.025 0.038

U-Netþþ 2D Transverse 10.4 � 7.58 0.11 � 0.04 0.69 � 1.01
3D Reconstruction 31.5 � 13.9 0.34 � 0.07 2.02 � 0.64
P-value 0.025 0.007 0.049
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Assessing the performance of our segmentation algorithm on KOA
patient images (Tables 4 and 5) demonstrated higher mean performance
compared to healthy knee images in key metrics such as DSC, precision,
and recall. Performance between the U-Net and U-Netþþ was approxi-
mately the same, aligning with the results seen for healthy images. In
contrast to the healthy knee images, the difference between the 2D and
Table 4
Mean� standard deviation results comparing two-dimensional (2D) U-Net and U-Netþ
and subsequent three-dimensional (3D) reconstructed segmentations to the correspo
parison between 2D and 3D segmentation performance.

Method Segmentation Precision (%) Recall (%)

U-Net 2D Transverse 83.9 � 2.6 94.7 � 1.7
3D Reconstruction 73.2 � 8.6 94.3 � 1.3
P-value 0.001 0.598

U-Netþþ 2D Transverse 84.5 � 5.8 93.0 � 1.0
3D Reconstruction 72.7 � 8.0 95.0 � 1.1
P-value 0.002 0.005

5

3D results were also smaller for the KOA patient images. These observed
differences may be due to several reasons. First, we have a small sample
size of four KOA patient 3D US images, so high image quality or cartilage
boundary visibility in these images compared to the healthy knee images
may have lead to higher segmentation performance. In addition, the
same US scanner and operator were used to acquire the patient images, so
þ segmentations on knee osteoarthritis patient 2D transverse ultrasound images
nding manual gold standard segmentations. The p-value corresponds to a com-

DSC (%) MSD (mm) HD (mm) A/VPD (%)

88.9 � 1.6 0.23 � 0.03 1.28 � 0.35 13.4 � 9.4
82.3 � 6.1 0.44 � 0.13 1.91 � 0.57 30.1 � 15.6
0.007 <0.001 0.099 0.014
88.4 � 3.5 0.24 � 0.03 1.18 � 0.43 10.4 � 7.6
82.2 � 5.7 0.43 � 0.11 2.02 � 0.64 31.4 � 13.9
0.011 0.037 0.038 0.007



Table 6
Mean � standard deviation results comparing algorithmic three-dimensional (3D) reconstructed femoral articular cartilage surfaces to manual 3D segmentations
generated by rater 1 and rater 2 for healthy volunteer knee images.

Segmentation Recall (%) Precision (%) DSC (%) MSD (mm) HD (mm) A/VPD (%)

Rater 1 U-Net 72.0 � 6.3 74.8 � 6.1 73.1 � 3.9 0.29 � 0.05 1.55 � 0.67 10.4 � 6.0
U-Netþþ 70.5 � 3.1 74.5 � 2.7 72.3 � 1.6 0.30 � 0.03 1.29 � 0.27 9.54 � 10.4

Rater 2 U-Net 71.4 � 5.7 74.3 � 8.1 72.3 � 2.8 0.32 � 0.15 2.69 � 2.92 14.2 � 11.0
U-Netþþ 74.5 � 3.7 75.0 � 4.8 74.4 � 1.7 0.31 � 0.06 1.76 � 0.99 11.3 � 4.8
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the algorithm was trained with the same image and voxel size. These
results demonstrate the ability of our algorithm to accurately segment the
cartilage in clinical US images of patients with KOA, providing the po-
tential for efficient monitoring of KOA.

Table 6 shows a comparison of segmentation performance when two
different raters provided gold-standard manual segmentations. Rater 1
provided manual segmentations for the training dataset, while the
network had not seen any manual segmentation from rater 2 during
training. Manual segmentations were similar between raters with a
percent difference in mean volume of only 3.4%. Automated segmenta-
tion performance was also very similar regardless of rater, with a paired t-
test showing no statistically significant difference. Difference in mean
VPD comparing the algorithmic segmentation to raters 1 and 2 was 3.8%
for the U-Net and 1.8% for the U-Netþþ, nearly matching the percent
difference in mean volume between raters (3.4%). This highlights the
robustness of our algorithm to the manual rater. The largest difference in
mean was observed for the HD metric, likely due to the presence of
outliers based on slight differences in segmentation technique between
raters. As reported in Papernick et al. [13], manual segmentation of the
FAC surface in 3D US images takes approximately 20–30 min per knee.
With a total segmentation time of only 0.56 s for the U-Net or 1.15 s for
the U-Netþþ, our deep learning algorithm offers a vast improvement,
potentially allowing for FAC segmentation during the initial imaging
exam which could speed up diagnosis time.

Recent work by Kompella et al. [7] reported on segmentation of FAC
from 2D knee US images using a mask R–CNN architecture. A 2D
mask-R-CNN was trained using 512 2D US slices taken from two 3D US
volumes, with a testing dataset of 55 2D US images, similar in size to our
training and testing dataset. Best results were achieved with Gaussian
filter preprocessing and pretraining with the COCO 2016 image dataset,
reporting a mean DSC of 80% with a maximum of 88%. Comparatively,
our modified U-Net approach with no preprocessing and no pretraining
demonstrated mean 2D DSC scores of 87.1% with a maximum of 93.5%,
approximately 7% higher. In their study three-dimensional ultrasound
images were acquired using a 4D ultrasound probe (13-5 MHz frequency)
whereas our 3D images were acquired using a 14L5 linear transducer and
then interpolated to create 3D reconstructions. Differences in image
resolution may be a contributing factor to the variation observed in the
DSC scores. Our patients were also scanned at 90� of flexion, in com-
parison to Kompella et al. [7] who scanned participants at 30� of knee
flexion. Increased flexion of the knee opens the joint further and allows
for better access to the cartilage. Critically, our 3D reconstruction method
allowed for complete 3D segmentation of the FAC in 3D US images where
Kompella et al. [7] were limited to 2D segmentations. This improved
segmentation performance with a similar dataset size and ability to
complete 3D segmentations demonstrates the advantage of our method.

While we have demonstrated promising performance with our auto-
matic FAC segmentation method, we address several limitations.
Although our testing dataset included manual segmentations from two
different raters, the training dataset used gold standard manual seg-
mentations from only one rater. While we could assess the robustness of
our method to different raters, we could not assess the impact of inter- or
intra-rater variability during training. Future work will explore the in-
clusion of multiple raters in the training dataset, which may improve
algorithm robustness. In addition, the training dataset of 20 3D US im-
ages, resliced into 200 2D US images, is small in the context of deep
6

learning applications. More importantly, all images were generated using
the same US probe and system, with matching image and voxel size. This
lack of diversity may limit the generalizability of our approach. To
address this limitation, future work will utilize a larger training dataset,
including data from multiple US machines, scanning protocols, and
centers. This will improve algorithm robustness, ultimately improving
the clinical translation potential. Our dataset of clinical images was
small, so future work will look to expand this dataset, including aug-
menting the training dataset with clinical images. Results acquired from
an expanded KOA patient study would enable us to determine how the
pathological changes in cartilage tissue impact the accuracy and preci-
sion of our approach as well as improving the robustness and general-
izability of our algorithm. Another limitation is our 3D reconstructions
were all completed using 10 transverse 2D US slices. While this number
was chosen due to constraints from the transducer elevational resolution
and is suitable for the largely homogenous images in our healthy
volunteer population, future work could explore the utilization of more
2D planes. This may be particularly important for KOA patient images, as
pathology and tissue irregularities may be smaller than our 4 mm
spacing, necessitating additional 2D slices with smaller spacing. Due to
our low per-slice computation time, this change would result in minimal
addition to the overall 3D segmentation time. Additionally, our current
imaging technique did not provide a method to allow for imaging the
same region of the knee in a follow-up procedure in a longitudinal study
and did not provide a method for standardizing the region of the knee to
be imaged for a cross-sectional study. To address these limitations, our
future work will include a modification of the system, which will allow us
to replicate exact knee flexion and position for subsequent follow-up
examinations. In addition, we will also develop an image registration
method to overlay the 3D US images of the anterior femoral cartilage to
ensure that the same region of cartilage is quantified.

The greatest advantage of integrating deep learning technology into
our 3D US system's image processing workflow is the ability to recon-
struct patient cartilage volumes rapidly, accurately, and precisely. The
addition of our proposed algorithm allows the volume reconstruction
process to be conducted at a patient's bedside without requiring addi-
tional post-image processing or extensive additional training for clini-
cians. Using our algorithm decreases the segmentation processing time
substantially from 20 to 30 min for manual segmentation, to approxi-
mately 0.56 s per knee cartilage [13]. This not only gives clinicians a safe,
cost-effective, and non-invasive method for assessing FAC status but also
provides a time-efficient method for evaluating and comparing volumes
longitudinally. The importance of this new addition to our system is the
potential impact it may have on the workflow of orthopedic, arthritis,
and primary care clinics. It would allow clinicians to obtain 3D US images
without the added complexity of having to manually process image
volumes and surfaces or adding additional discomfort to patients. Its
integration would relieve many of the limitations associated with current
clinical methods for assessing cartilage health such as qualitative grading
scales used in 2D US. The Kellgren-Lawrence grading scale is used to
assess the progression of KOA via 2D US; however, it is insensitive to
change and relies on indirect characteristics of cartilage thinning [21].
MRI-based volume measurement methods are far superior to radiog-
raphy, but they are severely limited by cost, accessibility, and
patient-related factors such as movement. This prevents the generalized
use of MRI for quantitative assessment and monitoring of KOA.
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5. Conclusions

This study investigated the development and validation of an auto-
matic FAC segmentation approach for 3D US images of the knee in both
healthy volunteers and KOA patients, utilizing a 2D deep learning ar-
chitecture with 3D reconstruction. A fast and accurate FAC segmentation
method would drastically reduce segmentation time, expediting clinical
diagnosis times and potentially allowing for efficient longitudinal
monitoring of KOA with 3D US.

Studies involving humans or animals

Clinical trials or other experimentation on humans must be in
accordance with the ethical standards of the responsible committee on
human experimentation (institutional and national) and with the Hel-
sinki Declaration of 1975, as revised in 2000. Randomized controlled
trials should follow the Consolidated Standards of Reporting Trials
(CONSORT) guidelines and be registered in a public trials registry.
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