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Abstract

The Mnemonic Similarity Task (MST: Stark et al., 2019) is a modified recognition memory 

task designed to place strong demand on pattern separation. The sensitivity and reliability of the 

MST make it an extremely valuable tool in clinical settings, where it has been used to identify 

hippocampal dysfunction associated with healthy aging, dementia, schizophrenia, depression, 

and other disorders. As with any test used in a clinical setting, it is especially important for 

the MST to be administered as efficiently as possible. We apply adaptive design optimization 

methods (Lesmes et al., 2015; Myung et al., 2013) to optimize the presentation of test stimuli in 

accordance with previous responses. This optimization is based on a signal-detection model of an 

individual’s memory capabilities and decision-making processes. We demonstrate that the adaptive 

design optimization approach generally reduces the number of test stimuli needed to provide these 

measures.
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Introduction

The Mnemonic Similarity Task

The Mnemonic Similarity Task (MST: Stark et al., 2015, 2019) is a recognition memory 

task that requires people to identify over a series of trials whether the currently presented 

stimulus has been presented previously. The key innovation of the MST is that it does not 

involve simply old and new stimuli, but also incorporates different levels of lure stimuli. 

These are stimuli that vary in how similar they are to ones that have been presented. They 

should be correctly classified as new stimuli, but place strong demands on pattern separation 

in memory to distinguish them from previous stimuli.

Address correspondence to Michael D. Lee, Department of Cognitive Sciences, University of California Irvine, Irvine CA 92697-5100 
USA. mdlee@uci.edu. 

HHS Public Access
Author manuscript
J Math Psychol. Author manuscript; available in PMC 2022 December 02.

Published in final edited form as:
J Math Psychol. 2022 June ; 108: . doi:10.1016/j.jmp.2022.102665.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are several versions of the MST (Stark et al., 2019), but the foundational version uses 

separate study and test phases. Participants first study all of the stimuli to be remembered, 

often through an incidental encoding task, such as classifying the stimuli as indoor versus 

outdoor. They then do a series of test trials, involving a mix of old, lure, and new 

stimuli. Alternatively, in continuous versions of the MST, a single block of stimuli is 

presented, and participants must indicate whether they recognize the current stimulus as one 

previously encountered in the sequence. In some versions of the MST, participants are given 

three response options: “old”, “similar”, and “new”. In other versions, a more traditional 

recognition memory approach is used, and the only possible responses are “old” and “new”.

The introduction of the similar lure stimuli is argued to make the MST highly sensitive and 

reliable as a measure of memory for specific details of an event rather than simple “gist”. 

This makes it a valuable tool, especially in clinical settings, and in neuropsychological 

settings, for identifying hippocampal dysfunction. The MST has been used in the context of 

understanding memory impairment associated with healthy aging, dementia, schizophrenia, 

depression, and other disorders. As for any clinical test, however, it is important that the 

MST be administered as efficiently as possible. Especially with clinical sub-populations, 

the goal is to measure recognition memory as precisely as possible with as few trials as 

possible. One way to achieve this is through Adaptive Design Optimization (ADO), which is 

a statistical approach for improving the efficiency and usefulness of experiments.

Adaptive Design Optimization

ADO has its foundations in the field of statistics, but has been successfully applied in 

cognitive science to improve human experimentation. The key idea is that ADO provides a 

principled method for deciding, as an experiment progresses, how it should be structured. 

In general, this means making decisions about the nature and timing of sequences of trials 

within an experiment. Concretely, ADO often means deciding which of a set of available 

stimuli should be the next one presented, The design optimization is done with respect to 

some explicit criterion related to the scientific goals of the experiment. This may be trying 

to find empirical evidence to evaluate competing models, or to learn as efficiently and 

accurately as possible about psychological properties measured by the experiment.

There are several tutorials on ADO for cognitive science (Cavagnaro et al., 2010, 2011; 

Myung et al., 2013), and a general software capability for incorporatng ADO into 

psychological experiments is provided by Yang et al. (2021). Specific applications include 

experiments for measuring developmental states (Tang et al., 2010), bandit problems (Zhang 

& Lee, 2010), probability weighting functions in choice behavior (Cavagnaro et al., 2013), 

temporal discounting (Cavagnaro et al., 2016), and visual perception (Kim et al., 2014). The 

closest application to ours is provided by Lesmes et al. (2015), who focus on optimizing 

the inference of signal detection theory parameters for a number of standard psychophysical 

tasks, under the assumption there are only signal and noise stimuli.

Our goal is to apply ADO to the MST, with its introduction of multiple levels of similarity 

of lure stimuli, so that it measures memory more accurately and efficiently. The focus is not 

on comparing competing models of MST behavior, but rather to improve the measurement 

efficiency of the MST with respect to an assumed cognitive model. This focus means we 
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develop variants on the standard ADO statistical machinery as well as a cognitive model of 

individual behavior on the MST.

Overview

The structure of the remainder of this article is as follows. We start by describing the 

previous MST data that we use and a cognitive model of the task based on signal detection 

theory. We then develop an ADO method to optimize the order in which stimuli are 

presented during the testing phase of the MST. We apply this method to the data and 

show that ADO generally improves how quickly the parameters of the model, relating to the 

memory discriminabilities individuals have and the decision criterion they use, are able to be 

inferred. We conclude by discussing further possible improvements, related to development 

of both the cognitive model and the ADO methods themselves.

Data

We use data reported by Stark et al. (2015) using train-test MST design and “old” and 

“new” response options, with five different levels of lure stimuli. In previous development 

of the MST, up to six independent sets of 192 image pairs have been created, each with a 

relatively consistent distribution of similarity of the lure versions. The similarity rating for 

each individual lure has been previously derived empirically by determining in a sample 

of individuals how often participants erroneously believe the lure to be a repeated item. 

The experiment involves 20 young participants (mean age 21 years, range 19–24 years; 13 

females and 7 males) and 20 elderly participants (mean age 79.5 years, range 66–87 years; 

15 females and 5 males).

Figure 1 summarizes the basic properties of the data, showing the distribution of the 

proportion of new responses for each stimulus type. The points represent the median 

proportion of correct responses for each stimulus category, while the box and whiskers 

represent the 75% and 95% quantiles. Performance on the lures shows a clear differentiation 

of the performance of young people, who tend to be more accurate, and elderly people, 

who tend to be less accurate. It is interesting to note that, consistent with other results in 

the memory and aging literature (e.g., Ferguson et al., 1992; Koutstaal et al., 1999) this 

differentiation is not clear in the old and new stimulus types that would be the only ones 

included in a standard recognition memory task.

Cognitive Model

Adaptive design optimization requires a cognitive model. Signal detection theory (SDT: 

Green & Swets, 1966; MacMillan & Creelman, 2004) provides a widely-used and successful 

framework for modeling people’s performance on recognition memory tasks (Lockhart 

& Murdock, 1970). The key assumption is that, when a test stimulus is presented, the 

output of various memory processes can be summarized in terms of a single measure of 

recognition strength. People then make an “old” or “new” decision depending on whether 

the recognition strength is greater or lesser than some criterion.
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We use an extended two-response classification form of the SDT model of recognition 

memory (MacMillan & Creelman, 2004, Ch. 5), adapted to the MST with five levels of 

lures. This model is shown in Figure 2. It uses the unusual convention of treating the old 

stimuli as the noise distribution centered at zero and the new stimuli as signals with various 

levels of novelty, starting with the most similar lure 1 and ranging up to completely new 

stimuli. While atypical, this can be thought of as detecting a “novelty” signal, rather than 

detecting a “successfully retrieved” signal. Novelty detection is a well-known construct in 

the neuroscience of memory (e.g., Brown & Aggleton, 2001) and framing the problem 

in this manner has advantages for our model. Our framing means that mental samples 

from the stimulus distribution that are greater than the decision criterion k correspond to 

“new” responses, and generate either correct rejections or misses, depending on whether the 

stimulus is really new or old. Similarly, mental samples that fall below the criterion generate 

“old” responses that are either false alarms or hits.

We implement this SDT model as a Bayesian graphical model in JAGS Plummer (2003). 

JAGS code for the model is available in the supplementary information. Throughout this 

article, we apply the model using 4 chains with 5000 burnin and 10, 000 posterior samples. 

The graphical model is shown in Figure 3. Beyond the core SDT assumptions, we use a 

latent-mixture approach to allow for a low base-rate of responses that correspond to guessing 

or inattentive decision making (Lee, 2018; Zeigenfuse & Lee, 2010).

Formally, the behavior of the participant on trial t is yt = 1 if they responded “new” and 

yt = 0 if they responded “old”. This response is modeled as yt ~ Bernoulli (θt), where the 

probability of a new response θt can follow one of three possibilities:

θt =

1
2 if zt = 1

Φ(k) if zt = 0, st =  old
Φ k − dstia′ if zt = 0, st =  lure 1, …,  lure 5,  new .

(1)

where Φ(·) is the cumulative Gaussian function. The θt = 1
2  possibility corresponds to 

contaminant behavior and is followed if the latent binary indicator parameter zt = 1. These 

latent indicators are independent for each trial zt ~ Bernoulli(ϕ), with a base-rate ϕ that has a 

prior favoring relatively low probabilities of contamination ϕ ~ beta(1, 10). If the trial is not 

a contaminant trial, the probability of a “new” response follows SDT according to whether 

the present stimulus is old or new.

The discriminability the participant has for a stimulus of type c is dc′, where c ∈ {old, lure1, 

lure2, lure3, lure4, lure5, new}. These discriminabilities are given order constrained priors, so 

that

dc′ Gaussian 0, 1
32 :dlure 1′ < … < dlure 5′ < dnew ′ . (2)
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The decision criterion independently has prior k Gaussian 0, 1
32 . The priors on d′ and k are 

intended to allow for a plausible range of values on the discriminability scale defined by 

the unit variances of the target and noise distributions. The assumed standard deviation of 3 

in the prior means, for example, that most d′ and k values will be less than 3 (within one 

standard deviation), values as high as 6 are plausible (within two standard deviations), but 

values greater than 9 are very unlikely (beyond three standard deviations).

We applied the model to the Stark et al. (2015) behavioral data in order to test its descriptive 

adequacy, and to examine the assumption of an additional contaminant process. In terms 

of descriptive adequacy, the mode of the posterior probability of θt matched the observed 

response yt on an average of 83% of trials for the young participants, and ranged between 

77% and 93% agreement for individual participants. The mean agreement for elderly 

participants was 84% and ranging between 77% and 92% for individual participants. We 

interpret this as an adequate level of descriptive adequacy.

To evaluate the contaminant process assumptions, we calculated Bayes factors for each 

participant comparing the basic model without the contaminant process to the extended 

model with the contaminant process. Because the basic model is nested within the extended 

model if the base-rate ϕ = 0 (i.e., there are no contaminant trials), these Bayes factors can 

be estimated using the Savage-Dickey method (Wetzels et al., 2010). A total of 10 young 

participants have Bayes factors greater than 3 in favor of the contaminant model, 5 have 

Bayes factors greater than 3 in favor of the basic model, and the other 5 participants have 

inconclusive Bayes factors. A total of 11 elderly participants have Bayes factors greater than 

3 in favor of the contaminant model, 2 have Bayes factors greater than 3 in favor of the basic 

model, and the other 7 participants have inconclusive Bayes factors. The Bayes factors in 

favor of the more general contaminant model are generally larger (Morey et al., 2016), often 

over 10, and ranging as high as 40. The largest Bayes factor in favor of the basic model is 

about 4. Overall, we interpret these results as meaning that there is justification in terms of 

descriptive adequacy for including the contaminant process.

Adaptive Design Optimization

The goal of our application of ADO is to choose the next stimulus so that the 

expected information it provides about an individual’s recognition parameters is maximally 

informative. The relevant parameters are the discriminabilities for each stimulus type and the 

decision criterion, which we represent in a consolidated way

ψ = dlure 1′ , …, dlure ′ , dnew ′ , k . (3)

The current posterior distribution for ψ after t trials is pt = p(ψ | y1:t). The next 

stimulus can be chosen from type c, and will result in the future posterior distribution 

pt + 1 = p ψ ∣ y1: t, yt + 1
c . The y notation makes clear that this last choice is not part of the 

observed behavioral data, but is being considered as a possible behavior in response to a 

stimulus of type c being presented on trial t + 1. If the participant were to decide “new” 
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for trial t + 1 then the updated posterior distribution would be pt + 1, n = p ψ ∣ y1: t, yt + 1
c = 1 . 

Alternatively, if the participant were to decide old, the updated posterior distribution would 

be pt + 1, o = p ψ ∣ y1: t, yt + 1
c = 0 .

We measure the information gained from the additional behavioral data on trial t + 1 using 

Kullback-Leibler divergence. This is an information theoretic measure of the difference 

between two distributions and is well suited to our research goals. ADO often uses mutual 

information or Bayes factors as the key component in a utility function, because the goal is 

to choose the stimuli that are the most likely to discriminate between two or more competing 

cognitive models of behavior. Bayes factors provide a measure of how much evidence data 

provide for one model over another, and so helps choose stimuli that distinguish the models. 

Mutual information provides a way to measure model mimickry, and so helps choose stimuli 

that provide a “critical experiment” for which the models make different predictions. In 

contrast, we rely on the signal detection theory model and aim to infer the discriminability 

and criterion parameters as quickly as possible. Kullback-Leibler divergence provides a 

direct and principled measure of the change in the joint posterior distribution of these 

parameters from trial to trial. In this way, our approach follows that previously developed by 

Lesmes et al. (2015) for the same purpose.

Formally, if the participant responded “new”, the measured change in information from trial 

t to t + 1 would be DKL pt + 1, n ∥ pt  and if the participant responded “old” it would be 

DKL pt + 1, o ∥ pt . The model predicts the probability of an “new” versus “old” response for 

the stimulus on trial t + 1 by marginalizing over the parameters ψ. This means that the 

probability of a “new” response is

π = p yt + 1
c = 1 ∣ y1: t = ∫ψ

p yt + 1
c = 1 ∣ ψ p ψ ∣ y1: t dψ . (4)

The expected information gain from presenting a stimulus of type c is the weighted sum of 

the “new” and “old” possibilities:

E DKL pt + 1 ∥ pt = πDKL pt + 1, n ∥ pt + (1 − π)DKL pt + 1, o ∥ pt . (5)

The final step is to maximize over c ∈ {old, lure1, …, lure5, new} to determine which 

stimulus should be chosen as

argmax
c

E DKL pt + 1 ∥ pt . (6)

Throughout our implementation, we approximate Kullback-Leibler divergence by assuming 

the joint posterior distribution of ψ is multivariate Gaussian, which gives a closed form for 

the n = 7 parameters of

DKL = 1
2 tr Σt + 1

−1 Σt + ψt + 1 − ψt
TΣt + 1

−1 ψt + 1 − ψt − n + ln Σt + 1
Σt

. (7)

Villarreal et al. Page 6

J Math Psychol. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



In applying this approximation, we use posterior expectations for both the mean ψ and 

for the covariances between discriminabilities in Σ, but assume no covariance between the 

criterion and the discriminabilities. One limitation of the approximation is that it does not 

incorporate the truncation that follows from the order constraints on the discriminabilities. 

These order constraints are only incorporated in the inference that produces the expectations 

and covariances, In general, however, as more trials are observed, the order constraints have 

less impact on the inferred joint posterior, because the data themselves provide information 

that orders and separates the discriminabilities for the different stimulus types.

Evaluation of ADO Method Using Behavioral Data

We evaluate the ADO method on the Stark et al. (2015) experimental data by having 

ADO reorder the 192 trials that each participant completed. ADO was used to generate a 

hypothetical order in which the participant would have encountered those trials if it had 

been applied in their experimental setting. Note that this approach means that the final 

inferences about ψ using ADO will be the same as those for the original experimental order, 

because both in the end will have seen the same 192 responses on the same 192 trials. Our 

evaluation focuses on whether the order that ADO generates results in more quickly making 

inferences that are close to those that will eventually be made once all of the data have been 

incorporated.

To assess the performance of the ADO order, we again use Kullback-Leibler divergence, 

but now to measure the difference between the final posterior distribution ψ* and the 

posterior after the trial t as DKL ψtado ∥ ψ∗ . This can be compared to the experiment order 

DKL ψt
exp ∥ ψ∗ .

Individual-Level Results

Figure 4 summarizes the comparative performance of the ADO method for a single 

participant from the young group. The first seven panels show the change in the marginal 

posterior distributions for the criterion and the discriminabilities for the lure and new 

stimulus types. The 95% credible interval of the marginal posterior for each parameter 

under the actual experimental ordering of stimuli is shown by the shaded yellow region. 

The 95% credible interval for the hypothetical ADO ordering is shown by the blue lines. 

The bottom-right panel shows the change in overall Kullback-Leibler divergence for both 

orderings. The broken line shows the first trial at which ADO was not able to use a stimulus 

from the highest-ranked type.

The bottom right panel shows that the ADO order more quickly leads to a posterior 

distribution that is close to the final one, especially from about trials 20 to 50. Looking 

at the individual parameters, it is clear that quicker inference about the discriminability of 

lure 4 stimuli is the main cause of this improvement. During trials 20 to 50, the ADO 

ordering leads to a much better inference about the discriminability of these stimuli.

Figure 5 summarizes, in the same way, the comparative performance of the ADO method 

for a single participant from the elderly group. Once again, the bottom-right panel shows 

Villarreal et al. Page 7

J Math Psychol. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that the ADO order more quickly leads to the final posterior distribution. This advantage 

is evident after a few trials and is maintained until about 60 trials have been completed, 

which is well after the point at which the ADO method was no longer always able to use its 

highest-ranked option. For this elderly participant, it seems clear that better early inferences 

about lure 5 stimuli is the main reason for the improved ADO performance.

Overall Performance

The results in Figures 4 and 5 are representative of those found for all participants. The 

results for all participants are provided in the supplementary information and show that 

ADO usually outperforms the experimental order, especially early in the trial sequence. 

Sometimes the improvement is large, often it is of the magnitude shown by the two 

highlighted participants, and there are one or two exceptions.

Figure 6 shows a summary of the performance for young and elderly participants, in terms 

of the overall Kullback-Leibler measure. In both panels, the shaded yellow regions show the 

interquartile range for the experimental order and the solid yellow line shows the median 

across all participants in the group. In the left panel, the shaded blue region and solid 

blue line show the interquartile range and median for the ADO order applied to young 

participants. In the right panel, the shaded red region and solid red line show the interquartile 

range and median for the ADO order applied to elderly participants. For both groups of 

participants, the results show an overall improvement resulting from the ADO ordering of 

the trials.

Figure 7 provides another way of comparing the performance of the ADO method to the 

original experimental order. It summarizes the distribution of the number of trials each 

method needs to reduce the KL divergence measure to 50%, 55%, …, 95% of its final 

value, when all of the trials are incorporated in parameter inference. Circular markers 

show the mean number of trials and error bars show interquartile intervals. The ADO 

method consistently performs slightly better in reducing KL divergence to about 80% of its 

final value for both young and elderly participants. It performs much better in achieving 

the remaining reduction after about 80%. Figure 7 also has the advantage of allowing 

interpretable statements to understand ADO performance in absolute terms. For example, 

the ADO ordering reduces the original KL diverge to 90% of its final value on average in 

about ?? [15ish] trials. This compares to about ?? (45ish) being needed using the original 

experimental orders.

The Importance of Contaminant Modeling

Most previous applications of ADO in cognitive science do not incorporate contaminant 

processes in the cognitive models being used or compared. The one exception is provided 

by Lesmes et al. (2015), who assumed a fixed proportion of two percent of trials are lapse 

errors. Their modeling does not identify which individual trials involved these lapses but 

simply assumed they were equally likely to be false alarms and misses. Our approach, 

based on a latent-mixture model that makes inferences about contamination trial by trial, is 

considerably more detailed, which raises the question of whether it is necessary or useful.
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The model infers a non-negligible number of contaminant trials for many participants. The 

average is 5.9 trials for young participants, ranging from 0 to 26 trials at the individual 

level, and 9.5 for elderly participants, ranging from 1 to 23 trials at the individual level. 

If the contaminant process is removed, and these trials are not identified, ADO produces 

orders that generally do not improve upon the experimental order. This is not a fault 

in the logic of ADO, but rather an inadequacy in how the discriminability and criterion 

parameters are measured by the cognitive model. Figure 8 shows a concrete example of this 

different assessment for the elderly participant considered in Figure 5. The results in Figure 

8 show the inferences about the discriminabilities and decision criterion, and the overall KL 

divergence, using the same cognitive model but without the contaminant process.

Through the first 170 or so trials in the ADO order, this elderly participant has been 

observed to be as accurate in responding to new stimuli. This leads the ADO method 

to infer a large discriminability and to expect their future responses also to be correct. 

This expectation, in turn, gives the presentation of new stimuli a low priority in terms of 

expected information. The participant, however, has a single contaminant response to a new 

stimulus—a momentary lapse during which the participant decides “old”—that proves to 

be extremely surprising. It causes a large decrease in the inferred discriminability for new 

stimuli when it is encountered around trial 170. According to the KL measure by which 

the ADO ordering is assessed, this sudden change appears meaningful, and the ADO order 

is judged to have performed poorly for not prioritizing a stimulus type that led to this 

important update.

Figure 8 does not represent an isolated occurrence in our data. This occurs for the majority 

of both young and elderly participants. For this reason, the ability to identify specific 

contaminant trials in a principled way is an important part of the good performance of 

the ADO method. An interesting follow-up question is whether allowing for contaminant 

responses would continue to be important if the ADO approach was able to reduce the MST 

to a small number of trials. It might be that contaminant behavior mostly occurs on later 

trials as the participant loses attention or motivation. Our results suggest that this is not the 

case. On average, 22% of the contaminant trials inferred for young participants occur within 

the first 64 trials (i.e., the first third of the task). For elderly participants, the average is 41%, 

which means that contaminant behavior occurs disproportionately early.

Stimulus Selection

One way to understand the performance of ADO is to look at the sequence of stimuli it 

chooses, in terms of the stimulus types. Figure 9 shows this information for the same young 

participant considered in Figure 4. Each panel corresponds to a different stimulus type. 

The lines show the cumulative distribution of the trials at which stimuli of that type were 

presented, with blue lines corresponding to the ADO order, and yellow lines corresponding 

to the experimental order. The circles on the ADO indicate that the presented stimulus was 

the one with the greatest expected information gain.

As a concrete example, consider the panel for lure 4 stimuli. Under ADO, the first lure 4 

stimulus was presented after about 10 trials, and this started a sequence of presenting nine 

more lure 4 stimuli in the next 10 trials. At this point, all of the available lure 4 stimuli had 
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been presented. Later in the experiment, however, starting around trial 65, the ADO method 

found lure 4 stimuli again to be the highest priority. Similar patterns are seen for lure 1 and 

lure 5 stimuli, which ADO prioritized and exhausted relatively early in the experiment. New 

stimuli, in contrast, are rarely the first priority for ADO, and are mostly presented in the final 

trials, when they are the only remaining stimuli.

Recall that the improved performance of ADO for this participant, as shown in the analysis 

in Figure 4 largely resulted from improved inference about the discriminability of lure 4 

stimuli. It is clear from Figure 9 how ADO achieves this. It also seems likely based on 

Figure 9 that ADO performance would be improved further if more lure 4 stimuli, and 

perhaps also lure 1 and lure 5 stimuli, had been available. These stimuli could replace the 

new stimuli. Intuitively, this young participant had no difficulty identifying new stimuli and 

so there was no need to continue to test their abilities. Those trials would have been better 

focused measuring in a more fine-grained way their ability to discriminate the lures.

This set of stimulus order findings for a single participant is highly representative of what 

is found across all participants in both age groups. The stimulus order analysis for every 

participant is provided in the supplementary information, but Figure 10 provides a summary. 

It shows the average proportion of each stimulus type used after every trial for both the 

young and elderly participant groups. It is clear that, for both groups, the new stimuli are 

generally given the lowest priority, and old stimuli are also presented after lure stimuli. 

It is interesting to note that lure 5 stimuli are generally presented the earliest for elderly 

participants, but lures that are more similar to studied stimuli are emphasized for young 

participants. This pattern is consistent with how challenging highly similar lures are for 

older participants and how easy very different lures are for younger participants.

Overall, our results suggest that, for most participants, having one-third of the trials present 

new stimuli is inefficient, because they are rarely the most likely to provide the most 

information. For many participants, having one-third old stimuli is also too many. The 

ADO order usually focuses quickly on lure stimuli that are at the inflection points between 

stimulus similarity and discriminability. These are the important stimuli to measure well to 

understand how people’s memory performs across the range of stimuli considered in the 

MST.

A Simulated Evaluation for the MST Without Stimulus Restrictions

To explore how ADO could improve inferences if it was not restricted in the available 

stimuli, we conducted a simulation study. We used the three young and three elderly 

participants with 25th, 50th, and 75th percentile accuracy within their group to represent 

low-, average-, and high-accuracy individuals. We then simulated the testing phase of the 

MST using the posterior distributions of these participants to generate behavioral data. 

The simplest approach would have been to use the posterior means as fixed values to 

generate the behavior of each simulated participant. While using single “ground truth” 

values in simulation studies is common practice in cognitive modeling, it can be argued to 

be unrealistic. Real participants almost certainly fluctuate over 192 trials in their ability to 

discriminate and recognize stimuli and their decision strategies. Assuming fixed parameters 
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thus generates behavior that lacks real-world variability, especially given that the SDT model 

is a simplified approximation to the cognitive processes used. Accordingly, we chose to use 

a distribution of values as the ground truth for each participant.

Specifically, we created Gaussian distributions for the discriminabilities and criterion of 

each participant and, on each trial, sampled specific d′ and k values from these distributions 

to generate an “old” or “new” response to the presented stimulus according to the model. 

The Gaussian distributions were defined by the inferred posterior mean of the participant 

and the inferred standard deviation of the participant’s observed behavioral data, but with 

the standard deviation reduced. The motivation for reducing the standard deviation was that 

the ground truth distribution conceptually represents the “true” underlying distribution for 

the participant. The inference from the MST task is based on a limited number of trials 

and so has uncertainty beyond the inherent variability in the true memory discriminabilities 

and decision criteria used by the participant. Reducing the variance of the parameters used 

to simulate data is intended to remove this uncertainty. We chose to reduce the standard 

deviations by a factor of four. There is nothing principled about this choice, but it seems like 

a reasonable approximation. The key outcome is that simulated participant behavior is based 

on their inferred d′ and k, but maintains a realistic level of variability.

Figure 11 summarizes the results of the simulation study. Each panel corresponds to 

a participant, with the top and bottom rows showing young and elderly participants 

respectively, and left, middle, and right panels showing low-, average-, and high-accuracy 

participants within their age group. Within each panel the blue (young) and red (elderly) line 

shows the median change in KL divergence using the ADO method, with shading showing 

the interquartile interval. The yellow lines show the median change in KL divergence for 

a set of randomly chosen experimental orders among those used in the Stark et al. (2015) 

experiment, with shading again showing interquartile intervals.

Figure 11 shows that the ADO order generally outperforms random experimental orders. 

The ADO order is better on average for the first 50 or so trials in all cases, and maintains its 

advantage for the low-performing young and elderly simulated participant, and the average-

performing elderly participant. The maintained advantage seems likely to be the result of 

having stimuli of every type available on every trial. The interquartile ranges show that the 

worst case performance of experimental orders is much worse for elderly participants.

A second analysis provided by the simulation study is shown in Figure 12. It shows the 

frequency with which each type of stimulus was used by the ADO method for the three 

young and three elderly participants, and compares those frequencies to those used in the 

experimental order. It is clear that ADO uses far fewer than the 64 new test stimuli used 

by the MST design. Young participants, in particular, were almost never presented with 

new stimuli, presumably because it is clear from their performance on easy lures that they 

will respond correctly. The distributions of stimuli for young and elderly participants would 

provide a very simple way potentially to improve the MST design, not by the adaptive 

presentation of stimuli, but just by changing the numbers of each type presented.
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Discussion

Recognition memory is a foundational phenomenon that is widely studied in cognitive 

science, and the MST is an important measurement task that is used in clinical and 

neuropsychological settings. Our ADO method generally improves how quickly inferences 

about the memory discriminabilities and decision criterion measured by the MST are made 

for individual participants. The focus of our scientific goals on measurement rather than 

model comparison is different from many previous ADO applications in cognitive science. 

The specific statistical approach we developed follows most closely previous work by 

Lesmes et al. (2015), and provides another useful worked example for measurement-focused 

applications.

Improving the Cognitive Model

While our results are promising, they are only a first step in applying ADO to the 

MST. There are two main ways toward improving performance. The first way is through 

improving the cognitive model. It is generally the case that the better the underlying 

cognitive model, the better ADO will perform, because the parameters being measured 

will be better characterized, and because the predictions about future behavior will be better. 

The inclusion of a contaminant process in our model is a good example of the need for 

appropriate cognitive models. A very promising direction for further model improvement 

is using hierarchical extensions to model individual differences with groups (Rouder & Lu, 

2005). In the Stark et al. (2015) data, there are clear group differences between the young 

and elderly, with individual differences within the groups. Accounting for this structure 

with a hierarchical model should lead to quicker and more confident inferences about the 

parameters of individuals, and improve the performance of ADO (Gu et al., 2016; Kim et al., 

2014).

More ambitious model development should focus on the sequential nature of the MST 

test phase. It seems unlikely that people treat each trial as a completely separate cognitive 

decision, but that is what our current model assumes. A better model would incorporate 

some sort of learning capability and allow for the possibility of sequential effects. This may 

be especially important if the sequence of stimuli that ADO presents impacts participants’ 

recognition memory behavior. For example, if ADO leads to the consecutive presentation 

of many difficult lure 1 stimuli, that may impact the concentration or motivation of a 

participant. One way to safeguard against these effects would be to place constraints on how 

ADO orders stimuli. A better way would be to maintain the current unconstrained model-

based approach, but use a model that can predict the sequential effects of difficult stimuli, 

so that they are automatically factored into the ADO optimization. A related problem is 

allowing for changes in strategy or other non-stationarities in cognitive performance. Hou et 

al. (2016) present a worked example of extending ADO to this setting, using discriminative 

statistical methods to infer changes in contrast sensitivity functions for a visual task. An 

alternative, but very challenging, approach would be to extend the generative cognitive 

modeling approach to allow for switching strategies (Bröder & Schiffer, 2006; Lee & Gluck, 

2021; Lee et al., 2015; Rieskamp & Otto, 2006).
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Finally, it would also be worth exploring alternatives to SDT as the cognitive modeling 

framework. SDT is a well-established and successful model of recognition memory and our 

extension to MST by adding order-constrained lure distributions is a natural one. But the 

descriptive adequacy of our SDT model is far from perfect and it may be that alternative 

assumptions, or an entirely different modeling approach, accounts for people’s behavior 

better. One alternative approach is provided by multinomial processing trees, which are also 

often used to model recognition memory (Batchelder & Riefer, 1980; Erdfelder et al., 2009).

Extensions to ADO

The second way to improve current performance is to improve or extend ADO itself. Our 

approach relies on greedy optimization, because it chooses only the stimulus for the next 

trial. There is some work in ADO considering optimization that looks further ahead by 

using dynamic programming methods Kim et al. (2017). It is currently an open question 

as to whether the significant additional computational effort required leads to an equally 

significant improvement in performance. It is, however, a logical extension of the current 

greedy optimization and is worth considering.

It may also be worth thinking about whether expected information gain is always the right 

measure to optimize over. It could be that alternative measures, such as maximizing the 

worst case information gain–intuitively, minimizing the possibility that nothing is learned 

from the next trial—is more robust or effective than maximizing the average. Alternatively, 

Ahn et al. (2020) present a case study of ADO optimizing delay discounting experiments in 

terms of test-retest reliability measures. That criterion is also a natural one for the clinical 

settings in which MST is used. Ultimately, the choice of criterion depends on exactly what 

the goals of the experiment are, and this will vary in terms of the practical research context. 

For example, in a clinical setting in which a patient may only be able to perform for some 

small but unknown number of trials, guaranteeing that at least some information is gained 

about their recognition memory from the trials they do complete in every session may be 

more useful than maximizing what is expected to be learned. One way to think about this 

trade-off is in terms of average information gain versus the variance in information gain.

Applying ADO to the MST

The obvious next step is to test ADO in MST experiments where there are not any limits on 

the availability of each stimulus. Our simulation study results show promising performance, 

but rely on data generated by a cognitive model that roughly approximates the processes 

people really use to make decisions. Our current implementation relies on inferring the full 

joint posterior distribution of the cognitive model at each trial. This involves Markov-chain 

Monte Carlo sampling implemented by JAGS, and is probably too slow to work in real 

time. It should be possible to develop point estimate approximations that can be quickly 

computed, and the current full implementation would then serve as a benchmark to test the 

performance of the approximation.

Finally, we are interested in extending ADO methods to other forms of the MST. One variant 

of the MST allows participants to make “similar”, as well as “old” and “new” responses. 

There is evidence that assuming a uni-dimensional representation consistent with SDT, in 
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which the “similar” response corresponds to mental samples between “old” and “new” may 

not be reasonable (Lacy et al., 2011). Thus some other sort of cognitive model may be 

needed, perhaps in the form of a multidimensional signal detection theory model. Once 

again, multinomial processing trees provide a plausible alternative approach.

Another variant of the MST is a continuous version of the task that presents sequences of 

stimuli and asks participants whether the current stimulus has been studied as part of this 

sequence before. This variant is appealing in terms of clinical application, because it does 

not need time-consuming training trials. Applying ADO to this MST task seems likely to 

require an extended cognitive model with a more detailed account of learning and memory 

than our SDT model provides. In particular assumptions would be needed about how the 

memory strength for encountered stimuli changes according to the number of trials before it 

is presented as a test stimulus (Shepard & Teghtsoonian, 1961).

Regardless of these extensions, our results have several important insights that can already 

be used to improve the use of the MST in research. First, it is clear that shorter tests are 

quite viable and that the amount of information gained in the last half of the test phase is 

quite small. This is consistent with empirical reports showing that half-length versions of the 

test were still reliable (Stark et al., 2015). Secondly, it is clear that the choice of the level of 

lure similarity used in testing should be viewed as a parameter that can be optimized. For 

example, while removing all new stimuli from the test session would likely be impractical 

from a behavioral standpoint, our results suggest that their measurement value is quite low 

and that the more dissimilar lures, such as lure 4 and lure 5, are far more informative.

Conclusion

The MST is an important task for measuring recognition memory, especially in clinical 

settings. We have developed a model-based approach for improving the efficiency of one 

common version of the task using ADO methods to choose which stimulus is presented on 

each test trial depending on the previous behavior of the person being tested. Analysis of 

experimental data and a simulation study suggest that our method is a promising first step to 

improving how quickly and efficiently the MST can measure recognition memory.
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Appendix

Figure 13 shows the change in KL divergence over trials for all 40 participants from 

Stark et al. (2015). The top 20 panels correspond to the young participants and the ADO 

performance is shown in blue. The bottom 20 panels correspond to the elderly participants 
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and the ADO performance is shown in red. The performance of the experimental order is 

always shown in yellow. The broken line shows the first trial at which ADO was not able to 

use a stimulus from the highest-ranked type.
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Figure 1. 
Summary of the MST recognition behavior for young and elderly participants in the Stark et 

al. (2015) MST task. Box-and-whisker representations of the distribution of the proportion 

of “new” responses for each stimulus type, for both young and elderly participants, 

aggregated over all trials.
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Figure 2. 
A signal detection theory cognitive model of recognition memory for the MST. Each 

distribution corresponds to a stimulus type, from which mental samples for specific stimuli 

are drawn on a trial. If the sample is above the criterion k a “new” response is generated, 

otherwise an “old” response is generated.
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Figure 3. 
Graphical model representation of the signal detection theory cognitive model, including a 

latent-mixture trial-level contaminant process.
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Figure 4. 
Change in posterior distributions for the discriminability and criterion of the cognitive model 

over trials, for both the original experimental and hypothetical ADO ordering of trials, for 

a young participant. The yellow shading and blue lines represent the 95% credible intervals 

of the marginal posterior distributions for the experimental and ADO orderings, respectively. 

The bottom-right panel shows the change in overall Kullback-Leibler divergence for both 

orderings. The broken line shows the first trial at which ADO was not able to use a stimulus 

from the highest-ranked type.
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Figure 5. 
Change in posterior distributions for the discriminability and criterion of the cognitive model 

over trials, for both the original experimental and hypothetical ADO ordering of trials, for an 

elderly participant. The yellow shading and blue lines represent the 95% credible intervals 

of the marginal posterior distributions for the experimental and ADO orderings, respectively. 

The bottom-right panel shows the change in overall Kullback-Leibler divergence for both 

orderings. The broken line shows the first trial at which ADO was not able to use a stimulus 

from the highest-ranked type.
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Figure 6. 
The distribution of change in KL divergence over trials for the ADO and experimental 

orders. The left panel corresponds to young participants and the right panel corresponds to 

elderly participants. Within each panel the blue (for young) and red (for elderly) shaded 

region shows the interquartile range of KL divergence across all participants, and the solid 

blue and red lines show the median. In both panels, the shaded yellow region shows the 

interquartile range of KL divergence for the experimental order and the solid line shows the 

median.
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Figure 7. 
The rate of reduction in KL divergence for both the original experimental and hypothetical 

ADO ordering of trials for young and elderly participants. Circular markers show the mean 

number of trials across participants needed to achieve 50%, 55%, …, 95% reduction in 

KL divergence towards its final value when all trials are incorporated. Error bars show 

interquartile intervals of the distribution of the number of trials needed.
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Figure 8. 
Analysis of both the original experimental and hypothetical ADO ordering of trials based on 

a version of the cognitive model that does not include a contaminant, for the same elderly 

participant as Figure 5.
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Figure 9. 
Order in which stimulus types are presented by ADO for a young participant. The panels 

correspond to the different stimulus types. Blue lines show the proportion of stimuli of 

that type that have been presented after each trial by ADO. Blue circular markers on the 

line indicate that the stimulus type was the one with maximum expected information gain 

according to ADO. Yellow lines show the proportion of stimuli of that type after each trial in 

the experimental order.
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Figure 10. 
Average proportion of each stimulus type are presented by ADO after each trial, aggregated 

over all young participants (left panel) and all elderly participants (right panel).
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Figure 11. 
The distribution of change in KL divergence over trials for the ADO and experimental 

orders for six simulated participants in an MST experiment that allows for unlimited stimuli 

of each type. The top panels correspond to young participants and the bottom panels 

correspond to elderly participants. In each row, the leftmost panel represents a low-accuracy 

participant from that group, the middle panel represents an average-accuracy participant, 

and the right panel represents a high-accuracy participant. Within each panel the blue (for 

young) and red (for elderly) shaded region shows the interquartile range of KL divergence 

across all participants, and the solid blue and red lines show the median. In both panels, the 

shaded yellow region shows the interquartile range of KL divergence for a collections of 

experimental orders and the solid line shows the median.
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Figure 12. 
Frequency of presentation of each stimulus type for simulated young and simulated elderly 

participants, and the original experimental design of the MST.
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Figure 13. 
The change in KL divergence for all 40 participants from Stark et al. (2015).
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