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Abstract

Many living structures are coated by thin films, which have distinct mechanical properties from 

the bulk. In particular, these thin layers may grow faster or slower than the inner core. Differential 

growth creates a balanced interplay between tension and compression and plays a critical role in 

enhancing structural rigidity. Typical examples with a compressive outer surface and a tensile 

inner core are the petioles of celery, caladium, or rhubarb. While plant physiologists have 

studied the impact of tissue tension on plant rigidity for more than a century, the fundamental 

theory of growing surfaces remains poorly understood. Here, we establish a theoretical and 

computational framework for continua with growing surfaces and demonstrate its application to 

classical phenomena in plant growth. To allow the surface to grow independently of the bulk, 

we equip it with its own potential energy and its own surface stress. We derive the governing 

equations for growing surfaces of zero thickness and obtain their spatial discretization using the 

finite-element method. To illustrate the features of our new surface growth model we simulate the 

effects of growth-induced longitudinal tissue tension in a stalk of rhubarb. Our results demonstrate 

that different growth rates create a mechanical environment of axial tissue tension and residual 

stress, which can be released by peeling off the outer layer. Our novel framework for continua with 

growing surfaces has immediate biomedical applications beyond these classical model problems 

in botany: it can be easily extended to model and predict surface growth in asthma, gastritis, 

obstructive sleep apnoea, brain development, and tumor invasion. Beyond biology and medicine, 

surface growth models are valuable tools for material scientists when designing functionalized 

surfaces with distinct user-defined properties.
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1. Introduction

The phenomenon of growing surfaces has been known to developmental biologists for more 

than a century [1]. In plant biology, surface growth plays a critical role in creating form 

and function through the balanced interplay between tension and compression [2]. Surface 

growth generates a mechanical environment of residual stress, stress that is present even 

in the absence of external loading [3]. Plant biologists refer to this phenomenon as tissue 

tension [4].

Figure 1 illustrates growth-induced longitudinal tissue tension in the petiole, the stalk, of 

Rheum rhabarbarum, commonly known as rhubarb [2]. In most plants, the epithelial cells 

of the outer surface, shown in red, grow slower than the parenchyma cells of the inner 

core, shown in green [5]. Differential growth creates a state of surface tension and bulk 

compression [6], which gives the stalk its characteristic rigidity to support the heavy rhubarb 

leaves [1]. When the surface layers are peeled off the inner core, they contract and bend 

outward, while the inner core expands as tissue tension is released. Bending and curvature 

changes in the classical split pea test have played an important role in the discovery of 

the plant growth hormone auxin [7], and are one of the major topics in many introductory 

textbooks on botany [4].

Figure 2 illustrates the microstructure of growing rhubarb. The outer surface, shown in 

red, consists of a continuous layer of densely packed, brick-shaped epidermal cells, while 

the inner core, shown in green, consists primarily of thin-walled parenchyma cells and 

longitudinal fibers. Epidermal cells display a distinct behavior from parenchyma cells [5]; in 

particular, they grow at a different rate [8]. In cylindrical plant stems, different growth rates 

generate longitudinal tissue tension, or, in mechanical terms, a state of residual stress [9].

In continuum mechanics, the phenomenon of residual stress is inherently related to the 

notion of growth [10, 11]. The first continuum model to characterize the interplay between 

growth and residual stress was proposed almost two decades ago [12]. Motivated by the 

introduction of an incompatible growth configuration [13], it is based on the multiplicative 

decomposition of the deformation gradient into a reversible elastic part and an irreversible 

growth part [14]. In the most generic sense, this growth part can be represented through 

a second-order tensor [15]. Two key ingredients determine the particular type of growth: 

the functional form of the growth tensor and the driving force for its evolution [16]. 

The functional form of the growth tensor typically depends on the underlying tissue 

microstructure [17, 18]. In the simplest case, growth is isotropic [19, 20]. In the presence 

of fibers, like in rhubarb, growth is typically transversely isotropic, with a pronounced 

growth or shrinkage along the fiber direction [21, 22]. Area growth is also usually 

transversely isotropic, i.e. isotropic in the plane tangent to the surface [23, 24]. In complex 

tissues with multiple fiber families growth can be orthotropic [25], or even generally 

anisotropic [26]. The driving force for growth can either be morphogenetic, mechanical, 
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or a combination of both. In evolution and developmental biology, the growth process is 

usually prescribed morphogenetically [27]. This implies that growth and mechanics are only 

coupled unidirectionally: growth influences mechanics, but mechanics does not influence 

growth [28, 29]. In biomechanics, the growth process is typically driven by strain [30], 

stress [31], or energy. This implies that growth and mechanics are coupled bidirectionally: 

growth influences mechanics and, at the same time, mechanics influences growth [32, 

33]. Motivated by the differential growth in plant stems in Figure 1, here, we focus 

on transversely isotropic growing surfaces and prescribe the evolution of growth through 

morphogenesis.

The distinguishing feature of the type of growth we are interested in here is that the 

growing surface is extremely thin as compared with the bulk [34]. As shown in Figure 

2, many biological structures are coated by thin films of epidermal cells, which are only 

a few micrometers thick. The modeling of thin films is conceptually challenging and has 

attracted increasing attention within the past two decades. An elegant way to model thin 

growing surfaces at the zero-thickness limit [35, 36] is to equip the surface with its own 

potential energy, which can evolve independently of the bulk [37]. The concept of surface 

energies has been established more than two centuries ago, formalized through the famous 

Young–Laplace equation, which relates the pressure difference across a fluid surface to 

surface tension and mean curvature [38, 39]. More than three decades ago, the familiar 

concept of scalar-valued surface tension was generalized to the tensorial notion of surface 

stress in the first continuum theory of elastic material surfaces [40]. Since then, the concept 

of material surfaces has gained wide attention in various fields of metallurgy, material 

sciences, micro- and nanofabrication, and soft lithography [41], broadly speaking, whenever 

the surface displays distinct characteristic properties [42, 43]. For fluids, the theory of 

surface tension is classic and well-developed. Computationally, finite-element formulations 

exist to simulate droplets and free surfaces with scalar-valued surface tension [44]. For 

solids, however, a generic finite-element approach towards elastic surfaces with tensorial 

surface stresses has only been proposed recently [45]. This approach models the surface 

as a hyperelastic membrane of zero thickness, kinematically constrained to move with 

the solid body, but equipped with its own potential energy [46]. The concept of surface 

energies is mathematically elegant and easily generalizable to anisotropic surfaces [47], 

thermomechanical surfaces [48] and surfaces with diffusion [49]. Motivated by Figures 1 

and 2, we adopt the concept of surface energies to model differential growth of a thin film of 

epidermal cells, kinematically constrained to move with the parenchyma bulk, but allowed to 

grow at a different rate.

Characterizing differential growth experimentally is a challenging task. The classic opening 

angle experiment is probably the most established setup to quantify differential growth of 

living structures ex vivo [50]. While new methods have been proposed to characterize tissue 

growth in vivo [51], these approaches typically introduce the growth tensor as the gradient 

of a displacement field, implying that growth is a compatible process [52]. In their classical 

textbooks, plant physiologists suggest two conceptually simple experiments to visualize 

differential growth in plants: the peel test to quantify changes in length upon layer separation 

[4] and the longitudinal cutting test to quantify changes in curvature upon release of residual 

stress [2]. The petiole of rhubarb is an excellent model system for these two experiments, 
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since its epidermal surface layer is easily distinguishable by its bright red color from the 

green bulk of the parenchyma ground substance. Figure 3 illustrates the classic peel test to 

quantify growth-induced changes in length. When the outer surface layer is peeled off the 

inner core, it contracts by approximately 1% generating a stretch of λ = 0.99, while the 

inner core expands by approximately 4% corresponding to a stretch of λ = 1.04. The peel 

test can serve as an easily reproducible experiment to calibrate the model and to identify 

the surface-to-volume growth ratio. Here, the surface-to-volume growth ratio is 0.99 : 1.04 

= 0.952. In the following, we systematically vary the surface-to-volume growth ratio and 

explore its impact on tissue form and function.

This manuscript is organized as follows. In Section 2, we introduce the kinematic equations, 

the equilibrium equations, and the constitutive equations of finite surface growth. In each 

subsection, we independently discuss the equations for the inner bulk and for the outer 

boundary. In Section 3, we derive the weak forms of these equations and discretize them 

in space using a combination of volume elements for the bulk and surface elements for the 

boundary. In Section 4, we demonstrate the features of growing surfaces using the model 

problem of growth-induced longitudinal tissue tension in a stalk of rhubarb. We close with a 

critical discussion in Section 5.

2. Governing equations

2.1. Kinematics

To model growing surfaces, we kinematically characterize the motion of material particles 

X ∈ ℬ0, where ℬ0 ⊂ ℝ3 denotes the material placement of a continuum body with a smooth 

surface S0 = ∂ℬ0 in the reference configuration.

We label points on the surface S0 as X = X S0 and denote the unit outward normal to 

S0 as N, see Figure 4. We characterize the smooth motion of the material placement X 

onto its spatial placement x during the time interval of interest T = 0, T ⊂ ℝ+ through 

the bulk deformation map φ:ℬ0 × T ℝ3 . Similarly, we characterize the motion of the 

corresponding surface placement X onto x = x St through the boundary deformation map 

φ:S0 × T ℝ3,

x = φ(X, t) and x = φ(X, t) . (1)

As indicated in Figure 4, we label the current placement of the body at time t as ℬt = φ ℬ0
and the associated surface as St = φ S0 . Next we introduce the bulk deformation gradient 

F, which maps material line elements dX onto spatial line elements dx = F · dX and the 

corresponding boundary deformation gradient F , which maps tangential line elements from 

the material surface dX onto the spatial surface dx = F ⋅ dX,

F = ∇φ and F = ∇φ = F ⋅ I . (2)
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The bulk gradient ∇ ∘ = ∂X ∘ t follows from its standard definition, where ∘ t denotes 

a fixed position in time. The boundary gradient gradient ∇ ∘ = ∇ ∘ ⋅ I  follows from the 

projection of the bulk gradient using the second order surface unit tensor I = I − N ⊗ N . 

Here I is the classical second-order unit tensor and N is the outward surface normal. The 

bulk Jacobian J of the deformation gradient F relates material volume elements dV0 to 

spatial volume elements dVt = J dV0. Similarly, the boundary Jacobian J  of the deformation 

gradient F  relates material surface elements dA0 to spatial surface elements dAt = JdA0,

J = det(F) > 0 and J = det(F) = JF −t ⋅ N > 0. (3)

Note that Equation (3.2) is a version of Nanson’s formula for surface elements. To 

characterize surface growth, we multiplicatively decompose the boundary deformation 

gradient F  into an elastic part Fe and a growth part Fg,

F = F e ⋅ F g . (4)

Recall that in contrast to the surface deformation gradient F = ∇φ, the individual 

contributions Fe and Fg can, in general, be incompatible [53]. Similarly, we multiplicatively 

decompose the surface Jacobian J  into an elastic part Je and a growth part Jg,

J = J eJg with Jg = det(F g) = ‖[F g ⋅ A1] × [F g ⋅ A2]‖
‖A1 × A2‖

, (5)

where Jg is defined in terms of the covariant base vectors A1 and A2 on the material surface 

TS0 (see [42]).

Remark 1. The second-order surface unit tensor I  serves as projection tensor to map the 

bulk deformation gradient F onto the boundary deformation gradient F ,

F = F ⋅ I witℎ I = I − N ⊗ N, (6)

where N is the unit outward normal to the material surface S0. Since I  is rank deficient, 

the boundary deformation gradient F  is typically non-invertible. However, it possesses a 
generalized inverse according to the following singular value decomposition,

F −1 ⋅ F = I , F = U ⋅ Σ ⋅ V t, F −1 = V ⋅ Σ+ −1 ⋅ U t (7)

where the diagonal entries of Σ correspond to the singular values of F , the columns of U 

and V are the left- and right-singular vectors associated with these singular values, and Σ+ is 
the pseudoinverse of Σ, which is formed by replacing every non-zero diagonal entry by its 
reciprocal value.
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2.2. Equilibrium equations

To characterize the mechanical equilibrium of growing surfaces, we introduce two sets 

of equilibrium equations, one in the bulk and one on the boundary. The former balances 

the divergence of the volume stresses P with the volume forces b; the latter balances the 

divergence of the surface stresses P  with the surface tractions b − P ⋅ N,

Div P + b = 0 and DivP + [b − P ⋅ N] = 0 . (8)

Here we simply adopt these two equations from thermodynamic considerations of continua 

with boundary energies [37], and refer to the literature for their detailed derivation, either 

using the principle of virtual power [54, 55] or the principle of virtual work [45, 46]. In 

the above equations, Div {∘} = ∇{∘} : I and Div ∘ = ∇ ∘ :I  denote the bulk divergence 

operator and the boundary divergence operator. The volume stresses P and volume forces 

b have the dimensions of force per unit area and force per unit volume, while the surface 

stresses P  and surface tractions b − P ⋅ N have the dimensions of force per unit length and 

force per unit area. The surface tractions consist of two contributions, the prescribed surface 

tractions b  and the surface tractions imposed by the underlying bulk through the projected 

volume Piola stress P · N [46]. The strong forms of the equilibrium equation (8) are related 

to the corresponding weak forms,

ℬ0
δφ PdV 0 = ℬ0

δφ bdV 0 + S0
δφ P NdA0

S0
δφ PdA0 = S0

δφ bdA0 − S0
δφ P NdA0 + C0

δφ P NdL0,
(9)

through the multiplication with the test function δφ, the integration over the volume ℬ0
and over the surface S0, and the integration by parts. The weak form of the equilibrium 

equation in the bulk (9.1) balances the internal volume forces with the external volume and 

surface forces. The weak form of the equilibrium equation on the boundary (9.2) balances 

the internal surface forces with the external surface forces, the projected forces imposed by 

the underlying bulk, and the external line forces along the boundary curve C0 of the surface 

S0.

2.3. Constitutive equations

To characterize the hyperelastic response of the bulk, we introduce the bulk energy ψ, 

parameterized in terms of the bulk deformation gradient F. To characterize growth of the 

boundary, we introduce an independent boundary energy ψ, parameterized in terms of the 

boundary deformation gradient F  and the growth tensor Fg, or, alternatively, in terms of the 

elastic tensor Fe = F ⋅ Fg−1 [37],

ψ = ψ F and ψ = ψ(F, F g) = ψ(F e) . (10)
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We can then express the volume and surface Piola stresses P and P  as stress measures 

conjugate to the bulk and boundary deformation gradients F and F ,

P = ∂ψ
∂F and P = ∂ψ

∂F
= ∂ψ

∂F e : ∂F e

∂F
= P e ⋅ F g−t with P e = ∂ψ

∂F e , (11)

where P e denotes the elastic surface stress. The total derivatives of the volume and surface 

stresses P and P  with respect to the deformation gradients F and F  introduce the fourth-

order volume and surface tangent moduli A and A,

A = dP
dF and A = dP

dF
= dP

dF e : dF e

dF
= Ae: [F g−t ⊗ F g−t] with Ae = dP e

dF
(12)

where Ae denotes the elastic surface tangent moduli. These tangent moduli will prove critical 

to guarantee optimal convergence of the algorithmic Newton–Raphson procedure.

2.4. Growth

To characterize growth, we prescribe the functional form of the growth tensor and its 

evolution in time. We consider the two simplest possible cases, isotropic and transversely 

isotropic surface growth, for which the growth tensors F iso
g

 and F trs
g  can be parameterized 

in terms of a single scalar-valued growth multiplier ϑ, which characterizes the amount of 

growth,

F iso
g = ϑI and F trs

g = I + [ϑ − 1]M ⊗ M . (13)

Here, the surface unit vector M defines the direction of growth for the transversely isotropic 

case. We can quantify the amount of surface growth through the Jacobians,

J iso
g = ϑ2 and J trs

g = ϑ, (14)

such that ϑ = 1 characterizes the initial ungrown state, ϑ > 1 indicates surface growth, and 

ϑ < 1 indicates surface shrinkage. In the following, we assume that surface growth is plain 

morphogenetic. This implies that the growth multiplier ϑ is not governed by mechanical 

driving forces, but rather follows directly from a constitutively prescribed evolution law. In 

particular, we adopt a simple exponential evolution equation [37],

dϑ
dt = [ϑ∞ − ϑ0][exp(−t/τ)]/τ , (15)

which we can integrate explicitly to directly identify the amount of growth ϑ at any given 

point in time t,

Holland et al. Page 7

Math Mech Solids. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ϑ(t) = ϑ∞ + [ϑ0 − ϑ∞]exp(−t/τ) . (16)

Here dϑ /dt denotes the material time derivative, τ  characterizes the speed of surface growth, 

ϑ0 = 1.0 is the initial growth value, and ϑ∞ limits the final amount of surface growth towards 

which the growth multiplier ϑ converges gradually as time increases.

3. Discretization

Since surface growth is typically a highly nonlinear and possibly heterogeneous process, we 

suggest to solve its governing equations computationally within an incremental iterative 

nonlinear finite-element scheme. We begin by summarizing the weak forms of the 

equilibrium equation (9) in the volume ℬ0 and on the surface S0,

ℬ0
δφ PdV 0 − ℬ0

δφ bdV 0 + S0
δφ PdA0 − S0

δφ bdA0

− C0
δφ P NdL0 0 .

(17)

To discretize the weak form in space, we partition the bulk ℬ0 = ∪e = 1
nbe ℬ0

e into nse finite-

volume elements ℬ0
e, and the boundary S0 = ∪e = 1

nse S0
e into nse finite surface elements S0

e. 

Each surface element shares its nodes with its corresponding volume element as illustrated 

in Figure 5. This implies that the surface element acts like a shell element, which moves 

in consistency with the bulk, however, it is equipped with its own independent free energy 

function.

To approximate the test functions δφ, trial functions φ, and nodal coordinates X in the 

bulk and on the boundary, we apply an isoparametric Bubnov–Galerkin-type finite-element 

interpolation,

δφ = i 1
nvn Niδφi and φ = j 1

nvn Njφj and X = i 1
nvn NiXi

δφ = i 1
nsn Niδφi and φ = j 1

nsn Njφj and X = i 1
nsn NiXi .

(18)

Here Ni,j and Ni, j are the element shape functions in the bulk and on the boundary and i,j 
= 1, … , nvn and i,j = 1, … , nsn are the volume and surface nodes. The gradients of the test 

and trial functions in the bulk and on the boundary

δF = ∇δφ = i 1
nvn δφi Ni and F = ∇φ = j 1

nvn φj Nj

δF = ∇δφ = i 1
nsn δφi Ni and F = ∇φ = j 1

nsn φj Nj
(19)

then follow naturally in terms of the gradients of the bulk and boundary shape functions
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∇Ni = dNi ξ
dX = J−t ⋅ dNi ξ

dξ with J = dX
dξ and X = i 1

nvn Ni ξ Xi

∇Ni = dNi ξ
dX = J−t ⋅ dNi ξ

dξ with J = dX
dξ = A1, A2 and Aα = i 1

nsn XiN ξα
i .

(20)

Herein Aα for α = 1, 2 are the contravariant material base vectors. With these 

discretizations, Equation (17) transforms into the following discrete residual

RI = A
e = 1

nel
ℬ0

e Ni PdV e − ℬ0
eNibdV e + S0

e Ni ⋅ P dAe − S0
eNib dAe

− C0
eNiP NdLe ≐ 0,

(21)

where the operator A symbolizes the assembly of all element residuals at the i = 1, … , nvn 

element nodes to the global residual at the global node points I = 1, … , ngn. To solve the 

above equation, we use an incremental iterative Newton–Raphson algorithm based on the 

consistent linearization of the residual RI with respect to the nodal vector of unknowns φJ. 

This linearization introduces the global stiffness matrix KIJ at all global nodes I, J = 1, … , 

nng,

KIJ = dRI
dφJ

= A
e = 1

ne1
ℬ0

e [I Ni]:A ⋅ ∇Nj dV e + S0
e [I Ni]:A ⋅ ∇Nj dAe

.
(22)

For each global Newton iteration step, we iteratively update the current deformation state 

φJ φJ − KIJ
−1 ⋅ RI until we achieve algorithmic convergence. Upon convergence, we store 

the surface growth multipliers ϑg
 at the integration points of the corresponding surface 

elements.

4. Results

We illustrate the performance of the proposed surface growth model by simulating 

differential growth in a stalk of rhubarb. Unless stated otherwise, we model the stalk as 

a cylindrical tube with a length of l = 7.0 cm and a radius of r = 0.375 cm. To visualize 

the effect of different surface-to-volume growth ratios, we virtually cut the stalk in quarters, 

fix it at one end, and allow its surface to shrink by gradually decreasing the surface growth 

multiplier ϑ. We discretize one quarter of the inner parenchyma core with 32 elements along 

the length and 80 elements across the cross section. In each cross-section, we discretize 

the corresponding epidermal surface with eight additional surface elements around the 

circumference. This results in a discretization with 2560 elastic 8-noded volume elements 

and 256 growing 4-noded surface elements with a total of 3201 nodes and 9603 degrees of 

freedom. We characterize the hyperelastic responses of the bulk and of the boundary using 

independent isotropic bulk and boundary energies ψ0 and ψ0 of neo-Hookean type,
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ψ0 = 1
2μ[F : F − 3 − 2 ln J] + 1

2λ ln2 J

ψ0 = 1
2μ[F e : F e − 2 − 2 ln Je] + 1

2λ ln2 Je .

Here, λ and μ are the standard Lamé constants of the bulk and λ , and μ are the Lamé 

constants of the boundary. To evaluate the discrete residual (21), we calculate the volume 

and surface Piola stresses P and P = P e ⋅ Fg−t using the general definitions (11),

P = μF + [λ ln J − μ]F−t

P e = μF e + [λ ln Je − μ]F e−t .

To evaluate the consistent algorithmic linearization of the residual (22), we calculate the 

volume and surface tangent moduli A and A = Ae: [Fg−t ⊗ Fg−t] using the general definitions 

(12),

A = μI ⊗ I + [μ − λ ln J] F−t ⊗ F−1 + λ F−t ⊗ F−t

Ae = μI ⊗ I + [μ − λ ln Je][Fe−t ⊗ Fe−1 − i ⊥ ⊗ [Fe−1 ⋅ Fe−t]] + λFe−t ⊗ Fe−t,

where we have introduced the abbreviation i⊥ for the spatial second-order normal projection 

tensor i⊥ = F · N ⊗ F · N. To model the elastic response of the parenchyma core, we 

choose the Lamé constants of the bulk to λ = 0.577 N/mm2 and μ = 0.385 N/mm2. While 

the epidermal surface in plants typically tends to be stiffer and stronger than the parenchyma 

bulk, here, for the sake of simplicity, we choose similar values for the Lamé constants of 

the boundary to λ = 0.577 N/mm and μ = 0.385 N/mm for outer epidermal cell layer. To 

model the difference in growth between the inner parenchyma core and the outer epidermal 

surface, we gradually decrease the surface growth multiplier ϑ by choosing an infinite 

growth multiplier of ϑ∞ = 0.5, a time constant of τ = 1.0, and an initial discrete time step 

size of Δt = 0.1. The choice of the latter two parameters influences the speed of growth but 

not the growth process itself. As such, these two parameters do not affect the results we 

present in the following.

Figure 6 illustrates the effect of growth-induced longitudinal tissue tension in the rhubarb 

stalk. The snapshots correspond to surface-to-volume growth ratios gradually decreasing 

from ϑ = 1.000, to ϑ = 0.967, ϑ = 0.933, ϑ = 0.900, and ϑ = 0.867, from left to right. As the 

surface-to-volume growth ratio decreases, the tissue tension increases and induces a higher 

curvature when the stalk is cut into quarters. Since the outer epidermal surface shrinks 

with respect to the inner parenchyma core, the four sections of the stalk gradually bend 

outward. The colorcode indicates the growth-induced increase in tissue stress with red colors 

indicating tissue compression and green and blue colors indicating tissue tension.

Figure 7 displays the effect of different surface-to-volume growth ratios overlaid in a 

single image. With decreasing surface-to-volume growth ratios from ϑ = 1.000, to ϑ = 0.980, 
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ϑ = 0.960, and ϑ = 0.940, the surface tension increases and induces a higher curvature when 

the stalk is cut in four sections. Again, red colors indicate tissue compression, green and 

blue colors indicate tissue tension.

Figure 8 illustrates the effect of surface growth as the surface-to-volume growth ratio 

decreases gradually until the rhubarb stalk forms a closed loop. With decreasing surface-to-

volume growth ratios from ϑ = 1.000, to ϑ = 0.975, ϑ = 0.950, ϑ = 0.925, ϑ = 0.900, ϑ = 0.850, 

and ϑ = 0.750, the surface tension increases and induces a higher curvature when the stalk 

is cut in four sections. Again, red colors indicate tissue compression, green and blue colors 

indicate tissue tension.

Figure 9 quantifies the growth-induced curvature change in rhubarb stalks with different 

radius-to-length ratios. For this simulation, we decrease the mesh size to 16 elements along 

the length, 40 elements across the cross-section, and 4 surface elements per cross-section. 

This results in a discretization with 320 elastic 8-noded volume elements and 64 growing 

4-noded surface elements with a total of 493 nodes and 1479 degrees of freedom. We 

keep the length of the stalk constant at l = 7.0 cm and vary the radius from r = 0.250 

cm to r = 0.375 cm, r = 0.500 cm, r = 0.675 cm, and r = 0.750 cm. A decrease in 

the surface-to-volume growth ratio ϑ increases tissue tension. This induces an increase in 

relative curvature κ/κ0 from κ/κ0 = 0.0, corresponding to a straight line, to κ/κ0 = 1.0, 

corresponding to a closed loop, where κ0 = 2π/l. The surface-to-volume growth ratio ϑ
required to form this closed loop decreases with increasing radius-to-length ratios, from 

ϑ = 0.894, to ϑ = 0.887, ϑ = 0.872, ϑ = 0.853, and ϑ = 0.838, from blue to red lines. Upon 

isometric scaling, e.g. when doubling both, the stalk length l and radius r, the resulting 

curvature versus surface-to-volume growth curves remain identical as expected.

Figure 10 illustrates snapshots associated with the curves in Figure 9. In particular, the top 

row corresponds to the straight line at a relative curvature of κ/κ0 = 0.0, while the bottom 

row corresponds to the formation of a closed loop at κ/κ0 = 1.0 indicated through the solid 

dots in Figure 9. For the same curvature configuration, displayed in the individual rows, 

tissue stresses increase with increasing radius-to-length ratios, from left to right.

5. Discussion

Growth of thin surfaces plays a central role in the morphogenesis of many biological 

structures [27]. In plants, the differential growth of thin layers of cells is critical to 

establishing structural form and function [4]. While the individual layers of a plant stem 

are relatively compliant when considered in plain isolation, differential growth creates a 

mechanical environment of residual stress that stiffens the structure as a whole [1]. Residual 

stresses can be generated by a fast growing inner core of parenchyma cells covered by a 

slowly growing thin layer of epidermal cells. By peeling off the thin surface layer, we can 

release residual stresses and observe a significant lengthening of the inner core, while the 

surface layer contracts as illustrated in Figure 1 (see [2]).

Modeling differential growth of thin films can be conceptually challenging, especially 

because most biological surfaces are typically only a few micrometers thick [5]. An elegant 
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way to model growing thin biological layers is the concept of surface energies [40]. 

Introduced more than two centuries ago to characterize surface tension in droplets [38, 39], 

surface energies allow us to represent extremely thin surfaces as two-dimensional manifolds 

at the zero-thickness limit. This dimensional reduction is particularly valuable in the context 

of numerics, since the fully three-dimensional discretization of thin surfaces would either 

require very fine meshes, or generate numerically ill-conditioned systems [47]. To avoid 

these numerical difficulties, we simply equip the surface with its own free energy, which we 

allow to evolve independently of the bulk [36, 46]. In particular, our surface energy not only 

accounts for the elastic behavior of the surface itself, but also for its growth or shrinkage 

with respect to the bulk [37]. To kinematically characterize the amount of surface growth, 

we adopt the multiplicative decomposition of the surface deformation gradient into an elastic 

tensor and a growth tensor [56].

A conceptually elegant approach to experimentally characterize the surface growth tensor 

in plants is the classical peel test [2] as demonstrated in Figure 3. In this experiment, 

surface growth can simply be interpreted as the ratio between surface shortening and volume 

lengthening after both substructures are separated [4]. Virtually anybody can perform a 

simple peel test with rhubarb in their own kitchen, measure surface shortening and volume 

lengthening, and verify correct layer separation simply by the distinct red and green tissue 

colors [5]. Upon peeling several stalks of rhubarb, we observed surface shortening of the 

order of −1% and the volume lengthening of the order of +4%. These values are slightly 

less pronounced than the surface shortening of −2–4% and the volume lengthening of +6% 

reported in the literature [9], most likely because our rhubarb was not freshly harvested and 

its lower water content might play an important role.

An equally simple model experiment to quantify growth upon releasing tissue tension is 

the longitudinal cutting test [2]. When cutting the cylindrical plant stem into four equal 

parts, the epidermal surface layers contract and bend outward, while the inner parenchyma 

core expands [4]. The release of tissue tension generates a state of bending, which we 

can quantify kinematically in terms of the stalk curvature [57]. Here, we have simulated 

the longitudinal cutting tests, and systematically varied the amount of surface growth and 

the radius-to-length ratio. Intuitively, as illustrated in Figure 9, the relative stalk curvature 

increases with increasing surface growth. For the same surface growth, thicker stems curve 

less upon longitudinal cutting than thinner stems. While the stalk curvature is sensitive to 

the amount surface growth and to the radius-to-length ratio, it is unaffected by isometric 

scaling: Proportional changes in radius and length do not affect curvature and shape. Despite 

the large deformations associated with bending a straight line to a closed loop illustrated in 

Figures 8 and 10, our surface growth algorithm always performed stably and robustly, with 

no evidence of ill-conditioning or loss of convergence [37].

Our results demonstrate that the framework for continua with growing surfaces is an elegant 

setting to model growing thin biological films. Plant biology presents an illustrative area 

of application for growing surfaces, especially because the underlying experiments are 

simple, illustrative, and easily reproducible, even outside an advanced laboratory setting. 

Growing plants can serve as elegant model problems to calibrate surface growth models 

and validate computational algorithms. Beyond classical model problems in plant biology, 

Holland et al. Page 12

Math Mech Solids. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



our novel theoretical and computational framework for growing surfaces has immediate 

biomedical applications in asthma [58], gastritis [59], obstructive sleep apnoea [60], brain 

development [61], and tumor invasion [19]. It naturally captures the distinct mechanical 

behavior of a thin epidermal layer, which is typically only a few micrometers thick. Similar 

thin-film phenomena are inherent to applications in material sciences, manufacturing, and 

microfabrication [62]. We believe that the proposed framework can provide insight into the 

complex interplay between thin films and the bulk, which might be particularly valuable 

when designing novel functionalized surfaces with distinct user-defined properties.
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Figure 1. 
Growth-induced longitudinal tissue tension in a stalk of rhubarb. The red outer surface of 

the stalk grows slower than the green inner core and generates a state of surface tension and 

bulk compression. The balanced interplay between tension and compression gives the stalk 

its characteristic rigidity. When the surface layers are peeled off the inner core, they contract 

and bend outward, while the inner core expands as tissue tension is released. The release of 

tissue tension is associated with a significant loss of rigidity. (Adapted from [2].)
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Figure 2. 
Microstructure of growing rhubarb. The red outer surface consist of epidermal cells; 

the green inner core consists primarily of parenchyma cells and longitudinal fibers. The 

epithelial cells of the outer surface grow slower than the parenchyma cells of the inner core 

creating a state of longitudinal tissue tension to enhance stalk rigidity.
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Figure 3. 
Peel test for model calibration. The red epidermal surface grows slower than the green 

parenchymal core. When the outer surface layer is peeled off the inner core, the epidermal 

surface contracts by ~ 1%, i.e. its stretch is λ = 0.99, while the parenchymal core expands 

by ~ 4%, i.e. its stretch is λ = 1.04. The peel test can serve to calibrate the relative surface 

growth to ϑ = 0.99/1.04 = 0.952.
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Figure 4. 
Kinematics of growing surfaces. Material and spatial configurations ℬ0 and ℬt with bulk 

deformation map F shown in green. Material and spatial surfaces S0 and St with boundary 

deformation gradient F  and its multiplicative decomposition F = Fe ⋅ Fg into an elastic part 

Fe and a growth part Fg shown in red.
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Figure 5. 

Discretization of the bulk with finite-volume elements ℬ0
e and ℬt

e, shown in green, and of its 

boundary with finite surface elements S0
e and St

e, shown in red. Surface elements share their 

nodes with the corresponding volume elements, however, they are equipped with their own 

energies ψ, stresses P = ∂ψ/ ∂F, , and tangent operators A = dP /dF .
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Figure 6. 
Growth-induced longitudinal tissue tension in a stalk of rhubarb. The stalk is modeled 

as a cylindrical tube with elastic volume elements and growing surface elements. 

With decreasing surface-to-volume growth ratios from ϑ = 1.000, to ϑ = 0.967, ϑ = 0.933, 

ϑ = 0.900, and ϑ = 0.867, from left to right, the tissue tension increases and induces a higher 

curvature when the stalk is cut in fourths. Red colors indicate compression, green and blue 

colors indicate tension.

Holland et al. Page 21

Math Mech Solids. Author manuscript; available in PMC 2022 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Growth-induced longitudinal tissue tension in a stalk of rhubarb. The stalk is modeled 

as a cylindrical tube with elastic volume elements and growing surface elements. With 

decreasing surface-to-volume growth ratios from ϑ = 1.000, to ϑ = 0.980, ϑ = 0.960, and 

ϑ = 0.940, the surface tension increases and induces a higher curvature when the stalk is cut 

in fourths. Red colors indicate compression, green and blue colors indicate tension.
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Figure 8. 
Growth-induced longitudinal tissue tension in a stalk of rhubarb. The stalk is modeled as 

a quarter of a cylindrical tube with elastic volume elements and growing surface elements. 

With decreasing surface-to-volume growth ratios from ϑ = 1.000, to ϑ = 0.975, ϑ = 0.950, 

ϑ = 0.925, ϑ = 0.900, ϑ = 0.850, and ϑ = 0.750, the surface tension increases and induces a 

higher curvature when the stalk is cut into quarters. Red colors indicate compression, green 

and blue colors indicate tension.
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Figure 9. 
Growth-induced curvature changes in stalk of rhubarb for different radius-to-length ratios. 

A decrease in the surface-to-volume growth ratio ϑ increases tissue tension and induces 

an increase in relative curvature κ/κ0. At a relative curvature of κ/κ0 = 1.0, indicated 

throughout the solid dots, each stalk forms a closed loop. The surface-to-volume growth 

ratio ϑ required to form a closed loop, as shown in Figure 10, bottom row, decreases with 

increasing radius-to-length ratios, from ϑ = 0.894, to ϑ = 0.887, ϑ = 0.872, ϑ = 0.853, and 

ϑ = 0.838, from blue to red.
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Figure 10. 
Growth-induced curvature changes in a stalk of rhubarb for different radius-to-length ratios. 

A decrease in the surface-to-volume growth ratio, from top to bottom, increases tissue 

tension and induces an increase in curvature. The top row corresponds to the straight stalk 

at a relative curvature of κ/κ0 = 0.0, while the bottom row corresponds to the formation of a 

closed loop at κ/κ0 = 1.0 indicated through the solid dots in Figure 9. The surface-to-volume 

growth ratio required to form a closed loop decreases with increasing radius-to-length ratios, 

from left to right. Red colors indicate compression, green and blue colors indicate tension.
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