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Abstract

We introduce a new class of semiparametric latent variable models for long memory discretized 

event data. The proposed methodology is motivated by a study of bird vocalizations in the 

Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence. 

This rules out Poisson process based models where the rate function itself is not long range 

dependent. The proposed class of FRActional Probit (FRAP) models is based on thresholding, 

a latent process. This latent process is modeled by a smooth Gaussian process and a fractional 

Brownian motion by assuming an additive structure. We develop a Bayesian approach to inference 

using Markov chain Monte Carlo and show good performance in simulation studies. Applying 

the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity 

and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data in which there 

are many different species of birds exhibiting their own vocalization dynamics, a hierarchical 

expansion of FRAP is provided in the Supplementary Material.
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1. Introduction.

Event data are often obtained in a discretized form in environmental and ecological 

applications. Instead of recording exact times of event occurrence, one records whether 

or not at least one event occurred within each interval. Such data can potentially be treated 

as a discrete time series (Tiao, Phadke and Box (1976), Stern and Coe (1984)), ignoring 

the underlying continuous time process that generated the events. While this simplification 

may be more amenable to standard time series analysis, it is often desirable to provide a 

self-explanatory stochastic model that is capable of capturing the temporal dynamics of the 

underlying event generating process (Davison and Ramesh (2020)).

In Davison and Ramesh (2020) and Ramesh, Thayakaran and Onof (2013), the authors 

use a Markov modulated Poisson process (MMPP) (Fischer and Meier-Hellstern (1993)) 

for the discretized events. Event intensities of an MMPP are directed by the states 

of an independently evolving continuous time Markov process whose different states 

correspond to different rates of events. Davison and Ramesh (2020) derived expressions 

for the likelihood of the observed binary series for an MMPP using Chapman–Kolmogorov 

equations of a continuous time Markov chain. They proposed a maximum likelihood 

approach for inference on the model parameters which include the instantaneous transition 

rate matrix of the continuous time Markov chain and the Poisson rates corresponding to 

each state of the chain. They also show that the autocorrelation function of the binary time 

series generated by an MMPP exhibits a geometric decay. Fearnhead and Sherlock (2006) 

proposed a Gibbs sampling algorithm for Bayesian inference.

The geometric rate of decay in autocorrelations of an MMPP makes it inapplicable to 

model time series with slower decay in autocorrelations. This is true for time series where 

the dependence structure is non-Markovian; a special class of time series that has non-

Markovian dependence and is a focus in this article is known as long range dependent series. 

Roughly speaking, a time series is long-range dependent if its autocovariance function 

decays like a power function. Long-range dependence has been encountered in time series 

data from a large variety of fields, including hydrology (Hurst (1951)), finance (Lo (1989)), 

network traffic (Willinger et al. (2003)), and climatology (Franzke et al. (2020)) among 

others. A natural extension of the MMPP to accommodate long-range dependence is the 

fractional Poisson process (Laskin (2003)). However, likelihood computation of discretized 

data, obtained from a fractional Poisson process, is not straightforward.

In seminal work, Mandelbrot and Van Ness (1968) introduced fractional Brownian motion, a 

generalization of standard Brownian motion, and showed that the increments of this process 

are stationary and exhibit long range dependence. The general definition of fractional 

Brownian motion is a stochastic integral with respect to a standard Brownian motion 

where the order of integration is defined by a parameter H ∈ (0, 1). Mandelbrot and 

Van Ness (1968) referred to H as the Hurst parameter after the hydrologist Harold Hurst, 

who discovered long-range dependence in time series while studying storage capacities 

of dams on the Nile river. Mandelbrot and Van Ness (1968) also established that the 

fractional Brownian motion is a self-similar stochastic process with no characteristic time 

scale (Graves et al. (2017)). Intuitively, self-similar processes retain statistical properties 
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over different time scales. When the increments of a self-similar process are stationary, these 

increments exhibit long-range dependence.

For discretized events the intensity of the latent counting process determines the correlation 

structure of the binary time series. If the binary series is long-range dependent, then an 

inhomogeneous Poisson process with fixed intensity λ(t) is insufficient to explain the 

observed data, as it implies that increments in disjoint time intervals are independent. 

Furthermore, Beran et al. (2013), Chapter 2, showed that a doubly stochastic Poisson 

process with random intensity λ(t) is long-range dependent if and only if λ(t) is long-range 

dependent; refer to Samorodnitsky (2006), Pipiras and Taqqu (2017) for reviews on long-

range dependence and self-similarity.

In this article we propose a latent semiparametric framework to model long-range dependent 

discretized event data via a FRActional Probit (FRAP) model. The FRAP model assumes a 

latent stochastic process responsible for generating the events of interest. Positive values of 

the process within a time interval imply one or more event occurrences within that interval. 

By setting the latent process as the fractional Brownian motion parameterized by the Hurst 

coefficient, we show the FRAP model is able to capture long-range dependence of the 

discretized events. By varying the Hurst coefficient within (0, 1), the spectrum of the model 

encompasses antipersistence when H ∈ (0, 1/2), independence for H = 1/2, and long-range 

dependence when H ∈ (1/2, 1). Moreover, we also include a nonparametric trend component 

in our model to account for nonstationarity of event occurrences. The proposed framework 

accommodates testing of long-range dependence in the data by comparing H0: H = 0.5 vs. 

H1: H > 0.5. We define a Bayesian approach to inference using a Gaussian process prior 

for the nonparametric trend. A Markov chain Monte Carlo (MCMC) sampling algorithm is 

proposed relying on sampling the latent process.

The rest of the article is organized as follows. In Section 2 we introduce the motivating 

Amazon bird vocalization data, including exploratory analyses revealing possible long-range 

dependence. Section 3 is dedicated to the development and analysis of the FRAP model. 

Section 4 contains simulation experiments evaluating the proposed approach, and Section 

5 analyzes the Amazon data. In the Supplementary Material (Chakraborty, Ovaskainen and 

Dunson (2022a)), we extend the FRAP model to allow multiple types of events through 

a grade-of-membership model and provide details on prior specification and posterior 

computation.

2. Amazon bird vocalization data.

Bird songs play a major role in mate selection and thus have a pronounced impact on 

their population dynamics (Slabbekoorn and Smith (2002)). Identifying birds based on their 

vocalizations is a widely used method for estimating bird population sizes and following 

population trends over time, and automated acoustic monitoring is increasingly used in both 

ecological studies and in conservation (Laiolo (2010)). Bird songs are well known to follow 

a circadian pattern in that they sing most intensely early in the morning and late in the day 

(Krebs and Kacelnik (1983)).
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We are motivated by an Amazon bird vocalization data set containing observations from the 

years 2010 to 2014. Audio monitoring devices were placed at different locations throughout 

the Amazon rain forest. Using the methods of Ovaskainen, de Camargo and Somervuo 

(2018), these recordings were converted to discretized binary time series (de Camargo, 

Roslin and Ovaskainen (2019)) containing 0–1 indicators of which species vocalized at 

least once in one minute time intervals for a 180-minute period starting at sunrise. A 

visual depiction of the binary sequence of vocalizations for the bird species Automolus 

ochrolaemus is provided in Figure 1. Based on the audio recordings, it is not possible to 

reliably distinguish different individual birds of the same species or to infer the number 

of birds vocalizing. We focus on three locations which are similar in habitat and close in 

latitude and longitude. Our data consist of recordings for 15 relatively common bird species. 

For each species we have about five to 10 days of recordings during the months of June to 

September with recordings starting typically around 5:15 AM. On average, a given species 

vocalized in 25–30 out of the 180 intervals.

Our analysis focuses on three characteristics of the bird vocalization dynamics. First, we are 

interested in the distribution of duration of bird song activity and inactivity; in particular, 

our results indicate that the duration cannot be adequately modeled by the exponential 

distribution. In the context of event data, exponential inter-event times are routinely assumed 

for mathematical and computational simplicity. However, many naturally occurring events, 

such as earthquakes (Ogata and Abe (1991)), landscape evolution (Weymer et al. (2018)), 

and human brain activity (Tagliazucchi et al. (2013)) have been shown not to follow such 

patterns. We are also interested in identifying time periods when birds are more likely to 

sing and recovering groups of bird species that have similar singing patterns.

Define the marginal probability of vocalization for a given time interval of length Δt to be 

the probability of observing at least one vocalization when a time interval of this length 

is selected at random. In the left panel in Figure 2 we show the marginal probabilities 

of a vocalization during minute intervals of length Δt = {1, 2, 4, 9, 15, 30, 60, 90} for 

15 different bird species. On the right panel in Figure 2, we show the probabilities of 

vocalizations conditioned on the event that the bird vocalized in the previous interval of 

the same length. Quite naturally, the marginal probabilities show an increasing pattern 

with the length of intervals. In comparison, the conditional probabilities show substantially 

less variation with Δt; for most species the conditional probabilities vary between (0.4, 

0.75). Such scaling of summary statistics is commonly encountered in self-similar stochastic 

processes (Pipiras and Taqqu (2017)). Additionally, the distance autocorrelations (Zhou 

(2012)) and the periodogram of the binary series for one day of recording for the species 

Corythopis torquata is displayed in Figure 3. The distance autocorrelation is a popular 

alternative to the standard autocorrelation function for investigating nonlinear dependence 

structures and thus is more suitable for the binary time series data presented here. The slow 

decay in the distance autocorrelation and the spikes in the spectrum for small frequencies 

indicate potential long-range dependence in the data.

We will use the notation X(t) for the stochastic process Xt t ∈ ℝ. A stochastic process 

X(t) is said to be self-similar if, for any c > 0, we have X(ct) =d cHX(t) so that the random 
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variables X(t) and X(ct) are equivalent in distribution up to scaling factors governed by 

the parameter H. This parameter H ∈ (0, 1) is commonly known as the Hurst exponent. A 

self-similar process with stationary increments has nonsummable autocovariances (Pipiras 

and Taqqu (2017)) and is known as a long-range dependent (LRD) time series. In such series 

the degree of long-range dependence is controlled by H. For continuous time series data, 

many methods have been proposed to estimate H: the ReScaled range (RS) analysis (Hurst 

(1951), Mandelbrot and Wallis (1969)), detrended fluctuation analysis (Peng et al. (1994)), 

log periodogram regression (Geweke and Porter-Hudak (1983)), local Whittle approximation 

(Robinson (1995)) etc. Although these methods typically apply to continuous data, we use 

these estimators in our exploratory analyses, in particular the estimators due to Geweke and 

Porter-Hudak (1983) and Robinson (1995).

To estimate H, according to Geweke and Porter-Hudak (1983) and Robinson (1995), we 

use the LongMemoryTS package in R. Table 1 shows the estimates of the Hurst exponent, 

according to Geweke and Porter-Hudak (1983) (HGPH) and Robinson (1995) (HW), for the 

15 bird species from Figure 2. Both HGPH and HW have a tuning parameter m which is 

the number of Fourier frequencies. In Table 1 we report the estimated Hurst coefficients for 

HGPH and HW for m = n1/2, n2/3, n4/5. The estimates of H, as seen from HGPH and HW in 

Table 1, suggest long memory behaviour although they often do not satisfy the constraint 0 < 

H < 1.

Time series models for discrete valued data with LRD structure are relatively sparse. 

Classical approaches for count/discrete valued times series, such as the integer 

autoregressive moving-average (McKenzie (1985, 1986, 1988)) and discrete autoregressive 

moving-average (Jacobs and Lewis (1978a, 1978b)), cannot account for LRD (Davis et 

al. (2016), Chapter 21). Cui and Lund (2009) developed a model for stationary Bernoulli 

sequences with LRD based on renewal sequences. Livsey et al. (2018) provide a recipe for 

multivariate count time series with Poisson marginals and a flexible autocovariance structure 

that can adequately handle LRD but fit a misspecified likelihood for inference on relevant 

parameters. Additionally, it is not entirely straightforward to accommodate covariates in 

their method. More recently, Jia et al. (2021) developed a method to construct count time 

series with prescribed marginals through suitable transformations of a latent Gaussian series. 

However, the joint distribution of counts thus obtained is not easily determined. Estimates of 

the Hurst exponent, obtained from the quasi-maximum likelihood method from Livsey et al. 

(2018), are also included in Table 1 under the column HQMLE . The remaining columns in 

Table 1 refer to model estimates which are discussed later in Section 5.

Our goal is not simply to estimate the Hurst coefficient; we would like to define a realistic 

generative probability model for these data that takes into account the data collection 

process and can be used as a useful baseline for future ecological analyses that include 

spatial dependence, environmental covariates, and other complications. The estimated Hurst 

coefficients for our proposed fractional probit model are provided in Table 1; see Section 3.1 

below. Interestingly, the Hurst coefficients are significantly above 0.5 for all 15 bird species. 

This suggests long-range dependence, a new finding of ecological interest, which should be 

considered in future analyses of animal occurrence time series. One can theoretically use a 
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(doubly stochastic) Poisson process to model these data; however, one should allow flexible 

rate functions to accommodate long memory behaviour Beran et al. (2013), Chapter 2.

3. Discretized event data.

We begin this section by defining some notation. Suppose event recordings are discretized at 

time points {t0, t1, …, tn } where the time points belong to some index set . In this article 

we assume that ti+1 − ti = Δ for all i = 0, 1, …, n − 1. Corresponding to each time interval, 

we have the following binary event indicators:

Z ti − 1, ti =
1 if at least one event occurred in  ti − 1, ti ,
0 otherwise.

(3.1)

We consider R replications of this binary time series Z = {Z(1), Z(2), …, Z(R) }. In our 

particular setting the replications correspond to different days of recording at a fixed location 

and for a fixed bird species.

3.1. Fractional probit model.

Consider, for now, a single replication of the binary series Z. We assume a latent continuous 

time process y(t), t ∈ , is responsible for instigating events of interest. Let ρ0(y(s), y(t)) 
denote the covariance function of y(·) for s, t ∈ . We want to derive a discrete time 

series from y(t) so that it reflects the autocovariance structure of the observed binary data. 

Of particular interest are time series that exhibit long-range dependence motivated by the 

bird vocalization data. A time series Xt, t ∈ ℤ  is said to have long-range dependence if its 

autocovariance function ρX(k) at lag k ∈ ℤ decays polynomially as k → ∞,

ρX(k) = L(k)k2d − 1    for d ∈ (0, 1/2), (3.2)

where L(·) is a slowly varying function at infinity, meaning it is positive on [c, ∞) with c 
≥ 0 and, for any a > 0, limu→∞ L(au)/L(u) = 1. The parameter d is called the long-range 

dependence parameter, and the series is said to have long memory. A popular alternative 

characterization of long-range dependent series relies on properties in the frequency domain. 

If sX(λ) is the spectral density of the times series Xt, t ∈ ℤ , then the series is long-range 

dependent if

sX(λ) = L*(λ)λ−2d    for d ∈ (0, 1/2) and 0 < λ ≤ π, (3.3)

for some slowly varying function L*(·) at zero. This definition implies that spectral densities 

of long-range dependent series have an infinite spike in a neighborhood around zero.

The concept of long memory is intricately related to self-similarity of processes. Broadly 

speaking, self-similar processes are obtained as normalized limits of partial-sum processes 

of a long memory series (Pipiras and Taqqu (2017)). While there are several well-studied 

self-similar processes, one of the most fundamental and perhaps the most popular is the 

fractional Brownian motion (fBM). A Brownian motion B(t) is a stationary Gaussian process 
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with covariance function KB(s, t) = τ2 min(s, t), τ > 0. The fBM generalizes this covariance 

structure to the form

KH(s, t) = τ2

2 t 2H + s 2H − t − s 2H ,     H ∈ (0, 1) . (3.4)

The parameter H is known as the Hurst exponent of the fBM. Henceforth, we shall write 

BH(t) to denote an fBM with Hurst exponent H. In (3.4), τ2 = E BH(1) 2. For H = 0.5 the 

Brownian motion is recovered. The self-similarity of the process stems from the fact that 

BH(ct) =d cHBH(t). Setting ϵiH = BH(i) − BH(i − 1), i ∈ ℤ, we obtain a stationary discrete time 

series, known as fractional Gaussian noise (fGN), elements of which marginally follow N(0, 

τ2). The autocovariance function ρϵ(k), k = 0, 1, 2, … of ϵnH  is

ρϵ(k) = τ2

2 k + 1 2H − 2 k 2H + k − 1 2H τ2H(2H − 1)k2H − 2    as k
∞,

(3.5)

where, for two sequences an and bn, an ~ bn implies that an/bn = 1 as n → ∞. Hence, for 

H ∈ (1/2, 1) the series is LRD in the sense of equation (3.2) with LRD parameter d = H − 

1/2. Our proposed model relies heavily on the simple observation that if we define a series 

Zi* = ⫿ ϵi* > 0 , where ϵi* is a stationary Gaussian series, then the autocovariance function of 

this binary series Zi* is

ρZ*(k) = 1
2πarcsin ρϵ*(k); (3.6)

see Livsey et al. (2018), Lemma 4.1, for a proof of this property. In particular, if ϵi* = ϵiH, 

then the binary series inherits the LRD property. To see this, suppose H ∈ (1/2, 1), then 

for large lags k, ρZ*(k) ≈ ρϵ(k) since sin x ≈ x for small x, that is, the series Zi* is also 

long-range dependent with Hurst coefficient H. In the context of discretized event data as 

described in (3.1), we then have the following latent formulation:

Z ti − 1, ti = 1 if ϵiH = BH ti − BH ti − 1 > 0,
0 otherwise,

(3.7)

for i = 0, 1, …; see also Livsey et al. (2018), equation (4.4), for an equivalent formulation 

for any latent Gaussian series. The above formulation accounts for long memory in the 

observed binary series, with the autocorrelation decay mimicking that of an fGN. Moreover, 

as a consequence of the scaling property of an fBM, a scale-free property of conditional 

probabilities consistent with Figure 2 is established in the following lemma.

LEMMA 3.1. Let BH(t) be an fBM with Hurst coefficient H with τ2 = 1. Suppose we 
observe BH(t) at i ∈ ℕ and let Xi ≡ BH(i), i ≥ 1, X0 ≡ BH(0). Define the binary series of 

indicators at time scale m, Zi
(m) = 1 Xi2m − X(i − 1)2m > 0 , i ≥ 1 so that, for m = 0, the 
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series Z1
(0), Z2

(0), … is as in (3.7). Then, for any m = 0, 1, …, the conditional probability 

ℙ Zi + 1
(m) = 1 ∣ Zi

(m) = 1  is independent of the time scale m. In particular,

P Zi + 1
(m) = 1 ∣ Zi

(m) = 1 = 1
2 + 1

πarcsin 22H − 1 − 1 . (3.8)

PROOF. See Appendix A.1. □

Two remarks are in order. First, for the special case H = 0.5, the conditional probability 

in equation (3.8) becomes 1/2 so that, when the series of indicators are generated from 

an underlying white noise series, the conditional probability of Zi+1 = 1|Zi = 1 and the 

marginal probability of Zi = 1 are equal. Second, since the function arcsin(·) is increasing, 

the conditional probability of Zi+1 = 1|Zi = 1 increases with H, covering the cases of 

antipersistence H < 0.5, independence H = 0.5, and LRD for H > 0.5. Figure 4 depicts the 

relationship between the Hurst coefficient H and the conditional probabilities.

Additionally, the spectral density of the series Zn can be shown to have a pole at zero 

frequency when H > 1/2, a distinctive feature of LRD series. Let sZ(λ) and sϵ(λ) denote the 

spectral density of the series Zn and ϵn, respectively, for −π ≤ λ ≤ π. Then we have, for H > 

1/2,

sZ(λ) = ∑
k = − ∞

∞
ρz(k) exp(ikλ) = ∑

k = − ∞

∞ 1
2πarcsinρϵ(k) exp(ikλ) ≥ ∑

k = − ∞

∞ 1
2πρϵ(k) exp(ikλ) = 1

2πsϵ(λ),

where we have used the Jordan inequality arcsin x − x ≥ 0 for 0 < x < 1 (Mitrinović and 

Vasic (1970)). Combining this with the fact that sϵ(λ) ~ (τ2/C)λ1−2H, C = C(H) > 0 in a 

neighborhood of 0, we see sZ(λ) also has a pole at λ = 0 for H > 1/2 and hence is LRD, 

according to definition (3.3).

When considering the Amazon bird vocalization data and other real data applications, a clear 

limitation of model (3.7) is the restriction of the marginal probabilities being fixed at 0.5. To 

be realistic, we need to allow the marginal probabilities to be arbitrary and varying smoothly 

according to the time of the day. Moreover, Mikosch and Stărică (2004) and Chen, Härdle 

and Pigorsch (2010), among many others, noted that long memory behavior can often be an 

artifact of nonstationarities.

With this motivation we introduce a nonstationary component in the FRAP model 

by assuming that the latent process driving the events, say y(t), admits an additive 

decomposition of the form y(t) = f(t) + BH(t) while letting

Z ti − 1, ti = 1 if y ti − y ti − 1 = f ti − f ti − 1 + ϵiH > 0,
0 otherwise,

(3.9)

where we assume f(·) is continuously differentiable (see Section 4 for examples). 

The marginal probability of observing an event in interval (ti−1, ti] is then 
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P Z ti − 1, ti = 1 = P f ti − f ti − 1 + ϵiH > 0 = Φ f ti − f ti − 1 , where Φ(·) is the 

cumulative density function of a standard Gaussian random variable. Hence, the variation 

in f(·) during (ti−1, ti] determines the probability of observing an event during this time; a 

positive change increases the marginal probability, whereas a negative change decreases it. 

If f(ti) − f(ti−1) = 0, then the marginal probability is P ϵiH > 0 = 1/2. To simplify notation, 

we write Zi = Z(ti−1, ti). The vector ϵH = ϵ1
H, …, ϵnH  follows an n-dimensional Gaussian 

distribution with mean 0 and covariance matrix ΣH whose (i, j)th element is ΣH(i, j) = 

τ2ρϵ(|i − j|), defined in equation (3.5). The marginal probability of an event occurrence in the 

interval (ti−1, ti] then becomes P[Z(ti−1, ti) = 1] = Φ[{f(ti) − f(ti−1)}/τ]. In Figure 5 we show 

the variations in marginal probabilities when the nonstationary component f(t) in model (3.9) 

is set to f(t) = sin(4πt)/90 with τ = 1.

Akin to probit models for longitudinal binary data with covariate information (Chib and 

Greenberg (1998)), we are interested in modeling the likelihood of the observed events Z = 

(Z1, …, Zn) ∈ {0, 1} n. However, in our context we have time series data with smooth trend 

f(t) and temporal dependence captured through ϵH. Letting f = {f(t0), …, f(tn)} and putting 

the pieces together, we get the following probit-type model:

P (Z ∈ E ∣ f, H) = P W ∈ EW ∣ f, H ,     W N Af, τ2ΣH , E ⊂ 0, 1 n, (3.10)

where EW is the intersection of half-planes EW = ∩i:Zi = 1 W i > 0 ∩i:Zi = 0 W i ≤ 0  and 

the matrix A ∈ ℛn×n is such that Aii = 1, Ai,i−1 = −1 and Aij = 0 for j ≠ i, i − 1. For 

identifiability we impose the restriction that f(0) = 0. Then, under model f(·)/τ is identifiable. 

To accommodate this restriction, we let A11 = 1, A1,j = 0, j = 2, …, n; the other rows of A 
remain unchanged.

Model (3.10) is quite flexible in incorporating a smooth trend f(t) and autocorrelated errors. 

In the special case in which H = 0.5, the error term becomes uncorrelated so that f(t) 
is assumed to characterize the pattern over time in the data. In contrast, when H > 0.5, 

we obtain long range dependence. The model provides a useful basis for testing of long-

range dependence via comparing H0: H = 0.5 to H1: H > 0.5 in the presence of potential 

nonstationarity.

3.2. Priors and posterior computation.

Without loss of generality, we assume that the time points {t0, …, tn} ∈  = [0, T]. Let Θ 
= {(f, β, τ): f ∈ ℱ, β ∈ ℛ, τ ∈ ℛ+} be the parameter space in model (3.10), where we let 

ℱ be the space of continuously differentiable functions on  and β = log{H/1 − H}. Let 

Πβ denote the prior on β and Πτ denote the prior on τ.We choose Πβ ≡ N(0, 1) and Πτ ≡ 
Inverse-Gamma(aτ, bτ) for positive constants aτ, bτ. For the nonparametric component we 

let f ~ Πf, where Πf is an appropriate prior for an unknown smooth function. In particular, 

we choose a zero mean Gaussian process (GP) with a squared exponential covariance kernel 

(Rasmussen and Williams (2006)) scaled by the precision parameter τ2 of the latent process, 

defined as
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C(s, t) = τ2σ2 exp − (s − t)2

2ϕ2 ,     σ, ϕ > 0, (3.11)

for s, t ∈ . For numerical stability we follow the standard practice of adding a 

small positive quantity ν to the diagonal elements of the GP covariance matrix so that 

C(s, t) = τ2σ2exp − (s − t)2/2ϕ2 + v1(s = t). Consequently, the induced prior on g = Af is 

again a multivariate Gaussian distribution with covariance matrix Cg = τ2ACA′, where C is 

an n × n matrix with Cij = C(ti, tj). To learn the hyperparameters (σ, ϕ) from the data, we 

transform them to the logarithmic scale and augment the parameter space Θ to Θ* = Θ × 

η, where η = {(log σ, log ϕ): σ, ϕ > 0}. We place independent standard Gaussian priors on 

each component of η. Thus, Πη ≡ N(0, 1) × N(0, 1). The prior specification is completed by 

setting Π= Πf ×Πβ ×Πτ ×Πη.

For the Amazon bird vocalization data, we have replications {Z(1), …, Z(R)} of Z over 

different days which have minimal empirical correlations. We assume these replicates are 

conditionally independent involving the same f(t) but with different realizations of the latent 

residual term leading to different realizations W(r), for r = 1, …, R, of W in equation (3.10). 

Including also the priors, this leads to the following hierarchy:

P Z(r) ∈ Er ∣ f, β, τ = P W (r) ∈ EW (r) ∣ f, ρ ,     β = log H /(1 − H) ,
W (r) ∣ ρ, f, η N Af, τ2ΣH ,
f ∣ τ2, η Πf,
β Πβ, τ Πτ, η Πη,

(3.12)

for any Er ⊂ {0, 1}n and EW (r), as defined after equation (3.10).

Posterior computation under the hierarchical FRAP model (3.12) is potentially challenging. 

We initially considered an integrated nested Laplace approximation (INLA) which was 

developed for approximate Bayesian inference in latent Gaussian models by Rue, Martino 

and Chopin (2009). However, the non-Markovian structure of the FRAP model renders 

the INLA paradigm nonapplicable (Rue and Held (2005)). In a recent article, Sørbye and 

Rue (2018) applied the INLA framework to a fGN model where the authors approximate 

the fGN by a mixture of first-order autoregressive processes. This approximation technique 

works quite well when the observed time series is quite long n ~ 500 and the number of 

replications available is also very high R ~ 1000. For the Amazon bird vocalization data, 

both the length and the replications are quite small compared to these numbers.
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We instead focus on Markov chain Monte Carlo (MCMC), developing a practical algorithm 

that exploits the structure of the model, as detailed in Algorithm 1. We use θ | − to 

denote the full conditional distribution of a parameter θ, given other parameters and the 

data in Algorithm 1. The Metropolis random walk steps to update the Hurst exponent 

and the Gaussian process kernel hyperparameters are implemented following the adaptive 

Metropolis algorithm (Roberts and Rosenthal (2001)). Adaptive Metropolis modifies the 

classical version of the algorithm by varying the covariance of the noise in the random 

walk targeting the optimal acceptance rate (Roberts and Rosenthal (2001)). Suppose s1 

and s2 are the noise variance of the random walk updates of β and η, respectively. We 

start with s1 = 0.1 and s2 = 0.2 and update them at MCMC iteration l by increasing or 

decreasing by a factor of exp(l−0.5) whenever l is divisible by 50. Adaptation targets an 

acceptance probability of ~ 0.3. Values of f(·) at a set of test points can also be evaluated 

by accommodating a further step in Algorithm 1 following Rasmussen and Williams (2006), 

equations 2.22–2.24.

The main computational bottleneck of Algorithm 1 involves simulating the truncated 

Gaussian random variables for updating the latent variables Wr. This is done using R 

package tmvtnorm. Unfortunately, we found the popular circulant embedding algorithm 

(Pipiras and Taqqu (2017), Chapter 2.11) to simulate Gaussian long-range dependent 

sequences to be quite slow when these constraints are imposed. To accelerate computation, 

the R copies of the latent variables are generated in parallel. The R code to implement 

the FRAP model, given R copies of discretized events, is available at https://github.com/

antik015/Fractional-Probit-Model; the code is also available in Chakraborty, Ovaskainen and 

Dunson (2022b).

3.3. Asymptotics.

Here, we consider infill asymptotics, so we assume we can make measurements at finer time 

points {t0, …, tn } as n → ∞ within the interval [0, T]. We assume the noise variance τ 
= 1. Also, we set the number of replications R = 1 since the proof does not depend on a 

specific value of R. Let the true trend function be f0 ∈ ℱ and the true Hurst coefficient be 

H0, satisfying 0 < a < H0 < b < 1 for some a, b ∈ (0, 1). Define θ0 = (f0, H0) and P0 to be the 

true data generating probability measure, and consider any weak neighborhood U of θ0. By 

showing that the joint prior Π ☰Πβ × Πf has positive Kullback–Leibler support we have the 

following consistency result.
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THEOREM 3.2. Suppose f0 ∈ ℱ and 0 < a < H0 < b < 1 for some a, b ∈ (0, 1). Write θ0 = (f0, 

H0), and consider any weak neighborhood U of θ0. Then, the posterior probability of the set 
Uc given the series of indicators Π(Uc | Z1, …, Zn) → P0-probability as n → ∞.

A proof of Theorem 3.2 is provided in the Appendix.

4. Simulation experiments.

We report the results of a detailed simulation study for different choices of the latent trend 

function f(·) in equation (3.9) while varying the number of replications R. We assume 

discretized observations are available for a period of n = 90 time units, and the number of 

replications R considered is {10, 25, 50}. The following choices of the trend function are 

considered:

1. f1(t) = sin4πt
90 ;

2. f2(t) = 5[1 +exp{−2.5(t −45)/15}]−1;

3. f3(t)=−2{(t −45)/45}2 +2;

4. f4(t) = − 1.2 (t − 45)/45 + 0.5 cos 3πt
90 − 1.7;

5. f5(t) = 0.1f1(t) log{f2(t)}.

We note here that f2(·) slightly violates the assumption that the nonstationary component 

in model (3.9) at t = 0 is 0. We define the squared empirical ℓ2 norm of a function g(·), 

evaluated on the points {t1,…, tn}, as ∥ g ∥2, n = n−1∑i = 1
n g ti 2. Given an estimator 

f( ⋅ ) of f( ⋅ ) ≔ f( ⋅ )/τ in model (3.12), we evaluate the performance of Algorithm 1 by 

computing the relative mean square error (ReMSE), defined as ReMSE = e 2, n/ f 2, n, 

where e( ⋅ ) = f( ⋅ ) − f( ⋅ ). The latent trends f(·) are chosen from the aforementioned list, and 

f( ⋅ ) is set to be the pointwise posterior mean of f(·)/τ at {t1, …, t90 }, obtained under the 

hierarchy (3.12). We considered three choices for the Hurst exponent, namely, {0.5, 0.75, 

0.9}, ranging from independent increments for H = 0.5 to highly correlated increments for 

H = 0.9. We generated the binary data by first evaluating y(t) = f(t) + BH(t) at {t0, t1, …, 

tn }; to simulate the noise vector, we sampled ϵH ~ N(0, τ2 ΣH) with τ2 = 0.052, 0.12, 

0.152. Representing each positive increment of y(·) by 1, the discretized series Z is obtained, 

and the sampling is repeated R times to complete the data generation process. For each 

combination of f(·), H, τ, and R, we performed 30 independent evaluations of the proposed 

framework, and in Table 2 we report the average ReMSE and the average estimated Hurst 

exponent for τ = 0.1 with the value of ν fixed at 0.001; results for τ = 0.05,0.15 are provided 

in the Supplementary Material (Chakraborty, Ovaskainen and Dunson (2022a)).

Estimates of the Hurst exponent are quite accurate across all the combinations of R, H, 

and f(·). This is important in the context of the Amazon bird vocalization data for which 

we have, on average, 10 days of data. Naturally, the ReMSE in Table 2 is inversely 

proportional to the number of replications R, decreasing by a factor of two when the number 

of replications is doubled. Interestingly, the degree of LRD also controls the ReMSE. For all 
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the choices of f(·), the average ReMSE increases with H. Large H implies strong dependence 

in the data which makes the problem of recovering f(·) harder. This was investigated 

formally in Hall and Hart (1990) who observed that the rates of recovering f(·) decrease 

with H. Set p(t1, t2) = Φ[{f (t2) − f (t1)}/τ] as the true marginal probability under model 

(3.9) with trend function f(·) and let p t1, t2 = Φ f t2 − f t1 /τ  denote samples from the 

posterior distribution of f and τ obtained fitting Algorithm 1. The black line in Figure 6 is 

the posterior mean of the marginal probabilities p t1, t2 , and the red line plots p(t1, t2) for the 

case H = 0.75 and R = 50 and five choices of f(·) in consideration here. We also show the 

pointwise 95% credible bands of p t1, t2 . The best result is obtained for f1(t). The credible 

bands mostly provide accurate uncertainty quantification for all the cases. However, when 

the number of replications R is smaller the problem of accurately estimating the marginal 

probabilities becomes much harder, especially for high values of H. Posterior samples of the 

Hurst exponent for one case are also included in the figure.

To further investigate the behavior of the posterior distribution of the Hurst exponent, we 

carried out an independent simulation experiment focusing on the coverage probability of 

the credible intervals. We fix the number of replicates at R = 5 and vary the Hurst exponent 

together with the latent trends as above. For each such combination, we generated 100 data 

sets and applied model (3.12). Our findings for 95% credible intervals are summarized in 

Table 3. The coverage probabilities (CP) for all the cases considered are close to the nominal 

level. The average lengths (l) of the intervals vary substantially for different choices of 

H along with the standard deviation. For example, the average length of the intervals are 

maximum for the case H = 0.5 with very little variation, but, when H = 0.9, the intervals 

become shorter on average although their variability increases by almost a factor of 3.

5. Application to Amazon bird vocalization data.

5.1 Analysis and results.

We applied the FRAP model to the 15 bird species mentioned in Section 2. For each of these 

species, we have 180 minutes of recordings available for multiple days. The estimated Hurst 

exponents for these 15 species are reported in Table 1 with the posterior mean, lower, and 

upper end of the 95% credible intervals under columns HFRAP , HLR, and HUR, respectively. 

All the species show high long-range dependence in their temporal vocalization patterns. 

The posterior mean estimate of the Hurst exponent for the birds range from a minimum of 

0.83 up to 0.94. The variation in the Hurst exponent across species is very small with an 

overall mean of 0.88 and standard deviation 0.04. The high value of the Hurst exponents 

is consistent with the data in the sense that birds either vocalize or remain silent over long 

periods of time. We note that this is a combination of two factors which are occurrence 

and vocalization activity. First, due to their movement activity, a bird individual may be 

in the vicinity of the recorder for some time and then move to another location. Second, 

conditional on the bird being present, it may sustain its vocalization activity over some time 

and remain silent over another time.

Figure 7 shows posterior means and 95% pointwise intervals for the species-specific 

marginal probabilities of vocalizations occurring in each of the 180 time intervals between 
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5.15–8.15 a.m. for all 15 species listed in Table 1. Due to data sparsity and the high 

Hurst exponent, the raw posterior samples exhibited spiky patterns over time, and, hence, 

we (mildly) smoothed the samples prior to calculating the posterior summaries in Figure 

7. While these trends should not be overinterpreted, we do see some general patterns 

appearing. For example, for Cercomarca cinerascens, Frederickena viridis, Grallaria varia, 

Micrastur mirandollei, Myrmeciza ferruginea, Percnostola ruffifrons, Pipra erythrocephala, 

Pithys albifrons, and Ramphastos vitellinus we see an increase in vocalization activity after 

7 a.m., whereas Automolus ochrolaemus, Corythopis torquata, Hylexetastes perrotii, and 

Ibycter americanus more or less maintain a uniform activity level during this time. Micrastur 

gilvicollis and Hylophilus muscicapinus show more activity during the early hours of the 

day. Since groups of birds show similar vocalization patterns, in Chakraborty, Ovaskainen 

and Dunson (2022a), we extend the FRAP framework to a hierarchical setting that shares 

information across different species.

5.2 FRAP vs. MMPP.

We compare the fit of the proposed FRAP model with the MMPP model (Davison and 

Ramesh (2020)) for discretized event data via summary statistics derived from the posterior 

distribution and maximum likelihood estimates, respectively. The particular summary 

statistics in which we are interested are the conditional probabilities in Figure 2. In the 

context of the FRAP model, the distribution of the binary indicators Z is completely 

characterized by the latent variables W. The posterior predictive distribution of WR+1, given 

the observed binary indicators Z1, …, ZR, is p(WR+1 | Z1, …, ZR) = ∫ p(WR+1 | θ*)p(θ* | 

Z1, …, ZR), where θ* = (f, β, τ, σ, ϕ)T and p(WR+1 | θ*) ~ N(Af, τ2ΣH), H = log{β/(1 − 

β)}. To sample the latent variable WR+1, we use the MCMC samples of θ* obtained from 

Algorithm 1, that is, given θ*
(l), the l th MCMC sample from p(θ* | Z1, …, ZR), we draw 

W R + 1
(l) N Af(l), τ2(l)ΣH

(l) . Then, equation (3.9) is used to obtain the corresponding binary 

series ZR + 1
(l) .

The MMPP assumes event occurrence is governed by specific states of an unobserved 

continuous time Markov chain, hereafter referred to as CTMC, X(t) with finite state space 

{1, 2, …, K } and instantaneous transition probability matrix G ∈ ℛK×K. Given the chain 

is in state k ∈ {1, …, K } at time t, events occur following a Poisson process with rate 

λk. The event generating process is then parameterized by the G and λ = {λ1, …, λk }. 

The likelihood of a discretized series of events under the MMPP model has been derived in 

Davison and Ramesh (2020). Let G and L denote the maximum likelihood estimates of G 
and L, respectively, using R replicates of binary event indicators Z1, …, ZR. For the Amazon 

bird vocalization data we generate a series of binary event indicators ZR+1 using the plug-in 

estimates G and L with k = 2.

Having generated event indicators ZR+1 from the two models for each of the 15 species in 

Table 1, we compute the conditional probability of occurrence of a vocalization, given a 

vocalization in the previous interval for time scales Δt = {1, 2, 4, 9, 15, 30, 60, 90}; for 

the FRAP model we compute the conditional probabilities for each MCMC sample ZR + 1
(l)
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and consider the average. In the left panel of Figure 8, we plot these probabilities using 

the estimates obtained from the MMPP model, and in the right panel we plot the average 

conditional probability for different time scales across MCMC samples. The proposed FRAP 

model captures the scaling of the conditional probabilities seen in the observed data (Figure 

2) while the MMPP does not. We also fitted the MMPP with K = 3 states, but the results 

were very similar.

5.3. Model diagnostics.

We also carried out typical model diagnostics for count time series data, discussed in Czado, 

Gneiting and Held (2009) and Kolassa (2016). Specifically, we use marginal calibration 

plots to assess model fit. We first draw samples from the predictive distribution of Z180 |Z1, 

…, Z179 for a particular species of bird. We then compute P(Z180 = 1 | Z1, …, Z179) using 

the Monte Carlo average. This predictive probability is then matched with the observed 

probability P(Z180 = 1) which is computed as R−1∑r = 1
R Z180

(r) . In Figure 9 we plot the 

differences in the predicted and observed probabilities for the 15 different species. For some 

birds the difference is very small, whereas for other birds this difference goes up to 0.25, 

especially when the number of replicates available is small. Overall, the model performs 

adequately; prediction of vocalizations can potentially be improved by including covariates, 

such as weather and habitat conditions at the sampling site.

6. Discussion.

In this article we proposed a novel class of models for characterizing long-range dependence 

in discretized event data, along with a Bayesian approach to inference under these models. 

We are particularly motivated by bird vocalization studies and, indeed, are involved in 

ongoing collaborations collecting many such datasets across the globe in order to obtain 

new insights into biodiversity, interactions among species, and the role of biotic and 

abiotic factors. The proposed class of FRAP models provides an important starting point 

for building realistic models for these emerging datasets as well as related datasets from 

precipitation and storm event modeling. Immediate next directions are to add complexity 

to the models in order to more realistically characterize structure in the data, ranging 

from spatial dependence to covariate effects. Such extensions are conceptually quite 

straightforward.

There are several other important directions that are potentially less trivial. The first is 

to broaden the class of models from a latent fractional Brownian motion to a broader 

class of stochastic processes with long-range dependence. This may include long-range 

modifications to usual Gaussian process covariance kernels (e.g., Matern) as well as 

non-Gaussian cases; for example, Levy processes, alpha-stable processes, etc. The second 

critical direction is developing much faster computational algorithms. There is an immense 

literature on algorithms for accelerating computation in Gaussian process models but, to our 

knowledge, very little consideration of the case in which there is long-range dependence. 

In our motivating applications we are faced with immense datasets containing automated 

recordings over time at many different locations around the world. To scale up to such 
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datasets, we plan to consider divide-and-conquer algorithms and variational approximations, 

among other directions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX SECTION

A.1. Proof of Lemma 3.1.

Since the fBM is a Gaussian process, from Corollary 2.6.3 of Pipiras and Taqqu 

(2017), we get E BH(i) = 0  and E BH(i) 2 = i2H for any i ∈ ℕ. Hence, BH(i) 

~ N(0, i2H). By stationarity of the incremental process of fBM, it is enough 

to show (3.8) holds for i = 1. Define Y 1
(m) = X2m and Y 2

(m) = X2m + 1 − X2m. 

Then, Y 1
(m) N 0, 22Hm . Also, E Y 2

(m) 2
= E X2m + 1 2 + E X2m 2 − 2 Cov X2m + 1, X2m . From 

(3.4) we get Cov X2m + 1, X2m = 22H(m + 1). Thus, we have Y 2
(m) N 0, 22Hm . Finally, 

Cov Y 1, Y 2 = Cov X2m, X2m + 1 − E X2m 2, which, after applying (3.4) again, we obtain 

Cov(Y1, Y2) = 22Hm(22H−1 − 1). Setting λ2 = 22Hm,

P Z2
(m) = 1 ∣ Z1

(m) = 1 =
P Y1 > 0, Y2 > 0

P Y1 > 0
= 2P Y2/λ > 0, Y2/λ > 0

= 2 1
4 + 1

2π  arcsin 1
λ2Cov Y1, Y2

= 1
2 + 1

π  arcsin 22H − 1 − 1 .

A.2. Mixing of MCMC chain in Algorithm 1.

We briefly comment on the mixing of the MCMC chain obtained via Algorithm 1. With L 
MCMC samples we calculate the effective sample sizes (ESS) for the parameters f(·)//τ H as

ESS = L
1 + 2∑j = 1

J ρ(k)
, (A.1)

where ρ(j) is the autocorrelation at lag j. We set J = 30 as the maximum lag and L = 10,000. 

For the 180 parameters f(t)/τ, where t = 1, …, 180, the average effective sample size for the 

15 species were 2012.21 and that for the Hurst coefficient H averaged over all the species is 

1941.44.
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A.3. Proof of Theorem 3.2.

For any set V ∈ Θ, the posterior probability Π(V | Z1, …, Zn) = ∫ Π(V | W, Z1,…, Zn) Π (W 
| Z1, …, Zn) dW. Now, fix any weak neighborhood U of θ0. Weak consistency conditional 

on the latent variables is proved in Section S6 of Chakraborty, Ovaskainen and Dunson 

(2022a). Thus, the random variable Π(Uc | W, Z1, …, Zn) converges to 0 in P0-probability. 

We now extend the proof for the marginal probability Π(Uc | W, Z1, …, Zn). Fix any δ > 0. 

Then we have

EP0Π UC ∣ Z1, …, Zn

= EP0∫ Π Uc ∣ W , Z1, …, Zn Π W ∣ Z1, …, Zn dW

= EP0∫Π Uc ∣ W , Z1, …, Zn ≤ δΠ Uc ∣ W , Z1, …, Zn Π W ∣ Z1, …, Zn dW

+ EP0∫Π Uc ∣ W , Z1, …, Zn > δΠ Uc ∣ W , Z1, …, Zn Π W ∣ Z1, …, Zn dW

≤ δ + P0 Π UC ∣ W , Z1, …, Zn > δ ,

where we use the fact that Π(Uc | W, Z1, …, Zn) ≤ 1.
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Fig. 1. 
Binary sequence of all vocalizations of birds from the Automolus ochrolaemus species, 

during nine days (not necessarily consecutive) of recording. White and black grids represent 

absence or presence of vocalizations, respectively.
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Fig. 2. 
Marginal (left panel) and conditional (right panel) probabilities of bird vocalizations for 15 

different species at different time scales Δt = {1, 2, 4, 9. 15, 30, 60, 90}. The names of the 

species from Table 1 have been abbreviated using the first letter of their genus name (first 

word) and first letter of their specific epithet (second word), due to space constraints.
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Fig. 3. 
Distance autocorrelation (left panel) at different lags for the binary indicators obtained from 

one day of recording of vocalizations for the species Corythopis torquata. On the right panel 

the periodogram for the same time series is shown.
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Fig. 4. 
Relation between the Hurst coefficient H and the conditional probabilities obtained from 

equation (3.8).
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Fig. 5. 
Variation in marginal probabilities of observing a vocalization or an event when f(t) = 

sin(4πt)/90 for time intervals (0, 1], (1, 2], …, (89, 90]. Here, τ = 1, and the marginal 

probabilities are calculated as Φ{f(i + 1) −f(i)} for i = 0, …, 89.
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Fig. 6. 
Figure (a) shows the posterior mean and 95% credible bands for marginal probabilities in 

one minute intervals when f(t) = sin4πt
90 . The values of the Hurst coefficient and the number 

of replications were H = 0.75 and R = 50, respectively. Red dashed and black solid lines 

correspond to the true values and the posterior mean, respectively. Gray shaded regions are 

credible bands. Corresponding posterior samples of H are shown in (b). A red line is added 

at the true value H = 0.75.
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Fig. 7. 
Smoothed marginal probabilities of vocalization obtained by fitting model (3.9) for the 15 

species listed in Table 1 for 180 test intervals of duration one minute from 5.15–8.15 a.m. 

Shaded regions are 95% credible intervals and black lines are posterior means.
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Fig. 8. 
Conditional probabilities of vocalizations for the 15 different species at different time scales 

Δt = {1, 2, 4, 9, 15, 30, 60, 90} obtained from fitted model for the MMPP (left) and samples 

from posterior predictive for the FRAP model (right).
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Fig. 9. 
Difference between one-step ahead prediction probabilities for Z180 = 1 and observed 

probabilities for the 15 species of bird analyzed here.
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Table 1

Estimated Hurst exponents for the 15 bird species using (HDFA ), Geweke and Porter-Hudak (1983) (HGPH ), 

Robinson (1995) (HW ), Livsey et al. (2018) (HQMLE ), and the FRAP model. For the FRAP model we include 

the posterior mean (HFRAP ) along with the 95% credible intervals (HLR , HUR )

HGPH  HW 

Species name m = n1/2 m = n2/3 m = n4/5 m = n1/2 m = n2/3 m = n4/5 HQMLE  HLR  HFRAP  HUR 

Automolus ochrolaemus 0.72 0.82 0.89 0.65 0.86 0.86 0.67 0.85 0.89 0.95

Cercomacra cinerascens 1.04 1.06 1.17 0.99 1.13 1.04 0.83 0.90 0.92 0.94

Corythopis torquata 0.91 0.94 0.89 0.78 0.98 0.85 0.72 0.80 0.84 0.88

Frederickena viridis 1.25 1.03 1.07 1.20 1.10 1.02 0.63 0.79 0.86 0.93

Grallaria varia 1.02 0.91 0.91 0.95 0.98 0.91 0.66 0.84 0.89 0.93

Hylexetastes perrotii 0.79 0.94 0.92 0.71 0.98 0.89 0.85 0.89 0.93 0.95

Hylophilus muscicapinus 0.80 0.99 0.96 0.68 0.99 0.92 0.69 0.80 0.87 0.93

Ibycter americanus 0.96 1.08 1.10 0.88 1.21 0.99 0.81 0.90 0.94 0.96

Micrastur gilvicollis 0.84 0.90 0.98 0.73 0.95 0.91 0.64 0.80 0.84 0.89

Micrastur mirandollei 0.83 0.96 1.05 0.76 1.02 1.02 0.61 0.83 0.88 0.93

Myrmeciza ferruginea 0.87 1.10 0.99 0.78 0.92 0.88 0.61 0.81 0.85 0.88

Percnostola rufifrons 0.81 0.96 0.89 0.78 0.99 0.90 0.63 0.87 0.92 0.96

Pipra erythrocephala 0.63 0.86 0.96 0.60 0.95 0.93 0.60 0.79 0.84 0.88

Pithys albifrons 0.77 0.86 0.90 0.71 0.89 0.86 0.63 0.83 0.87 0.90

Ramphastos vitellinus 0.84 0.99 1.01 0.76 1.02 0.96 0.59 0.77 0.83 0.89
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Table 2

Relative mean square error (ReMSE) for different choices of the latent trend function f(t) for the model 

(3.10) under hierarchy (3.12). For each f(t), three values of the Hurst exponent are considered: {0.5, 0.75, 

0.9} together with {10, 25, 50} replications. The results reported are averages of 30 independent simulation 

experiments for each combination

f1(t) f2(t) f3(t) f4(t) f5(t)

Hurst exponent (H) Replications (R) MSE H MSE H MSE H MSE H MSE H
0.5 10 1.26 0.55 1.02 0.49 0.12 0.52 0.09 0.52 1.38 0.50

25 0.58 0.48 0.40 0.48 0.01 0.50 0.01 0.51 0.96 0.51

50 0.40 0.54 0.17 0.50 0.007 0.48 0.005 0.50 0.08 0.50

0.75 10 2.13 0.76 1.88 0.76 0.14 0.74 0.28 0.76 4.81 0.74

25 1.37 0.75 1.20 0.77 0.06 0.76 0.03 0.75 1.46 0.75

50 0.84 0.74 0.24 0.74 0.04 0.75 0.02 0.75 0.55 0.74

0.9 10 4.18 0.88 6.52 0.87 0.70 0.88 0.20 0.90 14.96 0.87

25 3.08 0.89 2.61 0.89 0.29 0.89 0.18 0.89 5.87 0.93

50 1.11 0.89 0.99 0.88 0.08 0.87 0.07 0.89 3.34 0.88
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Table 3

Coverage probability (CP) of 95% credible intervals for the Hurst exponent under the hierarchy (3.12). Also 

included are the average length (l) of the credible intervals with corresponding standard deviation inside 

parenthesis. The number of replicates in each case is R = 5

f1 (·) f2 (·) f3 (·) f4 (·) f5 (·)

H CP l CP l CP l CP l CP l

0.5 0.97 0.16 (0.05) 0.94 0.19 (0.04) 0.92 0.20 (0.02) 0.92 0.21 (0.03) 0.98 0.20 (0.02)

0.75 0.91 0.15 (0.03) 0.92 0.14 (0.14) 0.92 0.14 (0.02) 0.90 0.14 (0.02) 0.93 0.13 (0.01)

0.9 0.90 0.13 (0.10) 0.89 0.14 (0.11) 0.91 0.12 (0.10) 0.90 0.12 (0.09) 0.94 0.14 (0.10)
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