Table 3.
Binary classification results of baseline models for nonharmonized and harmonized data. For Parkinson’s disease and schizophrenia, results comparing the accuracy of different models for nonharmonized and harmonized methylation data are shown.
Model | Parkinson’s disease | Schizophrenia | ||||
---|---|---|---|---|---|---|
GSE72774 | GSE152027 | GSE116379 | ||||
Nonharmonized | Harmonized | Nonharmonized | Harmonized | Nonharmonized | Harmonized | |
Logistic regression | 0.71 | 0.93 | 0.63 | 0.66 | 0.56 | 0.66 |
Support vector machine | 0.67 | 0.92 | 0.62 | 0.66 | 0.58 | 0.65 |
XGBoost | 0.72 | 0.95 | 0.67 | 0.71 | 0.56 | 0.66 |
CatBoost | 0.71 | 0.94 | 0.68 | 0.72 | 0.59 | 0.71 |
LightGBM | 0.76 | 0.97 | 0.68 | 0.71 | 0.58 | 0.67 |
TabNet | 0.69 | 0.93 | 0.63 | 0.66 | 0.58 | 0.65 |
NODE | 0.71 | 0.92 | 0.62 | 0.66 | 0.56 | 0.65 |