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Detection of m6A from direct RNA 
sequencing using a multiple instance 
learning framework

Christopher Hendra1,2,3, Ploy N. Pratanwanich2,4,5, Yuk Kei Wan2,6, 
W. S. Sho Goh    7, Alexandre Thiery    3   & Jonathan Göke    2,3,8 

RNA modifications such as m6A methylation form an additional layer of 
complexity in the transcriptome. Nanopore direct RNA sequencing can 
capture this information in the raw current signal for each RNA molecule, 
enabling the detection of RNA modifications using supervised machine 
learning. However, experimental approaches provide only site-level training 
data, whereas the modification status for each single RNA molecule is 
missing. Here we present m6Anet, a neural-network-based method that 
leverages the multiple instance learning framework to specifically handle 
missing read-level modification labels in site-level training data. m6Anet 
outperforms existing computational methods, shows similar accuracy as 
experimental approaches, and generalizes with high accuracy to different 
cell lines and species without retraining model parameters. In addition, we 
demonstrate that m6Anet captures the underlying read-level stoichiometry, 
which can be used to approximate differences in modification rates. Overall, 
m6Anet offers a tool to capture the transcriptome-wide identification and 
quantification of m6A from a single run of direct RNA sequencing.

Modifications in RNA nucleotides were first discovered in the 
1950s1,2, and today, more than 150 different modifications have been 
described3,4. One of the most common RNA modifications is m6A, the 
main internal methylation on mammalian mRNA5,6. This modification 
presents mostly at the consensus motif DRACH (D–A, G, or U, R–A or 
G while H is A, C or U) and has been shown to impact RNA structure7, 
stability8,9, splicing10, and translation11. Disruption of m6A homeostasis 
in animal models affects regulation of stem cells12,13, fertility and the 
developmental process14, while in humans, this modification plays an 
important role in cancer15,16, cell-fate transition and determination17,18 
and transition, development19, and diseases20,21.

Experimental identification of trasncriptome-wide RNA 
modifications can be achieved with three main approaches. 

Immunoprecipitation methods such as MeRIP-Seq22, m6A-Seq23, 
PA-m6A-Seq24, m6A-CLIP/IP25, miCLIP26, m6A-LAIC-Seq27, m6ACE-Seq28, 
and m6A-Seq229 use antibodies that specifically bind to the modified rib-
onucleotide. Chemical-based detection methods such as Pseudo-Seq30, 
AlkAniline-Seq31, utilize chemical compounds that selectively react 
with the modified ribonucleotide. Approaches such as Mazter-Seq32, 
m6A-REF-Seq33, or DART-Seq34 use specific enzymes to selectively 
distinguish modified and unmodified bases. These approaches are 
similar in that they isolate the RNA after inducing changes to the sur-
rounding nucleotides, followed by reverse transcription and short-read 
cDNA sequencing to detect these changes. While these approaches 
provide a transcriptome-wide map of RNA-modification sites, they 
are limited by the availability of antibodies or compounds for specific 
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are optimized jointly—a read-level encoder and a pooling layer. The 
read-level encoder uses signal and sequence features from each read, 
and transforms them into a high-dimensional representation before 
predicting the probability of each read being modified (Fig. 1a). The 
read-level probability is then pooled to give a probability estimate that 
a site is modified (Fig. 1a). By combining features that represent signal 
and sequence properties, m6Anet can learn a model that can be applied 
for all fivemers that are represented in the training data. Furthermore, 
the end-to-end training of our model implicitly learns a representation 
of the data that is optimized towards predicting the probability that a 
site is modified on the basis of the assumption encoded within the pool-
ing layer. In our case, the pooling layer represents the probability that 
a particular site contains at least one modified position, but in practice 
one can choose a pooling layer that best captures the labeling process 
associated with the data collection step. While we apply m6Anet to the 
task of m6A RNA-modification detection, the framework can also be 
applied to other tasks for which training labels are available, such as 
detection of DNA modification or other RNA modifications of interest. 
m6Anet is implemented in Python and available from GitHub (https://
github.com/GoekeLab/m6anet).

Training data for m6Anet model parameter estimation
To learn the model parameters, m6Anet requires training data con-
sisting of labels (modified/unmodified) and direct RNA-Seq reads. 
To train a model for m6A we used labels obtained from m6ACE-Seq 
that identifies m6A at single-nucleotide resolution28. m6Anet uses 
positions that are identified to have m6A as labels for the ‘modified’ 
class, and any other position with the same fivemer sequences that are 
included in the modified class will be used as the ‘unmodified’ class. To 
extract features for model training and predictions, we used nanopol-
ish52 eventalign to segment nanopore raw signals into their respective 
positions in the transcriptome. Since m6A modifications occur at the 
DRACH motifs, we removed any non-DRACH motifs from these data 
for m6Anet; however, this step is not required for training data with-
out prior knowledge about the motifs. Since m6A modifications are 
rare compared to unmodified sites, we oversample the modified sites 
during training to obtain a balanced dataset (see Supplementary Text 
for results with alternative sampling strategies). Here we used direct 
RNA-Seq data from the HCT116 cell line for which matched m6ACE-Seq 
data is available as part of the Singapore Nanopore Expression Project53.

Contribution of signal and sequence features
m6Anet uses signal features corresponding to the normalized signal 
intensity, standard deviation, and dwelling time for each position. To 
understand how each feature contributes to the prediction of m6Anet, 
we explored the difference in features between the predicted modified 
and unmodified sites for each of the DRACH motifs. Signal intensity 
of the center base showed the strongest difference between predicted 
modified and unmodified sites, with dwell time showing the smallest 
difference (Fig. 1b and Supplementary Fig. 1a–r). Overall, all features 
distinguish modified and unmodified sites and are informative for 
m6A predictions.

As RNA modifications can affect the nanopore current signal at 
the neighboring bases, we tested whether information from addi-
tional positions increases the model accuracy. We performed fivefold 
cross validation with features extracted from 0 to 5 base pairs flanking 
the candidate sites to evaluate the additional value of neighboring 
positions, splitting the data at the gene level to ensure independence 
between training and test set. Our results show that m6Anet perfor-
mance is highest when one-base-pair flanking positions were consid-
ered, whereas additional information from the neighboring features 
beyond one base pair did not result in any further improvement of the 
classifier (Supplementary Table 1).

A key feature of m6Anet is the ability to jointly model RNA modi-
fications for all candidate fivemer sequences in the training data. To 

modifications35. Also they lack single-nucleotide resolution22,23 and 
are incapable of identifying modifications for single RNA molecules.

The ability to sequence native RNA using Nanopore direct RNA 
sequencing (RNA-Seq) can potentially overcome these limitations36. 
Direct RNA-Seq infers the RNA sequence using the current intensity 
when RNA molecules pass through the pores. Modified nucleotides 
will emit a different signal intensity compared to unmodified nucleo-
tides, allowing the computational identification of modified sites for 
each individual RNA molecule using either supervised or comparative 
approaches37. Comparative approaches do not require training data for 
known RNA modifications but instead use control or reference samples 
to detect meaningful shifts in signal-based features that correlate to 
the presence of modifications. Comparative methods such as Tombo38, 
DRUMMER39, nanoDOC40, Nanocompore41, ELIGOS42, xPore43, and Yano-
comp44 detect m6A sites by comparing against samples without m6A 
modifications. While these methods are accurate, their success relies 
on the availability of m6A-free control samples. This involves silencing 
of specific writer genes, which can be a limiting factor.

Supervised detection of m6A modifications involves train-
ing a classifier using labels that can be obtained from synthetically 
modified RNA samples or experimental protocols such as miCLIP26, 
MeRIP-Seq22 or m6ACE-Seq28. Methods such as EpiNano45,46, MINES47, 
and nanom6A48, use training data to identify m6A using the sequenc-
ing error profile or shifts in the current signal intensity. Supervised 
methods can be applied on a single sample, overcoming the main 
limitation of comparative methods for detection of specific RNA modi-
fications. Furthermore, given the availability of training data, one can 
retrain supervised classifiers to detect other modifications such as 
pseudouridine, which is detected by NanoRMS49. However, existing 
approaches are limited to a specific nucleotide content45–48, and they 
are currently less accurate than comparative approaches using an 
m6A-free control41,43,44.

One of the main challenges for supervised approaches is that 
training labels are provided for a set of reads at the site level, but not 
for each individual read, which is known as a multiple instance learning 
(MIL) problem50,51. Existing methods address this problem by averag-
ing read-based features45–47. However, at any given site, we are likely to 
have a mixture of modified and unmodified reads and as such, not all 
reads provide useful features to detect m6A sites. Therefore, current 
approaches, which do not consider the MIL structure in the training 
data might fail to detect m6A modifications from sites with low stoichi-
ometry as it tends to obscure signals from the lowly expressed modified 
RNAs, and it limits the ability to integrate variation in read-level features 
into a predictive model.

To address these limitations, we developed m6Anet, a MIL-based 
neural network model that takes in signal intensity and sequence fea-
tures to identify potential m6A sites from direct RNA-Seq data. Our 
model takes into account the mixture of modified and unmodified 
RNAs and outputs the m6A-modification probability at any given site 
for all DRACH fivemers represented in the training data. Unlike exist-
ing approaches, m6Anet learns a high-dimensional representation of 
individual reads from each candidate site before aggregating them 
together to produce a more accurate prediction of m6A sites. By apply-
ing m6Anet to human, Arabidopsis, and synthetic direct RNA-Seq data 
we demonstrate that it detects previously unlabeled m6A sites and 
generalizes across different cell lines and species without a reduction 
in performance. The approach is general enough that the network 
can be retrained to classify any natural or artificial RNA modifications 
given a set of labels.

Results
m6ANet identifies methylated positions with a MIL approach
Here we present m6Anet, a neural-network-based MIL model that com-
bines learning the representation of each individual read with classify-
ing m6A-modified sites. m6Anet comprises two separate modules that 
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evaluate if this approach biases the prediction of m6A sites based on 
the sequence, we compared the fivemer frequency of predicted m6A 
sites with the fivemer frequency observed in m6ACE-Seq data on posi-
tions that have not been used to train m6Anet model parameters. We 
find that m6Anet predictions have a comparable fivemer profile as the 
m6ACE-Seq data, with less frequent motifs being equally represented 
(Fig. 1c), showing that m6Anet captures the expected modification 
rates per fivemer from a single model that combines features from 
signal and sequence.

m6Anet accurately identifies m6A sites
To evaluate the performance of m6Anet we tested the model on direct 
RNA-Seq data from the HEK293T cell line43, using m6ACE-Seq28 and 
miCLIP data26 from the same cell line as ground truth. We then compared 
the performance of m6Anet against EpiNano45,46, MINES47, Tombo38, and 
nanom6A48 using the area under the curve (AUC) of the receiver operat-
ing characteristic (ROC) and precision–recall (PR) curves to quantify 
the model accuracy. On the HEK293T cell line, m6Anet achieves a ROC 

AUC of 0.83 and PR AUC of 0.35 (Fig. 1d and Supplementary Table 2). 
Among the other methods, only EpiNano and Tombo return predic-
tions for all DRACH motifs, however, at a lower accuracy compared 
to m6Anet (Fig. 1d). Since MINES and nanom6A output predictions 
only for 4 and 12 fivemers respectively, we ran separate validation 
between MINES, nanom6A, and m6Anet on these motifs. On these 
data, m6Anet achieved a ROC AUC of 0.83 (4 motifs and 12 motifs) and 
a PR AUC of 0.43 (4 motifs) and 0.37 (12 motifs) outperforming both 
MINES and nanom6A (Fig. 1e,f and Supplementary Table 2), suggesting 
that m6Anet provides the most accurate predictions of candidate m6A 
among existing methods.

m6Anet generalizes to new cell lines and species
In order to test how well m6Anet generalizes to data from a new cell 
line or different species, we evaluated m6Anet on two human cell lines 
(HEK293T and Hct116) and one Arabidopsis dataset54. For training and 
testing we used m6A site predictions from m6ACE-Seq and miCLIP for 
the human cell lines. For the Arabidopsis data, we obtained m6A site 
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Fig. 1 | Schematic of m6Anet and evaluation on detection of m6A in human 
cell lines. a, m6Anet model schematics. b, Box plot showing the difference 
in average features distribution between different m6Anet prediction with 
n = 1769 predicted modified sites and n = 5031 predicted unmodified sites for 
the GGACT fivemer motif. The horizontal lines on the boxes show minima, 25th 
percentile, median, 75th percentile, and maxima. Points that do not fall within 
1.5× of the interquartile range are considered outliers and are not shown on the 
plot. c, Comparison of the proportion of modified sites predicted as modified 
by m6Anet and by m6ACE on the DRACH fivemer motifs. The bar plot center 

represents the proportion of modified sites for each fivemer motif while the 
error bar represents the estimated 95% confidence interval around the center 
values with a total of n = 5,579 for m6ACE modified positions, n = 4,784 for 
m6Anet-predicted modified positions and n = 121,853 for m6ACE unmodified 
positions and n = 122,648 for m6Anet-predicted unmodified positions. d, ROC 
curve (top) and PR curve (bottom) of m6Anet against all five EpiNano models and 
Tombo. e, ROC curve (top) and PR curve (bottom) of m6Anet against nanom6A 
and Tombo. f, ROC curve (top) and PR curve (bottom) of m6Anet against MINES 
and Tombo.
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predictions by comparing direct RNA-Seq data with low m6A modifica-
tion (VIR-1 knockout (KO)) against a control (VIR-1 complement) using 
xPore43, which we combined with the site-level labels from Parker et al. 
(Methods). For this comparison, we split the dataset on the gene level 
into a training and test set, ensuring that the test sets on the human 
cell lines comprised the same genes (Fig. 2a,b). A comparison of the 
relative frequency of methylated k-mers in the human and Arabidopsis 
data shows that both species use substantially different m6A k-mer 
profiles (Fig. 2c). Motifs such as GGACT, GAACT, and GGACA that are 
the most prevalently methylated in the human cell lines make up a 
much smaller proportion of methylated motifs in the Arabidopsis data. 

By contrast, the most frequently methylated k-mers in Arabidopsis 
are AAACT, AGACT, and AGACA, which are less frequently methylated 
in the human m6A data, thereby providing a scenario to evaluate the 
generalizability of m6Anet to new data with substantially different 
modified k-mer frequencies.

When we compared the three pre-trained models, we found that 
they generated predictions with a similar accuracy, even when the 
models were trained on a different species using largely different 
modified k-mer profiles (Fig. 2d,e, Supplementary Fig. 2a–e, and Sup-
plementary Tables 3–5). The predicted m6A sites display a strong 3′ 
untranslated region (UTR) enrichment that is typical for m6A and 
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which is similar between the models trained on human and Arabidopsis 
(Supplementary Figs 2f,h). Noteworthy, the performance of m6Anet 
trained on Arabidopsis and tested on human cell lines is still better than 
other methods (Fig. 1d–f and Supplementary Fig. 2i–n). On the HCT116 
cell line, the model learned on the HEK293T data even shows a better 
performance than on the original cell line used for training, indicating 
that the training procedure in m6Anet generates robust, generalizable 
models (Fig. 2d,e). Furthermore, m6Anet was able to identify m6A sites 
on genes that are not expressed in the cell lines used for training (Fig. 
2f,g). These data demonstrate that m6Anet generalizes robustly to 
other cell lines without a loss in accuracy owing to cell-type-specific 
data. While a species-specific model will provide best results, in the 
absence of a species-specific training data, m6Anet still provides accu-
rate predictions even when the default human-trained model is used.

m6Anet-specific predictions are sensitive to METTL3 
knockout
While the overall accuracy for detection of m6A from direct RNA-Seq 
data is high, many m6A sites predicted by m6Anet are not identified by 
these experimental approaches. Different methods for profiling m6A 
have been described to identify different sets of m6A sites28. Indeed, in 
the HEK293T cell line, the largest number of sites are detected by only 

one protocol (Fig. 3a). Among the three protocols, m6Anet predictions 
show an equal or higher fraction of support by other technologies (Fig. 
3b). To evaluate whether technology-specific m6A site predictions 
are valid m6A sites, we identified positions that are sensitive to loss 
of the m6A writer METTL3. Using an existing approach for compara-
tive analysis of direct RNA-Seq (xPore), we mapped m6A sites in the 
HEK293T cell line by comparing it against a METTL3-KO cell line that is 
depleted of m6A28,43. We then define DRACH sites that have a significant 
difference compared to this control as KO-sensitive sites, resulting in 
1,888 candidate positions identified by xPore (Supplementary Table 
2; Methods). The sites that are detected by m6Anet, m6ACE-Seq, and 
miCLIP show the highest fraction of KO-sensitive sites (57%;Fig. 3c). 
Among the sites that are only detected by one method, m6Anet predic-
tions have the highest proportion of KO sensitivity detected by xPore 
(46%; Fig. 3c), with a less stringent method to define KO-sensitive 
sites further increasing the fraction for all three protocols (Supple-
mentary Fig. 3a). As the usage of a direct RNA-Seq-based method for 
evaluation might favor m6Anet predictions, we also investigated the 
enrichment of m6A positions along the transcript coordinates. This 
analysis shows that all the sites that are captured by the three meth-
ods are enriched in the 3′ end of the coding sequence as expected for 
m6A (Fig. 3d). m6A sites that are only found in one method show a 

a

b

f g

c d e
m6ACE-Seq

m6ANet

2 methods 3 methods1 method

m6ANet

m6ACE-Seq

miCLIP

m6Anet m6Anet (m6ACE-Seq + miCLIP)
m6Anet (+KO sensitive)
EpiNano 1 (m6ACE-Seq + miCLIP)
EpiNano 1 (+KO sensitive)

m6ACE
miCLIP
Background

m6ACE-Seq

m6ANet

miCLIP

0 0.2 0.4 0.6
Fraction of m6A sites

0.8 1.0

Identified by

1,500 1,674

390

1,563

861

307

312

miCLIP
60

50

40

30

KO
 s

en
si

tiv
ity

 (%
)

D
en

si
ty

 (p
re

di
ct

ed
 m

6A
 s

ite
s)

Pr
ec

is
io

n

20

1.4

1.2

1.0

1.0

1.00

0.95

0.90

0.85

0.80

RO
C

 A
U

C

0.75

0.70

0.65

1.00

0.95

0.90

0.85

0.80

PR
 A

U
C

0.75

0.70

0.65

0.60

0 10 20 30 40 50 60

Methylated reads (%) Methylated reads (%)
70 80 90 100 0 10 20 30 40 50 60 70 80 90 100

0.8

0.6

0.4

0.2

P = 0.95
P = 0.90

P = 0.85

0.8

0.6

0.4

0.2

5’ UTR 3’ UTR 0 1,000 2,000 3,000

Number of top positions
4,000 5,000CDS

0

10

0

Fig. 3 | Performance comparison between m6Anet, m6ACE-seq, and 
miCLIP on HEK293T cell line. a,b, Total number of modified sites captured by 
m6Anet, m6ACE-seq and miCLIP (area in a shown to proportion). c, Percentage 
of captured sites that a show significant shift in signal distribution against 
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where the P value is quantified using xPore. d, Metagene plot of the modified 
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after including position sensitive to METTL3-KO of m6Anet and EpiNano. Red 
dots indicate the precision at different probability thresholds. f,g, ROC AUC 
and PR AUC of m6Anet on different mixtures of methylated and unmethylated 
direct RNA-Seq reads from synthetic sequences with n = 5 corresponding to five 
different random mixings of the synthetic and IVT reads for each methylation 
level. The horizontal lines on the boxes show minima, 25th percentile, median, 
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range are considered outliers and are not shown on the plot.
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similar pattern, with m6ACE-Seq and m6Anet predictions showing 
the strongest enrichment (Supplementary Fig. 3b), suggesting that 
many of these technology-specific m6A predictions are indeed valid 
m6A-methylated positions.

m6Anet achieves high precision among top predicted sites
As the different methods generate different m6A site predictions, they 
might underestimate the precision when used for evaluation. Indeed, 
including the additional METTL3-KO-sensitive m6A sites into the vali-
dation set increases the estimated precision for m6Anet and other 
methods based on direct RNA-Seq (Fig. 3e, Supplementary Fig. 3c, 
and Supplementary Table 2). Using these additional labels indicates 
that the Arabidopsis model achieves almost identical precision to the 
human-trained models (Supplementary Fig. 3d). At a threshold of 0.9, 
m6Anet achieves a precision of 70.5%, which is significantly higher 
than the estimate based on m6ACE-Seq or miCLIP alone (Fig. 3e). Yet, 
as even these data might contain incomplete modification labels, we 
estimated the precision of m6Anet using synthetic sequences where 
modification labels are complete. Here we used synthetic sequences 
of m6A-modified libraries and unmodified in vitro transcribed (IVT) 
RNA libraries that were sequenced using direct RNA-Seq45. We then 
combined modified and unmodified reads at specific ratios to simulate 
synthetic data for a wide spectrum of modification rates (Methods) and 
applied the m6Anet model trained on the human cell line to predict 
m6A sites on these synthetic sequences. We observe a near optimal 
accuracy with at least 50% modified reads (ROC AUC > 0.98; Fig. 3f,g). 
With modification rates between 25% and 50% m6Anet still achieves 
highly accurate classification (AUC > 0.93; Fig. 3f,g). While the number 
of false positives increases with lower modification rates, the recom-
mended threshold of 0.9 still achieves perfect precision (100%) even 
with just 5% modified reads (Supplementary Fig. 3e). These results con-
firm that the precision of m6Anet is underestimated when comparing 
it to labels obtained from miCLIP or m6ACE-Seq, with many novel sites 
identified by m6Anet most likely reflecting valid, technology-specific 
m6A predictions.

m6Anet provides single-molecule m6A predictions
While the primary output of m6Anet is a site-level modification prob-
ability, it was designed to learn a hyper-dimensional representation 
of each read on the basis of its signal and sequence features, which is 
then used to infer a read-level modification probability. To evaluate the 
ability of m6Anet to discriminate between modified and unmodified 
reads we estimated the read-level probability for the synthetic data. 
On these data m6Anet achieves a ROC AUC of 0.90 and a PR ROC of 
0.91, suggesting that m6Anet accurately identifies single-molecule 
m6A modifications (Fig. 4a,b).

To illustrate the ability to predict per-molecule modifications 
in human cell line data, we extracted the read-level representation 
and probabilities from both the HEK293T wild-type and KO cell 
lines for candidate m6A positions (P > 0.9 in wild type, P < 0.2 in 
KO; Methods). We then performed a principal component analysis 
(PCA) on the high-dimensional read-level features to map reads into a 
two-dimensional space. We find that reads form two clusters that are 
dominated by the KO reads and wild-type reads, respectively (Fig. 4c 
and Supplementary Fig. 4a–h). As a control, we mapped the synthetic 
reads into this read-level feature map, confirming that the wild-type 
reads resemble m6A-modified molecules, whereas the KO reads resem-
ble unmodified molecules (Fig. 4c). Using these clusters we projected 
data from individual reads for the positions identified to have the 
highest modification probability into this read-level feature map (Fig. 
4d–f, Supplementary Fig. 4i–k, and Supplementary Table 6). While 
reads from the KO sample have low predicted m6A probabilities and 
fall into the unmodified cluster, reads from the wild-type samples are 
enriched in the modified cluster, demonstrating how m6Anet enables 
the analysis and visualization of single-molecule m6A predictions.

Single-molecule predictions capture the m6A stoichiometry
The ability to infer single-read modification probabilities suggests that 
m6Anet can predict the underlying, site-level modification stoichiom-
etry. Using the synthetic data, we selected a threshold on the read-level 
probability that provides the greatest difference between true positive 
and false positive rate for single-molecule modification predictions 
(Methods). We then compute the modification rate for each position 
as the number of modified reads per site with a read-level modification 
probability above that threshold. On the synthetic sequence mixtures, 
the estimated relative modification rate closely matches the expected 
modification rate (Fig. 4g).

To validate whether m6Anet captures the proportion of modi-
fied reads in human data, we analyzed direct RNA-Seq data from 
METTL3-KO and wild-type samples that were mixed at specific pro-
portions corresponding to an expected relative m6A stoichiometry 
of 0%, 25%, 50%, 75%, and 100%43. We then estimated the stoichi-
ometry on the sites that were predicted to be modified in the 100% 
wild-type samples (P ≥ 0.9) and that are predicted to be unmodified in 
the KO samples (P ≤ 0.2) (Supplementary Fig. 5a and Supplementary 
Table 7). While we observe more variation compared to the synthetic 
sequences, the median relative modification rate closely matches 
the expected (Fig. 4h). Additionally, we also found that the median 
modification rate remains close to the expected modification level 
on sites with less stringent threshold (P ≥ 0.7 in 100% wild type, 
P ≤ 0.4 in 100% KO) and across transcripts with different RNA localiza-
tions55 (Supplementary Fig. 5b–h), suggesting the robustness of our 
stoichiometry estimates. This is also reflected in the single-molecule 
predictions, where we observed a gradual shift of reads from the 
modified cluster to the unmodified cluster, corresponding to the 
expected changes in the relative m6A stoichiometry (Fig. 4i–k and 
Supplementary Fig. 5i,j). These data suggest that m6Anet captures 
variation in the underlying modification rates that can be used to 
compare sites within one sample, or to estimate site-specific and 
global differences in m6A abundance across multiple samples or 
conditions.

Discussion
Supervised approaches promise to enable the accurate detection of 
RNA modifications from direct RNA-Seq data. These methods rely on 
accurate training data, which can be obtained through experimen-
tal protocols to identify RNA modifications such as m6ACE-Seq or 
miCLIP, using synthesized RNAs that contain specific modifications 
of interest, or from a comparative analysis of direct RNA-Seq data. 
However, these methods only provide site-level modification labels, 
whereas Nanopore data is provided for individual RNA molecules for 
which the modification status is not observed. Here we address this 
by developing m6Anet, a neural-network-based MIL model. m6Anet 
combines learning the representation of individual reads with classify-
ing m6A-modification sites, outperforming existing computational 
methods and achieving an accuracy that is comparable to experimental 
approaches.

One of the key challenges is the quantification of transcriptome- 
wide modification rates. The ability to quantify modification stoi-
chiometry from direct RNA-Seq data has been demonstrated by 
comparative approaches such as xPore56 for m6A modification and 
nanoRMS49 for pseudouridine. m6Anet, on the other hand, outputs 
the single-molecule modification probability from a single sample. 
Owing to the MIL framework, this is achieved without single-molecule 
modification labels, enabling the use of much larger datasets compared 
to other single-sample methods that require synthetic data48. With 
single-molecule predictions, m6Anet enables not only the quanti-
fication of the site-level modification stoichiometry without a con-
trol sample, but also facilitates insights into the relation of read and 
transcript-level features such as polyadenylation, degradation, or 
alternative splicing with RNA modifications.
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Even though m6Anet was designed to handle missing read-level 
modification information, it still relies on the accuracy of site-level 
training data. Depending on how these data were generated, such 
labels could be incomplete57,58, or include multiple distinct modifica-
tions26,28 thereby introducing noise in the training data and a reduction 
in the model performance. Here we find that the prediction accuracy 
on m6A appears to be high even when different training datasets are 
used. Nevertheless, additional training data on different modifications 
and experimental protocols will likely further improve the prediction 
accuracy for supervised approaches such as m6Anet.

While supervised methods can identify RNA modifications in 
a single sample, comparative methods facilitate the analysis across 
conditions41,43,59. One of the key advantages of supervised methods over 
comparative methods is their ability to predict the occurrence of spe-
cific RNA modifications such as m6A. By predicting m6A modifications 
on candidate sites identified by comparative methods, m6Anet can 
overcome their inability to assign specific modification types, thereby 
facilitating modification-specific analysis of differential modifications.

In contrast to short-read-based experimental approaches for pro-
filing RNA modifications, direct RNA-Seq is a simple assay that can make 
m6A profiling scalable. However, similar to experimental protocols that 
are influenced by aspects such as antibody-specificity26,28, the accuracy 
of m6Anet will be influenced by aspects such as the sequencing chem-
istry, base-calling algorithms or accuracy in the alignment of reference 
sequence to signal. Additionally, improvement in the pore chemistry 
might require m6Anet to be retrained in order to take advantage of 
such changes. Further improvements in the sequencing technology 
and methods that extract summarized data from Nanopore signals 
can further increase the accuracy of m6Anet. While we observe a high 
number of technology-specific m6A predictions, our data supports 
that these are likely valid m6A sites.

Here we applied m6Anet to identify m6A modifications; however, 
it was designed to facilitate training on other RNA modifications of 
interest as well. While m6Anet could be used to identify other naturally 
occurring RNA modifications, it can also be trained to predict artificial 
modifications that help to identify single-molecule RNA structures60 
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after retraining. Moreover, it will also complement existing experi-
mental approaches by increasing confidence and resolution, enabling 
the accurate prediction of site-level modification while facilitating the 
additional exploration of single-molecule modification probabilities 
from a single run of direct RNA-Seq data.
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Methods
m6Anet performs detection of RNA modification using direct RNA-Seq 
data by formulating it as a MIL problem. Each position corresponds to 
a k-mer sequence S of length k = 5 with:

Si = {si−2, si−1, si, si+1, si+2} (1)

Here Si ∈ {A,C,G,U} corresponds to the nucleotide of position i. 
For each position, the site modification status is given by yi where

yi = {1 if position i ismodified, 0otherwise} (2)

We also assume that each read j at position i has a modification 
status described by yi,j given by:

yi,j = {1 if read j at position i ismodified,0otherwise} (3)

While yi can be observed, yi, j cannot be observed and remains 
unknown. Each read j at position i is described by the feature vector 
xij ∈ R15 with:

xi,j = {μi−1,j,μi,j,μi+1,j,σi−1,j,σi,j,σi,j+1, li−1,j, li,j, li+1,j,

f (Si−1)1 , f (Si−1)2 , f (Si)1 , f (Si)2 , f (Si+1)1 , f (Si+1)2}
(4)

where μi,j represents the normalized mean nanopore raw signal of read 
j at position iσi,j represents the normalized standard deviation of the 
nanopore raw signal of read j at position i, and li,j represents the normal-
ized dwelling time of read j at position i. Furthermore, we encode all NS 
possible fivemer sequence motifs S that are included in the training data 
into a two-dimensional vector using a neural network embedding layer 
f ∶ NS → R2,withNS = 66 in the case of m6A (DRACH). Thus, the quantity 
f (Si)k gives the k-th dimension of the embedded vector of the fivemer 

motif Si, with k ∈ {1, 2}. Each position i with Ni reads is then described by

Xi = {xi.1, xi,2,… , xi,Ni } (5)

In the first step, m6Anet estimates the read-level modification 
probability pi,j of the read j at position i being modified:

pi,j = PrPr (xi,j) = F (xi,j) (6)

Where F ∶ R15 → R is parameterized by a neural network with two 
hidden layers of dimension 150 and 32, respectively. In the second step, 
m6Anet pools the read-level probability using a noisy-OR pooling layer 
to estimate the site-level modification probability Pi:

Pi = PrPr (pi,1,pi,2,… ,pi,Ni ) = 1 −
Ni

∏
j=1

(1 − pi,j) (7)

The noisy-OR pooling layer captures the assumption that a site is 
modified if at least one of its reads is modified. In practice, the noisy-OR 
pooling layer encourages any gradient-based learning methods to 
update the model parameters with respect to all reads instead of just 
a single modified read. As a result, the site probability estimated by 
m6Anet should reflect the changes in the number of modified reads 
between different sites.

To train the network, we minimize the average cross entropy loss 
ℒ between Pi and yi for all sites

L = 1
N

N
∑
i=1

yiloglogPi + (1 − yi)(1 − loglogPi)

Here f and F are learnt in an end-to-end fashion by minimizing 
the cross entropy loss L with the Adam optimizer. Consequently, the 
network learns to predict the individual read probability pi,j along with 

optimized sequence representation f(NS) that will minimize the dis-
crepancy between Pi and yi with respect to the noisy-OR pooling layer. 
We have evaluated alternative pooling layers, such as the Attention and 
gated Attention-based pooling61 but have not found any statistically 
significant improvement in the performance of m6Anet compared to 
the noisy-OR pooling layer for m6A detection.

Preprocessing for m6Anet
m6Anet requires the output from Nanopolish eventalign function52 
order to group continuous Nanopore current measurements from 
each read into events and map them to their corresponding positions 
in the transcriptome. Each nanopolish event comprises the mean, 
standard deviation, and dwelling time of its constituting raw signals 
and since multiple events can be assigned to the same location in the 
transcriptome, m6Anet then takes a weighted average of each of these 
features on the basis of the size of their respective groups. Afterwards, 
m6Anet discards positions with mismatched fivemers and computes 
the mean and standard deviation of the signal features for each pos-
sible fivemer motif across the transcriptome. Lastly, m6Anet performs 
z-normalization on the weighted average features on the basis the mean 
and standard deviation of the fivemer motif of the given segment. The 
preprocessing function is implemented in m6Anet using functions 
from pandas 1.2.5 and numpy 1.20.3.

Data processing
Processing of direct RNA-Seq data. All data used in this work was 
obtained from refs. 43,45,53,54. To train and validate m6Anet, we down-
loaded a single replicate (replicate 2 run 1) of the HCT116 cell line 
and a single replicate of the HEK293T cell line (replicate 1) while to 
run xPore, we downloaded all replicates of the HEK293T cell lines 
as recommended. We also downloaded all four replicates of the 
VIR-complemented (VIRc) and VIR-1 mutants (vir-1) to run xPore and 
also to train and validate m6Anet. Data was base-called from the raw 
fast5 files using Guppy and aligned to the transcriptome with mini-
map2.1 (minimap2 ‘-ax map-ont -uf–secondary=no’) using the GRCh38 
Ensembl annotations release version 91 for HCT116 and HEK293T cell 
lines. We used a combined FASTA file containing coding and non-coding 
RNA reference annotations, keeping only the transcripts that matched 
the reference genome annotations (nf-core/nanoseq: https://doi.
org/10.5281/zenodo.3697960). Arabidopsis VIRc and vir-1 mutants 
were both aligned to the TAIR10 transcriptome (minimap2 ‘-ax splice 
-uf -k14’) while curlcake datasets were aligned to the reference sequence 
provided by ref. 45 (minimap2 ‘-ax map-ont’). Afterwards, we ran Nano-
polish 0.11.3 with the ‘--scale-events’ and ‘--signal-index’ options.

m6A-crosslinking-exonuclease sequencing. Modified positions 
for m6ACE-seq are obtained from refs. 28,43, and we also follow their 
preprocessing steps for the HEK293T cell lines and include only those 
positions that are METTL3-dependent (wild type/KO relative meth-
ylation level ratio ≥4.0, P value of one-tailed t-test, <0.05). As for the 
HCT116 cell line, we consider any sites that appear in the m6ACE-seq 
library to be modified since the absence of METTL3-KO data means we 
are not able to filter on the basis of the wild type/KO relative methyla-
tion level like in the HEK293T cell lines.

m6A individual-nucleotide-resolution crosslinking and immuno-
precipitation. Modified positions from miCLIP were obtained from 
ref. 26, and we combine both CIMS and CITS miCLIP libraries from the 
supplementary and consider a position to be modified if it is found in 
any of these libraries.

Model evaluation
Contribution of flanking regions to m6Anet performance. To evalu-
ate the performance of m6Anet under different combinations of fea-
tures, we performed a fivefold cross validation on the HCT116 dataset. 
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In each fold, we train our model on 75% of our training data for 60 
epochs and choose the model that performs the best on the remaining 
25% of the training data and validate the performance of the model on 
the test set. We also ensure that no genes are shared between the train-
ing, validation, and test set during the evaluation. During training the 
parameters of the model are learnt by minimizing the cross entropy loss 
using the Adam optimizer62 with amsgrad63 turned on. On each site, we 
sample 20 reads and during test time, we run the model five times and 
average the probability value across the five runs. Results are shown in 
Supplementary Data 1. All models are implemented on Pytorch v1.7.1 
(ref. 64). Training is done with a fixed learning rate of 0.0004 and a 
mini-batch size of 512 on a single NVIDIA GeForce GTX 1080 Ti.

Comparison between m6ANet and other models on HEK293T cell 
line. To have a fair comparison between m6Anet and existing methods 
to detect m6A modifications, we performed the comparison against 
other models on the HEK293T cell line on a set of genes, which were not 
used to train the m6Anet model. We consider a position to be modified 
if it is captured by either miCLIP or m6ACE-Seq as modified and we only 
consider DRACH sites that have at least 20 reads.

Tombo. We ran Tombo v.1.5.1 from https://github.com/nanoporetech/
tombo. To detect modifications, we first resquiggled the raw reads 
with tombo-resquiggle and performed de novo detection with tombo 
detect_modifications de_novo. Since tombo outputs a fraction of modi-
fied reads per position, we treat this as the probability of a site being 
modified for our comparison.

EpiNano. We ran EpiNano 1.1 and 1.2 from https://github.com/enovoa/
EpiNano and in both cases, we excluded feature generations for posi-
tions that do not contain AC center nucleotides (without this step, the 
results were not returned within 7 days on a AMD EPYC 7R32 server with 
180 GB of memory). There are four SVM models on EpiNano 1.1 and on 
SVM model on EpiNano 1.2 that could work with a single sample of direct 
RNA-Seq data. We numbered these models from one to five, respectively.

MINES. We ran MINES from https://github.com/YeoLab/MINES on 
cDNA mode, following the steps that are specified in the readme file 
on the Github page. The original MINES model does not output the 
probability of a site being modified but instead only shows sites that 
are considered modified. For this comparison, we modified the code 
so that the RandomForest model outputs the probability of a site being 
modified and we compared the results with m6Anet on sites shared 
between the two methods. The modified code is available at https://
github.com/chrishendra93/MINES.git.

nanom6A. We ran nanom6A from https://github.com/gaoyubang/
nanom6A. Similar to Tombo, it only outputs a fraction of reads that are 
modified for each site and so we treat these numbers as the probability 
of a site being modified.

Comparison between m6Anet, m6ACE-Seq, and miCLIP. To evaluate 
the relative performance between m6Anet and other commonly used 
experimental protocols, we performed a comparison with miCLIP and 
m6ACE on the HEK293T cell line. We set a P = 0.9 threshold for m6Anet 
site probability to select modified sites. miCLIP and m6ACE-Seq data 
was obtained and processed as described above. Visualization is done 
through the matplotlib 3.3.4 library and upsetplot 0.6.0.

To calculate whether a site is KO sensitive or not, we ran xPore 
1.0 on replicate 1, 2, and 3 of the HEK293T samples provided by43 with 
pooling option and a minimum read threshold of 20. To be conservative 
about our estimates, we imputed any sites that are not present in the 
xPore run with P value of 1 (not differentially modified). We performed 
multiple test corrections using Benjamini–Hochberg procedure imple-
mented in statsmodels 0.12.2 and set an alpha rate of 0.05.

To obtain a second (less stringent and less accurate) estimate for 
KO-sensitive sites we also ran Welch’s t-test from the scipy package 
function ttest_ind (setting equal variance to false). Similar to the analy-
sis with xPore, we pooled reads from all three replicates and required 
tested positions to have a minimum of 20 reads. We then performed 
multiple test corrections using Benjamini–Hochberg procedure from 
statsmodels 0.12.2, set an alpha rate of 0.05 and imputed any other sites 
that do not meet the filter criteria with a P value of 1.

Metagene plot. To visualize the distribution of m6A sited across the 
transcript (metagene plot), we first mapped each gene coordinate to 
transcript coordinate on the basis of the most expressed transcripts per 
gene. Afterwards, we annotate each position on the basis of its location 
along the transcript as 3′ UTR, 5′ UTR, or coding sequence. We then 
calculate the relative position of each position on the transcript and 
plot the abundance of those positions that are considered modified 
by m6Anet, m6ACE-seq, or miCLIP.

Comparison of m6Anet performance on HEK293T and HCT116 cell 
lines. To measure the robustness of m6Anet across different cell lines, 
we train two different models on the HEK293T and HCT116 cell lines, 
respectively, and measure the performance of each model on both 
HEK293T and HCT116 test sets. We randomly select 500 genes that 
are present in both cell lines to form two test sets for both cell lines 
and use the remaining genes as training data. We further split 20% of 
the training set for each cell line at the gene level into a validation set 
for model selection.

Comparison of m6Anet performance on Arabidopsis VIR-1 mutant. 
To measure the robustness of m6Anet across species, we train an addi-
tional m6Anet model on four replicates of the VIRc mutants and com-
pare the performance of this model against models that are trained on 
HEK293T and HCT116 cell lines. We randomly select 20% of all the genes 
expressed in the VIRc mutant to form a test set and use the remaining 
genes as training data. We further set aside 20% of the training genes 
to form a validation set for model selection.

To determine whether a site is modified or not, we included the 
labels provided by Parker et al.54 and statistically significant sites 
obtained from running xPore diffmod on all four replicates of the VIRc 
and vir-1 mutants with pooling option and a minimum read threshold 
of 20. Additionally, we also performed multiple test corrections using 
Benjamini–Hochberg procedure and set an alpha rate of 0.05 for both 
methods and only consider a site to be modified according to either 
one of the methods if it passes this threshold.

Inference on the synthetic Curlcakes dataset. To measure the true 
performance of m6Anet, we perform inference on the synthetic RNA 
datasets provided by ref. 45. We combine all sites from two replicates of 
the IVT sequences and consider them as unmodified while all sites from 
the two replicates of the curlcake sequences are considered to be m6A 
modified. Following the authors, we exclude all fivemer motifs that 
contain more than two adenosines and only consider DRACH motifs 
when measuring m6Anet performance.

To form a mixture of methylated–unmethylated reads from each 
site, we perform random sampling of reads from each site shared 
between the IVT sequences and the modified sequences. To produce a 
robust estimate for m6Anet performance on the mixture sequences, we 
run the model five times on each mixture level and each time, we perform 
random sampling of all the reads to form a different mixture datasets.

Visualization of single-molecule modification probabilities
Principal component analysis and read-level feature map. To learn 
the read-level feature map that visualizes single-molecule m6A prob-
ability predictions, we project the high-dimensional read represen-
tations of m6Anet using a PCA and visualize the first two principal 
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components. We sampled 100 reads from each position and extracted 
the 64-dimensional features generated by the second-last layer of 
m6Anet from each of these reads. We ran PCA from the Python package 
scikit-learn 1.0.2 (ref. 65) with n_components set to 0.99 and svd_solver 
set to full so that the algorithm will choose the number of components 
that will result in total variance explained to be as close as possible to 1.

To better visualize the features that are representative of both modi-
fied and unmodified reads, we first filtered for positions that are highly 
modified in the WT sample (P ≥ 0.9) or unmodified in the KO sample 
(P ≤ 0.2) and which contain the fivemer motifs GGACT, GAACT, GGACA, or 
AGACT. These motifs are chosen because they represent the most modified 
fivemer motifs in the HEK293T cell lines on the basis of miCLIP annotations 
or m6ACE-seq annotations. We further sampled 20 reads from each of 
these positions in order to minimize running time. We then calculated the 
density plot and hex plot on both the wild-type reads and KO reads as well 
as the modified and unmodified reads from the curlcakes dataset on the 
first two principal components of the read features using Python seaborn 
0.11.1 package. We then use the resulting density plot as a read-level feature 
map to visualize individual molecule modification probabilities.

Quantification of m6Anet on HEK293T mixtures
Estimation of m6A-modification stoichiometry. To estimate the 
modification stoichiometry for each potential m6A site, we extract 
the individual read probability from all reads expressed in each 
candidate site and compute the average number of modified reads 
per site. A read is considered to be modified if its read probability 
exceeds a threshold of P = 0.0333, which was obtained by maxi-
mizing the difference between the true positive rate and the false 
positive rate on the read level from the ROC curve generated from 
the curlcakes dataset.

Analysis of wild type–METTL3-KO mixture samples. To analyze the 
ability of m6Anet to estimate m6A stoichiometry we used the wild 
type–METTL3-KO mixtures from three43 that have an expected relative 
average modification rate of 0% (METTL3-KO), 25%, 50%, 75%, and 100% 
(wild type). We filter for those positions that are present in all samples 
and are either fully modified (probability greater than 0.9 in the 100% 
wild-type sample) or not modified (probability less than 0.2 in the KO 
samples) Afterwards, we normalize the predicted modification rate 
for each site to obtain the relative modification rate with respect to the 
wild-type cell line (100%). Since we expect different levels of baseline 
methylation from each site in the METTL3 wild-type dataset, we sub-
tract the predicted modification rate of each site by the corresponding 
predicted modification rate in the METTL3-KO site, and normalized 
this by the observed difference between the KO and wild-type sample. 
Specifically, the relative methylation rate for site i is then calculated as:

RelativeMethylationRatei =
MethylationRatei − KOMethylationRatei

WTMethylationRatei − KOMethylationRatei

Analysis of stoichiometric performance for different RNA biotype. 
We also investigate the effectiveness of our stoichiometric estimate on 
different RNA localization. Here we select a lower threshold for both 
modified and unmodified sites (probability greater than 0.7 in the 
100% wild-type sample and probability lower than 0.4 in the 100% KO 
sample) to recover more sites for comparison and derive each gene 
localization using RNALocate database 13.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The HCT116 cell lines data were obtained from the Singapore Nano-
pore Expression Project53 through https://github.com/GoekeLab/

sg-nex-data (ENA PRJEB44348) while the HEK293T cell lines data 
along with its KO variants and KO mixture variants were obtained from 
through ENA (PRJEB40872). The Arabidopsis Virilizer-1 complemented 
mutant is obtained from the work of Parker et al.54 and is available 
through ENA (PRJEB32782) while the curlcakes dataset is from Liu et al.45 
and is available at the GEO database (GSE124309).

Code availability
The source code for m6Anet is available at https://github.com/
GoekeLab/m6anet. Installation instructions and online documenta-
tion is available at https://m6anet.readthedocs.io/en/latest/. The code 
to reproduce results in this manuscript is available through Code Ocean 
at https://codeocean.com/capsule/4723237/tree.
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