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This cell line is a common cell model to study neurotoxicity 
[4], neurodegenerative disease [5], neuron differentiation 
and neuroblastoma [6].

Eucalyptol is a cyclic ether and monoterpenoid, naturally 
produced by plants such as Artemisia argyi [7, 8]. It is an 
ingredient in some brands cough suppressants and is also 
used as a flavoring agent [9]. Eucalyptol has been reported 
to possess multiple pharmacological effects, including anti-
inflammatory [10–12], antioxidant effects [13], pain reduc-
tion [14, 15], epilepsy inhibition [16], et al. In some in vitro 
studies, eucalyptol has anti-tumor effect on leukemia [17], 
ovarian cancer cells [18] and colon cancer cell line [19]. 
However, the anti-tumor effect of eucalyptol on neuroblas-
toma is still unknown.

In this research, we investigated the anti-tumor mecha-
nism of eucalyptol by transcriptome sequencing and bioin-
formatic analysis. And we discovered that eucalyptol exerts 
anti-tumor activity on human neuroblastoma cell lines SH-
SY5Y by regulating several cancer related pathways and 
genes. Our findings will be valuable for understanding the 
anti-tumor mechanism of eucalyptol in neuroblastoma cell 
proliferation and provide a new therapeutic candidate agent 
for neuroblastoma therapy.

Introduction

Neuroblastoma is a developmental tumor of children from 
the neural crest. This disease is the primary cause of cancer-
related death in children under 5 years of age [1]. Neuro-
blastoma is a heterogeneous pediatric tumor. Half of this 
disease is a high risk type and lacks effective cures [2]. SH-
SY5Y cell line is a subclone of human neuroblastoma, origi-
nally derived from a child metastatic bone tumor biopsy [3]. 

Kai Gao and Congying Wu contributed equally.

  Jian Lu
lvjian2999@126.com

  Yuwu Jiang
jiangyw@263.net

1 Department of Pediatrics, Peking University First Hospital, 
No.1 Xi ’ an Men Street, West District, 100034 Beijing, 
China

2 Department of acupuncture and moxibustion, Dongzhimen 
Hospital, Beijing University of Chinese Medicine, No.116 
Cuiping West Street, Tongzhou District, 101121 Beijing, 
China

Abstract
Eucalyptol (1.8-cineole), an active component in traditional Chinese medicine Artemisia argyi for moxibustion. Previ-
ous studies have shown that eucalyptol has anti-tumor effects on leukemia and colon cancer. Nonetheless, the effect and 
mechanism of eucalyptol on neuroblastoma remains unclear. In the present study, we intended to reveal the effect and 
mechanism of eucalyptol treatment on the neuroblastoma cell line SH-SY5Y through transcriptome analysis. In the group 
treated with eucalyptol, 566 brain genes were up-regulated, while 757 genes were down-regulated. GO function analysis 
showed that positive regulation of cell cycle was down-regulated in biological processes. Meanwhile, cancer-related path-
ways were identified in KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis, including pathways 
in cancer, PI3K-Akt signaling pathway, cAMP signaling pathway, TGF-beta signaling pathway, Hippo signaling pathway, 
p53 signaling pathway, and additional pathways. Furthermore, we found a key gene, such as MYC, by constructing a net-
work of cancer related pathways with differentially expressed genes and transcription factor analysis. In conclusion, our 
research indicates that MYC might play a central role in the anit-tumor mechanisms of eucalyptol.
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Methods

Cell Culture of SH-SY5Y

The SH-SY5Y was kindly given by Professor Yun Wang 
of the Neuroscience Research Institute, Peking University. 
Cell cultures of SH-SY5Y were cultured in DMEM/F12 
(Sigma, Darmstadt, Germany) with 10% (v/v) fetal bovine 
serum (FBS) (Gibco, Grand Island, USA) and 1% Penicil-
lin-Streptomycin Solution (Gibco, Grand Island, USA). All 
cultures were incubated in a Thermo CO2 incubator at 37℃ 
with 95% air and 5% CO2 (v/v) and a humidity of 95%. The 
cell culture medium was changed twice a week. 70%~80% 
of confluent cultures used for passage to experiments.

Transcriptome Sequencing

Three pairs of cell samples were collected from untreated 
and 100 µM eucalyptol-treated SH-SY5Y cells for 6 days, 
and RNA was extracted for RNA-seq by Trizol (Invitrogen, 
Carlsbad, CA, USA). Two micrograms of RNA per sample 
were used as input material for the RNA sample prepara-
tions. Sequencing libraries were generated with the VAHTS 
mRNA-seq v2 Library Prep Kit for Illumina following the 
manufacturer’s recommendations. Index codes were added 
to attribute sequences to each sample. Then libraries were 
sequenced using an Illumina NovaSeq platform to gener-
ate 150 bp paired-end reads according to the manufacturer’s 
instructions.

Raw data of FASTQ format was processed first through 
primary quality control. In this step, clean data were 
obtained by removing read pairs that contain N more than 3 
or the proportion of base with quality value below 5 is more 
than 20%, in any end, or adapter sequence was founded. 
The clean data of each sample was more than 6 GB. All the 
downstream analyses were based on clean data with high 
quality.

Differential Expression Analysis and Venn Diagrams

Alignment of paired-end clean reads to the reference 
genome was with TopHat (v2.1.1). Differential expression 
analysis between two conditions was performed using Cuf-
flinks (v2.2.1). Differently expressed genes (DEGs) were 
defined as those for which the P-value below 0.01 and the 
absolute value of log2(Fold change) more than 1. The Venn 
Diagrams were constructed by an interactive Venn diagram 
viewer [20].

Functional Enrichment Analysis

GO and KEGG enrichment analysis of DEGs sets were 
executed by the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) v6.8 [21]. GO terms and 
KEGG pathways with adjusted P-value below 0.05 were 
considered as significantly enriched by DEGs. The volcano 
map was drawn by R language with ggplot2. The bar and 
bubble graphs are plotted by the GOplot package in R. The 
network graph of cancer related pathways with DEGs was 
produced by Cytoscape 3.7.1 [22].

Transcription Factor Analysis

The target genes of MYC analyzed in this study were found 
by Gene Transcription Regulation Database (GTRD) [23] 
and Database of Human Transcription Factor Targets (hTF-
target) [24]. We found MYC target genes from GTRD in 
Homo sapiens with the promoter setting from − 1000 to 
+ 100. And we got target genes of MYC from hTFtarget with 
the default mode. Then we took the intersection from the 
above two lists for further analysis.

Result

Differential Expression Analysis of Eucalyptol 
Treatment

In order to identify the DEGs (up-regulated and down-
regulated expression) in SH-SY5Y cells after eucalyptol 
treatment, we performed mRNA sequencing of normal 
SH-SY5Y and 100 µM treated SH-SY5Y on the 6th day. 
RNA-seq identification of DEGs was measured by TopHat 
and Cufflinks (See Methods). As the results shown in Fig. 1, 
a total of 1255 genes (1350 transcripts) were differentially 
expressed, including 566 up-regulated genes (593 tran-
scripts) and 717 down-regulated genes (757 transcripts). 
There were 28 DEGs with both up-regulated transcripts and 
down-regulated transcripts. It can be shown from volcano 
map that anti-tumor genes BAD3, TBX3 and APC were up-
regulated genes, at the same time, oncogenes LEF1, PDG-
FRB, and MYC were down-regulated genes (Fig. 2).

GO Enrichment Analysis Identified the Biological 
Functions of DEGs in SH-SY5Y After Eucalyptol 
Treatment

To further evaluate the biological functions of these DEGs, 
GO enrichment analysis was performed on the experimental 
group. The results revealed that there was significant enrich-
ment of GO terms, which are grouped into three categories: 
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Fig. 2 Volcano map of gene expression changing after eucalyptol treatment. Red dots represent up-regulated genes. Green dots represent down-
regulated genes

 

Fig. 1 Differentially expression genes of eucalyptol treated SH-SY5Y. a shows the classification of differentially expressed genes by bar graphs, b 
is the Venn Diagram of down-regulated genes and up-regulated genes
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KEGG Enrichment Analysis Identified Cancer Related 
Pathways

To analyse the DEGs, KEGG enrichment analysis was used 
for annotation. The top 20 enrichment KEGG pathways, 
including hsa03010: Ribosome, hsa05031: Amphetamine 
addiction, hsa04024: cAMP signaling pathway, hsa05200: 
Pathways in cancer, hsa04550: Signaling pathways regulat-
ing pluripotency of stem cells, hsa04510: Focal adhesion, 
hsa05205: Proteoglycans in cancer, hsa04115: p53 signal-
ing pathway, hsa04728: Dopaminergic synapse, hsa04151: 
PI3K-Akt signaling pathway, hsa04520: Adherens junction, 
hsa04350: TGF-beta signaling pathway, hsa05210: Colorec-
tal cancer, hsa04725: Cholinergic synapse, hsa05215: Pros-
tate cancer, hsa04390: Hippo signaling pathway, hsa05231: 
Choline metabolism in cancer, hsa05202: Transcriptional 
misregulation in cancer, hsa05223: Non-small cell lung 
cancer, hsa05030: Cocaine addiction, were shown in Fig. 4.

The results demonstrated that the seven enriched path-
ways were directly cancer-related KEGG pathways, as 
shown in the top 7 pathways in Fig. 4. We also found that 
five cancer-related cellular signaling pathways, including 
Hippo signaling pathways, TGF-beta signaling pathways, 
PI3K-Akt signaling pathway, p53 signaling pathway, cAMP 
signaling pathway. These results suggest that eucalyptol 

molecular function (MF), cellular component (CC) and bio-
logical process (BP). In the biological process, GO: 0007399: 
nervous system development, GO: 0000184: nuclear-tran-
scribed mRNA catabolic process, nonsense-mediated decay, 
GO: 0006614: SRP-dependent cotranslational protein tar-
geting to membrane, GO: 0006413: translational initiation, 
GO: 0019083: viral transcription, GO: 0043065: positive 
regulation of apoptotic process, GO: 0045787: positive 
regulation of cell cycle, GO: 0045893: positive regulation 
of transcription, DNA-templated, GO: 0045892: negative 
regulation of transcription, DNA-templated, GO:0032868: 
response to insulin, GO: 0030509: BMP signaling pathway 
had the most abundant GO function items. In the molecular 
function, GO: 0005515: protein binding had the most abun-
dant GO function items. In the cellular component, GO: 
0005737: cytoplasm, GO: 0045202: synapse, GO: 0043025: 
neuronal cell body, GO: 0022627: cytosolic small ribosomal 
subunit, GO: 0005634: nucleus (Fig. 3).

It should be mentioned that GO: 0045787 (positive 
regulation of cell cycle) was negatively regulated for the 
most involved DEGs in this term were down-regulated. 
Those decreasing DEGs were ANKRD17, TGM1, NR4A3, 
CITED2, MYC, PTK6, ASCL1, TRIM21, TBX3.

Fig. 3 Z-score coloured barplot of GO enrichment of DEGs. If the biological process (/molecular function/cellular components) is decreased, the 
colour of the bar is green. And If the biological process (/molecular function/cellular components) is increased, the colour of the bar is red
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pathways (Hippo signaling pathways, TGF-beta signaling 
pathways, PI3K-Akt signaling pathway, p53 signaling path-
way, cAMP signaling pathway) and Pathways in cancer 
with DEGs (Fig. 5). We found that MYC, BMP2, CDK6, 
PIK3R1, AKT3 and BAD are linked with more than 3 path-
ways, demonstrating those genes are important roles in anti-
proliferation effect of eucalyptol on SH-SY5Y.

may exert antitumor effects through the above signaling 
pathways.

System Biological Analysis Identified the Key Genes 
in the Network of Cancer Related Pathways with 
DEGs

For clarify the mechanism of anti-proliferation, we con-
structed a network of the KEGG enriched cellular signaling 

Fig. 5 The network of cancer-related KEGG pathways with DEGs. The up-regulated genes are in red boxes, while down-regulated genes are in 
green boxes

 

Fig. 4 Bubble map of KEGG pathway enrichment of DEGs. The size of bubbles represents the count of DEGs. The color of bubbles represents 
P-value
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[28, 29]. In addition, moxibustion can also be used to treat 
cancer-related fatigue [30]. The mechanism of moxibustion 
therapy for cancer is still unclear. Eucalyptol is the main 
component of Artemisia argyi [11, 12]. Eucalyptol has been 
reported to inhibit the proliferation of many cancer cells [22, 
23, 31–33]. In this study, we revealed the anti-tumor effect 
and mechanism of eucalyptol against human neuroblastoma 
SH-SY5Y cells by transcriptome sequencing.

The mechanism of the anti-tumor effect of eucalyptol 
is complex and has not been fully clarified. Suppression 
of growth by eucalyptol in leukemia, ovarian cancer cells 
and colorectal cell lines was reported to the induction of 
apoptosis [21–23, 32]. It was reported that eucalyptol also 
inhibited cell proliferation by promoting G0/G1 arrest in 
HepG2 cells [32]. In our study, we found that eucalyptol has 
a negative effect on “positive regulation of cell cycle (GO: 
0045787)” by reducing the expression of most genes in this 
GO terms (Fig. 3), indicating that eucalyptol intervene can-
cer cell growth not only by inducing apoptosis but also with 
anti-proliferation.

Cancer is a complex disease characterized by excessive 
proliferation of cancer cells with selective growth advan-
tage [34]. Many cell signaling pathways related to cancer 
development, such as PI3K-Akt signaling pathway [35, 
36], Ras signaling pathway [37–40], STAT signaling [40–
43], MAPK signaling pathway [35, 37], TGF-beta signal-
ing pathway [44, 45], NOTCH signaling pathway [46–49], 
p53 signaling pathway [50–52], cAMP signaling pathway 
[53, 54], Hippo signaling pathway [55, 56], Wnt signaling 
pathway [57], and so on. In our study, we found that some 
cancer-related signaling pathways were enriched based on 

Transcription Factor Analysis Showed Multiple 
Biology Functions of MYC in the Antitumor 
Mechanism of Eucalyptol

MYC is an important cancer-related transcription factor 
gene and sits on the most important gene node in the net-
work (Fig. 5), suggesting that it plays an important role in 
the antitumor mechanism of eucalyptol. In this study, it was 
found that eucalyptol caused a pronounced down-regulation 
of MYC expression and then might result in the down-reg-
ulation of MYC target genes (MTGs). Therefore, we con-
ducted a transcription factor analysis on MYC. First, we 
found 35,769 MTGs from GTRD and 14,741 MTGs from 
hTFtarget. Then we intersected the list of down-regulated 
genes with the list of these two MTG lists to determine the 
down-regulated genes regulated by MYC (Fig. 6a). After 
analysis, we found that about half of the down-regulated 
genes were MYC target genes (48.5%, 348/717). By KEGG 
and GO analysis of these MTGs, we found that these genes 
were enriched in KEGG: HSA05200 Pathways in cancer, 
GO:0045787 Positive regulation of cell cycle, GO:0030154 
Cell differentiation, GO:0042981 regulates the passage of 
apoptotic process (Fig. 6b).

Discussion

Moxibustion is an effective supportive cancer care in inhib-
iting tumor growth [25, 26] and alleviating side effects of 
chemotherapy and radiotherapy [27]. Such as, moxibus-
tion can inhibit nausea and vomiting after chemotherapy 

Fig. 6 Transcription factor analysis of MYC target gene. a shows the Venn Diagram of the list of down-regulated genes with the list of these two 
MYC target gene lists from GTRD and hTFtarget. b shows MYC targets genes of cancer related pathways by the KEGG and GO enrichment
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