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Abstract
Cancer progression can be described by continuous-time Markov chains whose state
space grows exponentially in the number of somatic mutations. The age of a tumor
at diagnosis is typically unknown. Therefore, the quantity of interest is the time-
marginal distribution over all possible genotypes of tumors, defined as the transient
distribution integrated over an exponentially distributed observation time. It can be
obtained as the solution of a large linear system. However, the sheer size of this system
renders classical solvers infeasible. We consider Markov chains whose transition rates
are separable functions, allowing for an efficient low-rank tensor representation of
the linear system’s operator. Thus we can reduce the computational complexity from
exponential to linear. We derive a convergent iterative method using low-rank formats
whose result satisfies the normalization constraint of a distribution. We also perform
numerical experiments illustrating that the marginal distribution is well approximated
with low rank.
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1 Introduction

The dynamics of cancer can be studied using tumor progression models, cf. (Beeren-
winkel et al. 2014). These models describe the evolving genotype of a tumor as a
continuous-time Markov chain. A model includes d genomic loci that may or may not
be mutated. It starts out with all mutations absent and then progressively accumulates
mutations (or other genomic events such as copy number alterations). The number
of possible states of the tumor is thus 2d . In typical applications one is interested in
probability distributions over this state space that are far from stationary. Extrapolating
the future course of a given tumor requires the computation of transient distributions.
However, since the age of a tumor and thus the time point of an observation of the
Markov chain is generally unknown, we study the transient distribution integrated
over an exponentially distributed observation time, called the time-marginal distri-
bution. It can be obtained as the solution of a large linear system. Today at least
d = 299 genes are known to drive tumor progression, cf. (Bailey et al. 2018), i.e.,
a single distribution in R

2299 would require the storage of more entries than there
are atoms in the observable universe. This phenomenon is called state-space explo-
sion (Buchholz and Dayar 2007) and renders classical methods for calculating or
storing distributions infeasible. This problem is also known in other application areas,
e.g., chemical-reaction networks (Anderson et al. 2010), the chemical master equa-
tion (Kazeev et al. 2014), Hamiltonian dynamics (Haegeman et al. 2016), queuing
networks (Chan 1987), evolutionary dynamics (Niederbrucker and Gansterer 2011)
or stochastic neural networks (Yamanaka et al. 1997).

Our main goal is to develop a method for calculating or approximating the marginal
distribution. Due to the state-space explosion, methods for calculating the entire
marginal distribution in the context of tumor progression have been limited to about
d = 25 genomic events (Schill et al. 2019). In (Gotovos et al. 2021) it is demonstrated
that learning models of this size from data is an underspecified problem and that
increasing the number d can make inference more robust. This requires a tractable
approximation of the marginal distribution. To allow for a probabilistic interpreta-
tion of this approximation, the latter should be a probability distribution itself, i.e., all
entries should be non-negative, and the sum of all entries should be equal to one. Here,
we neglect the non-negativity to ensure an error-controlled approach, see, e.g., (Kim
et al. 2013) for an overview. So the following questions need to be answered:

1. How can we overcome the state-space explosion?
2. Subsequently, how can we determine marginal distributions?
2. At the same time, how can we ensure that a solution sums to one?

In order to address question 1. we use so-called low-rank tensor formats. These are
known to reduce the cost from exponential to linear in the number of events d provided
the distribution exhibits a low-rank structure.

To do so, we model Markov chains of interacting processes as Stochastic Automata
Networks (Plateau and Stewart 2000). These allow for a representation of the infinites-
imal generator as a sum of Kronecker products. In the context of low-rank tensors,
such a representation is referred to as CANDECOMP/PARAFAC (CP) format (Carroll
and Chang 1970; Harshman 1970), and the number of elements in this sum is called
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CP rank. As there are dependencies between individual processes, the transition rates,
i.e., entries of the generator, depend on the current state of theMarkov chain.Wemodel
the transition rates in a separable way where each factor is defined by the current state
in one automaton.

Based on the CP representation of the infinitesimal generator, such representations
can also be derived for the operator as well as for the right-hand side of the linear
systemdefining themarginal distribution.Weuse these low-rank tensor representations
to overcome the state-space explosion, cf. question 1., and to compute the marginal
distribution, cf. question 2.

Strategies which have been used so far to calculate the marginal distribution cannot
be generalized to low-rank tensors. Existing methods for solving general systems in
low-rank tensor formats can be roughly divided into optimization-based approaches
and iterative procedures, see, e.g., (Grasedyck et al. 2013) for an overview. Here we
focus on iterative ones and discuss related works in Sect. 3.2. In low-rank formats, the
effort for storage and execution of arithmetic operations depends, as the name already
suggests, on the rank. Arithmetic operations needed in iterative procedures lead to an
increase in the representation rank. One way to counteract this rank increase is the
so-called truncation, i.e., the approximation of a tensor by one of lower rank. This
allows for reducing storage and computational costs and thereby for efficient iterative
procedures in low-rank formats. Beside the CP format there are several other low-
rank tensor formats known. Here we focus in particular on the hierarchical Tucker
format (Hackbusch and Kühn 2009; Grasedyck 2010). A special feature of these
compared to the CP format is the possibility of accurate truncation. In (Hackbusch
et al. 2008) it is proven that a convergent iterative method which is supplemented by
truncation still converges if the approximation error is small enough.

While guaranteeing convergence, iterative methods supplemented by truncation do
not ensure that their results sum to one anymore. In order to address question 2., we
derive a novel iterative method based on the Neumann series (Dubois et al. 1979)
and the uniformization method (Grassmann 1977) using low-rank tensor formats. We
verify that its result sums up to one and prove its convergence. In our numerical
experiments, we focus on the concept ofMutual Hazard Networks (Schill et al. 2019)
for tumor progression. Our experiments illustrate that the marginal distribution can be
approximated by low-rank tensors using our new algorithm.

This work is organized as follows. In Sect. 2 we derive the linear system that defines
the time-marginal distribution of a continuous-time Markov chain. Starting from the
concept of Mutual Hazard Networks and Stochastic Automata Networks explained
there, we define a model class of Markov chains describing interacting processes.
For these we will then derive low-rank tensor representations for the operator and the
right-hand side of the linear system. In Sect. 3 we introduce the concept of tensors. We
review the hierarchical Tucker format and discuss relatedwork.Using these formatswe
derive an iterative method and prove its convergence. In Sect. 4 we perform numerical
experiments based on the concept ofMutual Hazard Networks. In Sect. 5 we conclude.
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2 Statement of the problem andmodeling

2.1 Time-marginal distribution

A continuous-time Markov chain is defined by its state space S, its infinitesimal gen-
erator Q and an initial distribution q. In this paper we assume that the state space S
is discrete. The generator is an operator Q ∈ R

S×S , i.e., a linear mapping from R
S to

R
S , which stores the rates of transition from state x to another state y in Qy,x ≥ 0 and

the rates of staying in a state x in Qx,x ≤ 0. By construction each column of Q sums
up to 0.1 The probability distribution p(t) as function of the time t ≥ 0 is defined as
the solution of the initial value problem

{
d
dt p(t) = Qp(t) for all t ≥ 0,

p(0) = q,
(1)

i.e., p(t) = exp (Qt)q for all t ≥ 0. We make the common assumption that every
trajectory starts at the same state, i.e., the initial distribution p(0) = q ∈ R

S is a
canonical unit vector.

Here, we assume that the observation time t is unavailable, such as, e.g., in tumor
progression modeling, and thus must be treated as a random variable. Therefore, we
are interested in a so-called time-marginal distribution p which is independent of the
time t and which we will call marginal distribution for brevity. Each entry px of the
marginal distribution indicates the probability of observing a state x ∈ S at a random
time. We follow the common assumption that the sampling time is an exponentially
distributed random variable with rate 1, i.e., t ∼ Exp[1]. Similar approaches can be
found, e.g., in Hjelm et al. (2006); Beerenwinkel and Sullivant (2009); Schill et al.
(2019); Gotovos et al. (2021). Please note that for general t̃ ∼ Exp[λ] with λ > 0
the same results can be obtained by simply rescaling the time, i.e., t := t̃

λ
∼ Exp[1].

Here, we have

p :=
∞∫
0

exp(−t)p(t) dt =
∞∫
0

exp(t (Q − Id))p(0) dt . (2)

The following lemma shows that this integral exists.

Lemma 1 Let Q ∈ R
S×S be the infinitesimal generator of a continuous-time Markov

chain over the discrete state space S. Then the integral (2) exists and

p = (Id − Q)−1 p(0). (3)

Proof For the existence of the improper integral we show that the spectrum σ (Q − Id)

of the operator Q − Id fulfills σ (Q − Id) ⊆ C
− := {z ∈ C | Re(z) < 0}. Applying

1 Note that in other areas it is also common to restrict Q to have row sum 0. Here we use column sum 0
consistently with tumor progression literature. All results can be easily transferred by transposing.
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the Gershgorin circle theorem (Gershgorin 1931) for Q with Qx,x = − ∑
y �=x

Qy,x ≤ 0,

we obtain

σ(Q) ⊆
⋃
x∈S

{
z ∈ C

∣∣ ∣∣z − Qx,x
∣∣ ≤ ∣∣Qx,x

∣∣} ⊆ {z ∈ C
∣∣ Re(z) ≤ 0

}

and thus, σ (Q − Id) ⊆ {z ∈ C | Re(z) ≤ −1}. Then the statement follows from direct
calculation.

This result can also be obtained by understanding the process as an absorbing
Markov chain where from each state a transition with rate 1 enters the absorbing state.
Then the time-marginal distribution equals the distribution just before absorption, see
also (Gotovos et al. 2021, Proposition 2). From this point of view, the statement follows
from the theory of absorbing Markov chains. 	

Hence, the marginal distribution p is defined as the unique solution of a linear system,
since the operator Id − Q is regular.

Next, we specify the class of Markov chains for which we compute the time-
marginal distribution p. We start with an introduction into a specific type of model
used in tumor progression and then generalize this type based on the concept of
Stochastic Automata Networks (Plateau and Stewart 2000). All these Markov chains
will offer a sparse representation of the infinitesimal generator Q in order to overcome
the state-space explosion.

2.2 Modeling tumor progression via Mutual Hazard Networks

As mentioned in the introduction, tumor progression can be modeled as continuous-
time Markov chain over a discrete state space S. Typically, one is interested in a
transient distribution, but the time point of observation, i.e., the age of the tumor, is
unknown. Nevertheless, in order to be able to make statements about the probability
distribution for all possible tumors, the time-marginal distribution is needed.

For tumor progression, the state space S can be modeled as follows. By considera-
tion of d genomic events, as point mutations, copy number alterations, or changes in
DNA methylation, each state x ∈ S represents the genotype of a tumor by indicating
whether a genomic event has occurred or not. Modelling a state x = (x1, . . . , xd) ∈ S
as a vector of length d with xi = 1, if event i has occurred, and otherwise xi = 0, the
set of all possible states (or tumors respectively) can be represented as

S =
d×

i=1
{0, 1} with |S| = 2d . (4)

Thus, the number of possible tumors increases exponentially in the number d of
genomic events considered, also known as state-space explosion.

In tumor progression modeling, the transition rates are usually unknown, and there-
fore certain assumptions have to be made. Here we focus on the concept of Mutual
Hazard Networks (Schill et al. 2019) which offers a sparse representation of the

123



7 Page 6 of 30 M. Klever et al.

infinitesimal generator Q. In (Schill et al. 2019) the following assumptions define
a Mutual Hazard Network:

(i) All events are assumed to occur one after another.
(ii) All events are irreversible, i.e., there are no transitions from state x ∈ S with

xi = 1 to y ∈ S with yi = 0 for an event i .
(iii) The occurrence of an event depends on the genotype of the tumor in a separable

way. This means that there are mutual effects between events on their rate of
occurrence which can be factorized, and each factor is described by a certain
event.

(iv) Genomic events that have not occurred yet have no effect on the transition rates
of all others.

According to assumption (iii) a first-order Cox proportional hazard model (Cox 1972)
is used to specify the transition rates, i.e., there are parameters Θ ∈ R

d×d defining the
mutual effects on transition rates from state x to y,

Qy,x = Θi,i

∏
j∈{1,...,d},

x j=1

Θi, j , (5)

where x and y only differ in one event i with xi = 0 < yi = 1. To be precise, the
parameter Θi, j := Θ(xi → yi , x j ) ≥ 0 is the (multiplicative) effect of state x j for
event j on the transition from xi to yi for event i for events i �= j . The parameter
Θi,i := Θ(xi → yi , xi ) ≥ 0 is then the baseline rate of transition from xi to yi for
event i . Following (iv) all effects Θ(xi → yi , x j ) with x j = 0 and i �= j are equal to
1, i.e., they are neutral multiplicative effects in (5).

This modeling allows for describing different mutual effects between genomic
events on their transition rates, see (iii). Figure 1 (Schill et al. 2019, supplementary
material Figure 1) shows the Mutual Hazard Network inferred for breast cancer data.

Each box represents a genomic event relevant to breast cancer and each line a direct
effect between them. A dashed line shows a unilateral effect and a solid line identifies
a reciprocal effect. In addition, we can distinguish effects based on their nature and
magnitude. In the present case, an amplification on the p-arm of the 16th chromosome
(event +16p) inhibits a deletion on the p-arm of the 8th chromosome (event -8p) with
Θ−8p,+16p = 0.9. Such an inhibitory effect of event j on i is indicated in the network
by a red connection (lines without marks) and corresponds to a parameter Θi, j < 1.
Similarly, event +16p promotes an amplification on the q-arm of the 20th chromosome
(event +20q) with Θ+20q,+16p = 1.6. A promoting effect of event j on i is indicated
by blue connection (lines with circles) in the network and corresponds to a parameter
Θi, j > 1. Neutral effects are represented in Fig. 1 by the absence of edges, e.g., event
+16p is not connected to event +1q which means that event +16p does not affect event
+1q directly. At the level of parameters this corresponds to a multiplicative effect
of Θi, j = 1. As can already be seen in Fig. 1, in typical applications most of the
direct effects between events are assumed to be neutral. Beyond these direct effects,
events can also influence each other indirectly. In the example shown, event +16p is not
associated with event +1p, so it has a neutral direct effect on event +1p. However, event
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Fig. 1 Mutual Hazard Network for breast cancer, see (Schill et al. 2019, supplementary material Figure 1):
Each box represents a genomic event and each line a direct effect between them. A dashed line identifies
a unilateral effect, a solid reciprocal effects, a red line (without marks) an inhibiting and a blue one (with
circles) a promoting effect

+16p favors the occurrence of event +20q, which itself inhibits event +1p. Excluding
all other effects, event +16p could therefore indirectly have an inhibitory effect on
event +1p (despite Θ+1q,+16p = 1).

The diagonal entries of Q follow directly from (5) since each column sums up to
0, i.e., Qx,x = −∑y �=x Qy,x . Together with the separation in (5) this allows for the
following representation of the infinitesimal generator, cf. (Schill et al. 2019):

Q =
d∑

i=1

⊗
j<i

(
1 0
0 Θi, j

)
⊗
(−Θi,i 0

Θi,i 0

)
⊗
⊗
j>i

(
1 0
0 Θi, j

)
. (6)

Instead of |S| · |S| = 22d entries, one only has to store 4d2 entries. In the following,
we will observe that the structure in (6) of the operator Q will allow us to use tensor
formats for the calculation of the time-marginal distribution.

While this is a specific model for tumor progression on genomic data, the question
arises whether a similar structure of Q can be used for more general models with a
larger range of applications. In general, the progression of disease is not an irreversible
process, and symptoms and traits can arise and then abate, such as inflammation (Zhao
et al. 2021). They also do not necessarily have to be modeled in a binary way, but
can have different levels of severity, such as fever (Johnston et al. 2019). The same
formalism can be used to model the attrition and maintenance of technical systems of
interacting components (Amoia et al. 1981). To do this, we introduce the concept of
Stochastic Automata Networks (Plateau and Stewart 2000) which are known to offer
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a similar representation for the infinitesimal generator Q. We note that the Markov
chains defined by a Mutual Hazard Network also belong to this class of Stochastic
Automata Networks.

2.3 Stochastic automata networks

For a continuous-time Markov chain of interacting processes the discrete state space
factorizes in a natural way into the state spaces of the individual processes. Each
process is itself a Markov chain over its own state space Si and is called a stochastic
automaton Ai . The set {A1, . . . ,Ad} of d stochastic automata is called a Stochastic
Automata Network, cf. (Plateau and Stewart 2000). The full state space S consists of all
possible combinations of states in each automaton, i.e., for ni := |Si | and n := maxi ni
it is given by

S =
d×

i=1
Si with |S| =

d∏
i=1

ni ≤ nd . (7)

Each state x = (x1, . . . , xd) ∈ S specifies its state xi ∈ Si in each automaton Ai .
Already at this point we note overlaps with the concept of Mutual Hazard Networks.
Each genomic event i of theMutualHazardNetwork represents a stochastic automaton
Ai with local state space Si = {0, 1}. This results in the global state space S for d
genomic events in (4).

We now consider transitions between states in the full state space S, which are
given by one or more transitions between states within the individual state spaces Si .2

It is known that the infinitesimal generator Q of a Stochastic Automata Network can
be represented as a sum of Kronecker products, i.e., for d automata and m transitions
it is given by

Q =
2m+d∑
i=1

d⊗
j=1

Q( j)
i with Q( j)

i ∈ R
Si×Si , (8)

cf. (Plateau and Stewart 2000). Again, instead of |S| · |S| ≤ n2d entries, one only has
to store (2m + d) dn2 entries.

A specific way to define the matrices Q( j)
i is given in (6) for a Mutual Hazard

Network, where the number of possible transitions m is equal to the number of events
d. Note that the reduction of 2m+d to d terms in the sum results from the separability
of the transition rates in (5).

Based on the formalism of Stochastic Automata Networks we extend the concept
of Mutual Hazard Networks. On the one hand, the separability and parameterization
should be preserved. On the other hand, an extension of themodels and an enlargement
of the possible application areas should be made possible by relaxing the assumptions.

2 For brevity, we do not introduce the concept of functional transitions and restrict ourselves to constant
ones, since the separability in (5) can be exploited for reformulation as constant transitions. We refer the
interested reader to (Plateau and Stewart 2000) for further details.
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2.4 Generalizedmodeling

We focus on a continuous-time Markov chain represented as a Stochastic Automata
Network with d automata {A1, . . . ,Ad}. As in Sect. 2.3 each automatonAi has a state
space Si with |Si | = ni , and the state space of the network is given by S = ×d

i=1 Si .
According to (i) and (iii) we make the following assumptions:

(I) There is only one transition in one automaton at a time.
(II) Each transition depends on the current global state in a separable way, i.e., each

transition rate can be factorized, and each factor is described by the current local
state in one automaton.

For each automatonAi we denote the set of transitions inAi by Ti ⊆ {xi → yi | xi �=
yi ∈ Si }. Again, we model the mutual effects on local transitions using parameters
Θ. Each parameter Θ(ti , x j ) ≥ 0 is the effect of state x j in automaton A j on the
transition ti ∈ Ti in automatonAi for i �= j and the baseline rate for i = j . Thus, the
transition rate from state x to y in S, where x and y differ only in automaton Ai and
satisfy ti = (xi → yi ) ∈ Ti , can be represented with parameters Θ(ti , x j ) by

Qy,x =
d∏
j=1

Θ(ti , x j ).

The diagonal entries of the generator are again given by Qx,x = −∑y Qy,x , and thus
we specify a data-sparse representation by

Q =
d∑

i=1

∑
ti∈Ti

d⊗
j=1

Q(ti )
j with Q(ti )

j ∈ R
S j×S j . (9)

For i �= j ,Q(ti )
j is a diagonal matrix containing the effects of all states in automatonA j

on the transition ti inAi , i.e., its diagonal entries are given by the parametersΘ(ti , x j )

for all states x j ∈ S j in automaton A j . For i = j , the matrix Q(ti )
i contains only

two non-zero entries: The entry corresponding to ti = (xi → yi ) is the baseline rate
Θ(ti , xi ), and the diagonal entry at xi is −Θ(ti , xi ). Similar to the representation of Q
for the Mutual Hazard Networks in (6), the number of terms in the sum is given by the
overall number of possible transitions in the Markov chain, i.e.,

∑d
i=1 |Ti |. Compared

to the general representation (8) for Stochastic Automata Networks, the reduction of
terms is possible due to the separability of transition rates (II).

In contrast to themodel based onMutual HazardNetworks, this generalized version
allows for different and larger local state spaces (instead of binary Si = {0, 1} for all
i) and does not require specific restrictions as irreversibility or specific neutral effects
of states. In particular, the automata may be cyclic. While the data-sparse structure
of the infinitesimal generator Q based on certain parameters Θ is preserved. In the
numerical experiments, we will then refer to the case of Mutual Hazard Networks,
which have already been used in practical simulations for tumor progression (Schill
et al. 2019; Gotovos et al. 2021).
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2.5 Structure of the linear system

As mentioned in Sect. 1, the solution of the linear system

(Id − Q)p = p(0) (10)

in Schill et al. (2019) based on classicalmethodswas limited to about d < 25 automata.
In order to overcome the state-space explosion, we need to go beyond classical meth-
ods. We have already given a data-sparse representation of Q, also in the more general
case of Sect. 2.4. Note that the identity Id = ⊗d

i=1 IdSi and the initial distribution
p(0) = ez = ⊗d

i=1 ezi with initial state z ∈ S can be written as Kronecker products,

where IdSi ∈ R
Si×Si is the identity operator onRSi and ezi ∈ R

Si is the zi -th canonical
unit vector. Hence, the operator and the right-hand side of (10) have a representation
as a short sum of d Kronecker products, which allows for efficient storage. We still
need a low-rank method to solve the linear system, which is the subject of the next
section.

3 Low-rankmethod to compute themarginal distribution

We now compute the marginal distribution p in a data-sparse way. To avoid losing this
sparsity when performing arithmetic operations we regard our operators and distribu-
tions as tensors by interpreting the Kronecker products as tensor products.

3.1 Low-rank tensor formats

We view tensors as multidimensional generalizations of vectors and matrices, i.e., of
one-dimensional and two-dimensional tensors.

Definition 1 (tensor) Let d ∈ N and I = ×d
i=1Ii be a Cartesian product of discrete

index sets Ii . An object B ∈ R
I is called a tensor of dimension d. Each direction

i ∈ {1, . . . , d} is called a mode of B, and the cardinality of the i-th index set |Ii | is
called the i-mode size.

In our case, the index set I corresponds to the state space S = ×d
i=1 Si , our distribu-

tions p, p(0) ∈ R
S are tensors of dimension d, and the automataAi correspond to the

modes with sizes ni = |Si |.
In the language of tensors, the structure of Q in (9) is an example of the so-

calledCANDECOMP/PARAFAC (CP) format introduced inCarroll andChang (1970);
Harshman (1970).

Definition 2 (CP format) A tensor B ∈ R
I has a CP representation if there exist

b( j)
i ∈ R

I j such that

B =
r∑

i=1

d⊗
j=1

b( j)
i . (11)
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Then r ∈ N0 is called the CP representation rank, and the b( j)
i are called the CP

factors of B. The minimal r ∈ N0 such that B has such a CP representation (11) is
called the CP rank of B.

The infinitesimal generator Q in (9) has CP representation rank
∑d

i=1 |Ti | ≤ dn2.
The identity Id as well as the right-hand side p(0) have CP rank 1. A core advantage
of the CP format is the data sparsity in case of small representation rank r : The
representation (11) of a tensor B ∈ R

I has storage complexity in O
(
r
∑d

i=1 ni
) =

O(rdn) in contrast to O
(∏d

i=1 ni
) = O

(
nd
)
for the full tensor. We use the O-

notation for storage and computational costs to describe that costs in O( f (ω)) grow
asymptotically no faster than const · f (ω) for a constant const > 0 and a function f
depending on certain value ω.

Since we want to compute the marginal distribution p, we have to solve a linear
system whose operator and right-hand side have a CP representation each. For an
operator with CP rank r > 1 it is unknown how to calculate its inverse analytically.
Hence,we need a solver and arithmetic operations to compute the solution numerically.
Performing arithmetic operations such as adding two tensors and applying an operator
results in an increase in the representation rank. In the CP format, this increase in
representation ranks can be traced easily: For example, if we add two tensors B1 and
B2 with representation ranks r1 and r2 by appending the CP factors of B2 to those of
B1, the sum B = B1 + B2 already has representation rank r1 + r2. Similarly, applying
a CP operator with representation rank r1 to a CP tensor with representation rank r2,
by applying the operator factor by factor to the CP tensor, results in a CP tensor with
representation rank r1 · r2.

To counteract this increase in the representation rank, arithmetics in low-rank for-
mats is supplemented by a so-called truncation, i.e., approximating a tensor with one
of lower representation rank. As the set of tensors with CP rank at least r is not closed
for d > 2, low-rank approximation within the CP format is an ill-posed problem,
see de Silva and Lim (2008), and usually optimization-based methods are used for
this purpose. However, we overcome this drawback by using tensor formats that allow
for truncation based on the singular value decomposition of matrices.

To do so, a high-dimensional tensor is reshaped into a matrix by selecting modes
defining its rows, while all others define its columns. The resulting matrix, called
matricization, is defined, following (Grasedyck 2010), as follows.

Definition 3 (matricization) Let B ∈ R
I and t ⊆ {1, . . . , d} with t �= ∅ and s =

{1, . . . , d} \ t . The matricization of B corresponding to t is defined as B(t) ∈ R
It×Is

with It = ∏
i∈t

Ii and

B(t)
(xi )i∈t ,(xi )i∈s = Bx1,...,xd

for all x = (xi )i∈{1,...,d} ∈ I. In particular B({1,...,d}) ∈ R
I .

The matricizations of a three-dimensional tensor corresponding to the single modes
{1}, {2} and {3} are visualized in Fig. 2.

For a matricization of a tensor, the classical singular value decomposition can
be used for low-rank approximation. So-called tree tensor formats make use of this
observation. A popular one is the tensor train format which was first introduced to the
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Fig. 2 Matricizations of a three-dimensional tensor corresponding to the single modes t = {1}, {2} and {3}

Fig. 3 Canonical balanced dimension tree for dimension d = 8

numerical analysis community in Oseledets and Tyrtyshnikov (2009). It is also known
in other areas as matrix product states (White 1992; Östlund and Rommer 1995) or
as linear tensor network (van Loan 2008).

Herewe focus on thehierarchical Tucker formatwhichwasfirst introduced inHack-
busch and Kühn (2009) and further analyzed in Grasedyck (2010). As the name
suggests, the hierarchical Tucker format is based on a hierarchical subdivision of
the modes {1, . . . , d}. This bisection of the modes is described by a binary dimension
tree. The set of all modes is distributed from the root to the children until only single
element subsets are left in the leaves. Formally, a dimension tree can be defined as
follows:

Definition 4 (dimension tree) A dimension tree T for dimension d ∈ N is a binary
tree with nodes labeled by non-empty subsets of D := {1, . . . , d}. Its root is labeled
with D and each node t (identified with its label) satisfies one and only one of the
following conditions:

(1.) t ∈ L(T ) is a leaf of T and labeled by a single element subset t = {i} ⊆ D.
(2.) t ∈ I(T ) := T \L(T ) is an inner node of T and has exactly two children t1, t2

which fulfill t = t1 ∪ t2 and t1 ∩ t2 = ∅.
An example for a dimension tree with dimension d = 8 is shown in Fig. 3.
The rank of a representation in the hierarchical Tucker format depends on the

bisection, i.e., on the dimension tree. For each node t there is a rank component rt
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Table 1 Operations and their cost for a d-dimensional tensor with representation rank bounded by r and
mode sizes bounded by n in the hierarchical Tucker format

Operation Cost Reference

Storage O
(
dr3 + dnr

)
(Grasedyck 2010, Lemma 3.7)

Addition O
(
dnr2 + dr4

)
(Hackbusch 2012, 13.1.4)

Evaluation O
(
dr3
)

(Hackbusch 2012, 13.2.3)

Inner product O
(
dnr2 + dr4

)
(Hackbusch 2012, Lemma 13.7)

Apply an operator O
(
dn2r

)
(Hackbusch 2012, 13.9.1)

Truncation O
(
dnr2 + dr4

)
(Hackbusch 2012, (11.46c))

corresponding to the matrix rank of the matricization B(t). Thus, the representation
rank in the hierarchical Tucker format is a tuple depending on the tree T and will
be denoted by r := (rt )t∈T . Again, the minimal representation rank is called the
hierarchical Tucker rank.

Given a dimension tree T , truncation can be performed in a quasi-optimal way,
cf. (Grasedyck 2010). There it is shown that the error in the �2-norm caused by trun-
cation of a tensor B ∈ R

I to rank r = (rt )t∈T is bounded by

‖B − trunc(B)‖2 ≤
∑
t∈T

∑
m>rt

σ 2
t,m ≤ Cd ‖B − Bbest‖2, (12)

where σt,m is the m-th singular value of the matricization B(t), Bbest is a best rank-r
approximation, and C < 2 is a small constant. This error bound allows for truncation
with guaranteed accuracy. Thus, truncating after arithmetic operations allows us to
perform iterative methods in an efficient way and preserves their convergence (Hack-
busch et al. 2008).

Inspired by (Hackbusch 2012, Chapter 13), Table 1 lists some of these operations,
as well as their respective cost.

In the hierarchical Tucker format, the storage complexity grows only linearly in the
dimension d. This allows for efficient storage and overcomes the state-space explosion
provided we have low ranks. In our case the dimension of the distribution tensors is
equal to the number d of automata, and the mode sizes are the numbers of states ni
for each automaton Ai .

It is possible to convert a CP representation of rank r easily to a hierarchical Tucker
one, where all rank components are bounded by r independent of the dimension tree,
cf. (Hackbusch 2012). In general, however, the rank in the hierarchical Tucker format
depends on the selected bisection, i.e., on the dimension tree. Thus, the question arises
how to choose the dimension tree in order to obtain a low rank. For further explanation
on the choice of tree we refer the reader to more advanced papers (Grasedyck and
Hackbusch 2011; Ballani and Grasedyck 2014). We will discuss this issue for the
marginal distribution p in Sects. 4.2 and 4.3 using some numerical experiments.
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3.2 Related work

For large Markov chains, the data-sparse structure of the operator has already been
exploited for fast matrix-vector applications (Buchholz and Dayar 2007). However,
this allowed only the operator, but not the distributions, to be stored in a data-sparse
form. The distributions were stored entry by entry and thus suffer from the state-
space explosion. In Schill et al. (2019) a strategy based on a splitting of the operator
Id − Q = D + L in a diagonal matrix D and a strictly lower triangular matrix L was
presented. Using Ld = 0 and the Neumann series, the marginal distribution is given
by

p =
d−1∑
k=0

(
−D−1 · L

)k
D−1 · p(0). (13)

Note that this equation requires inverting the diagonal operatorD or solving the corre-
sponding linear system. In contrast to the matrix case, inverting a diagonal operator in
low-rank tensor formats is not straightforward, and it is unclear whether the solution
itself has a low-rank structure. Solving each linear system involving D would result
in solving (d + 1) systems with a comparable complexity as the original one. Thus,
the strategy in (13) cannot easily be transferred to low-rank tensors to overcome the
state-space explosion.

Alternatively, Gotovos et al. (2021) recently proposed a strategy for learning the
parameters of a Mutual Hazard Network without computing the marginal distribu-
tion for all states. Given a data set of observations, optimizing the log-likelihood
requires the marginal probability of each state observed, which is represented as sum
of probabilities for all possible transition sequences leading to this state. For an obser-
vation withm mutations present there arem! possible sequences. In order to deal with
the sheer number of sequences, a stochastic approximation based on a Metropolis-
Hastings algorithm is used. Instead of restricting the state space, here we want to
exploit the given low-rank tensor structures of the model, cf. Sect. 2.5, to overcome
the state-space explosion.

We briefly review existing strategies to compute distributions using low-rank ten-
sor formats. The CP format has been used extensively to approximate, in particular,
stationary distributions, e.g., in Kulkarni (2011), and to derive conditions for their
existence, e.g., in Fourneau (2008). In Benson et al. (2017) stationary distributions
for random walks are computed via an eigenvalue problem using the CP format. The
tensor-train format was successfully used for the computation of, e.g., transient dis-
tributions (Johnson et al. 2010), mean times to failure (Robol and Masetti 2019), and
stationary distributions (Bolten et al. 2018; Kressner andMacedo 2014). There mainly
optimization-based approaches were presented. In Buchholz et al. (2016) the hierar-
chical Tucker format was applied to reduce the storage cost for distributions and the
computational cost for performing basic operations. Continuing in Buchholz et al.
(2017) adaptive truncation strategies for the computation of stationary distributions
using iterative methods were presented. In Kressner and Macedo (2014) a power iter-
ation based on a formulation of the stationary solution by an eigenvalue problem was

123



Low-rank tensor methods for tumor progression models Page 15 of 30 7

derived, where after each application of the operator in the power iteration the current
approximation was rescaled to ensure that it sums up to one.

However, the time-marginal distributionwe are interested in has not yet been studied
in the context of low-rank tensors. For this reason, we present such a method in the
following section.

3.3 Low-rankmethod

We nowmake use of low-rank tensor formats to approximate the marginal distribution
p as the solution of (10). Since the exact solution p is a probability distribution, its
entries sum up to one, i.e., it fulfills

〈1,p〉 = 1, (14)

where 1 ∈ R
S is the tensor of all ones. To allow for a probabilistic interpretation of

an approximation of p, we need to treat (14) as an additional constraint. To this end,
we now present an iterative method based on the Neumann series (Dubois et al. 1979)
and the uniformization method (Grassmann 1977). The following lemma holds true
for any discrete-state continuous-time Markov chain.

Lemma 2 Let Q ∈ R
S×S be any infinitesimal generator over any discrete state space

S and p(0) ∈ R
S any initial distribution. For γ ≥ maxx∈S |Qx,x | > 0 the marginal

distribution can be represented as a Neumann series,

p = 1

1 + γ

∞∑
m=0

(
γ

1 + γ
Pγ

)m

p(0) with Pγ := Id + 1

γ
Q, (15)

and the series converges.

Proof Due to Lemma 1 the marginal distribution can be represented as

p = (Id − Q)−1 p(0) = 1

1 + γ

(
Id −

(
γ

1 + γ
Id + 1

1 + γ
Q
))−1

p(0).

In order to use the Neumann series for inverting Id −
(

γ
1+γ

Id + 1
1+γ

Q
)

=: Id − Gγ ,

it is sufficient to show that the spectral radius ρ
(
Gγ

)
< 1. Applying the Gershgorin

circle theorem (Gershgorin 1931) leads to

σ
(
Gγ

) ⊆
⋃
x∈S

{
z ∈ C

∣∣∣ ∣∣∣z − γ − |Qx,x |
1 + γ

∣∣∣ ≤ |Qx,x |
1 + γ

}
︸ ︷︷ ︸

=:Zx,γ

.

Thus, the spectral radius is bounded by

ρ
(
Gγ

) = max
z∈σ(Gγ )

|z| ≤ max
x∈S

(
max

z∈Zx,γ |z|
)

.
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For x ∈ S and z ∈ Zx,γ we obtain using γ ≥ |Qx,x |:
∣∣∣|z| − γ − |Qx,x |

1 + γ︸ ︷︷ ︸
≥0

∣∣∣ �≤
∣∣∣z − γ − |Qx,x |

1 + γ

∣∣∣ ≤ |Qx,x |
1 + γ

⇒ |z| ≤ γ

1 + γ
< 1.

Since the spectral radius is smaller than 1, the Neumann series converges with

p = 1

1 + γ

∞∑
m=0

Gm
γ p(0) = 1

1 + γ

∞∑
m=0

(
γ

1 + γ
Pγ

)m

p(0).

	

Alternatively we can derive (15) using the uniformization method. Here, the idea

is to describe a continuous-time Markov chain by a discrete-time Markov chain with
a time increment that is exponentially distributed. With this interpretation, we write
the time-dependent probability distribution in (1) as

p(t) =
∞∑

m=0

(γ t)m

m! exp(−γ t)
(
Pγ

)m p(0)

for a time t ≥ 0. Note that Pγ is the transition probability matrix of a discrete-time
Markov chain, since γ is a bound on the diagonal entries ofQ. Marginalization of time
similar to (2) and substitution leads to (15):

p =
∞∫
0

exp(−t) p(t) dt =
∞∑

m=0

γm

m!
∞∫
0

tm exp(−(γ + 1)t) dt
(
Pγ

)m p(0)

=
∞∑

m=0

γm Γ (m + 1)

m! (1 + γ )m+1

(
Pγ

)m p(0) = 1

1 + γ

∞∑
m=0

(
γ

1 + γ
Pγ

)m

p(0),

where Γ denotes the gamma function.
We now discuss approximation strategies for (15). A natural approximation would

be

p̃(k) := 1

1 + γ

k∑
m=0

(
γ

1 + γ
Pγ

)m

p(0) (16)

for k ∈ N which is an approximation from below (entry by entry), i.e., p̃(k)
x ≤ px

for all x ∈ S and all k ∈ N. Based on the properties of the Neumann series this
sequence converges linearly to p, but p̃(k) satisfies the normalization condition (14)
only approximately for k → ∞. As Pγ is a transition probabilitymatrix, its application
to a probability distribution leads to a probability distribution again satisfying (14),
and thus
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〈1,

k∑
m=0

(
γ

1 + γ
Pγ

)m

p(0)〉 =
k∑

m=0

(
γ

1 + γ

)m

= (1 + γ )k+1 − γ k+1

(1 + γ )k
(17)

for all k ∈ N. By scaling each element of the sequence, we obtain

p(k) := (1 + γ )k

(1 + γ )k+1 − γ k+1

k∑
m=0

(
γ

1 + γ
Pγ

)m

p(0) (18)

for k ∈ N, which is now an approximation to p that satisfies (14). We prove its linear
convergence to p in the following theorem for any discrete-state continuous-time
Markov chain.

Theorem 1 Let Q ∈ R
S×S be any infinitesimal generator over any discrete state

space S and p(0) ∈ R
S any initial distribution. Let further p be the solution of the

corresponding linear system (10), and p(k) be defined by (18) for all k ∈ N. Then p(k)

converges linearly to p as k approaches infinity, i.e.,

lim
k→∞ p(k) = p with

∥∥p(k) − p
∥∥ ≤ c ·

(
γ

1 + γ

)k

for all k ∈ N,

where c = ∥∥ 1
1+γ

p(0) − p
∥∥+ γ ‖p‖.

Proof For αk := (1+γ )k

(1+γ )k+1−γ k+1 , α := 1
1+γ

and any k ∈ N we have

|αk − α| =
∣∣∣∣ γ k+1

(1 + γ )((1 + γ )k+1 − γ k+1)

∣∣∣∣ < γ

1 + γ
|αk−1 − α|

<

(
γ

1 + γ

)k

|α0 − α| =
(

γ

1 + γ

)k+1

.

Furthermore we obtain

∥∥p(k) − p
∥∥ ≤ ∥∥p(k) − p̃(k)∥∥+ ∥∥p̃(k) − p

∥∥
≤ |αk − α|

∥∥∥∥
k∑

m=0

(
γ

1 + γ
Pγ

)m

p(0)

∥∥∥∥+
(

γ

1 + γ

)k

‖αp(0) − p‖

≤ (‖αp(0) − p‖ + γ ‖p‖) ·
(

γ

1 + γ

)k

.

Since γ
1+γ

< 1, the linear convergence follows.

So far, we have not needed any additional assumptions on the Markov chain.
However, we are particularly interested in high-dimensional problems and want to
overcome the state-space explosion using low-rank tensor methods. Therefore, we
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now assume that both, the generator Q and the initial distribution p(0), have a low-
rank tensor representation, as derived in Sect. 2. In order to employ low-rank tensor
formats, we supplement the iterative method corresponding to (18) by truncation.
As shown in Hackbusch et al. (2008), a convergent iterative method combined with
truncation still converges if the truncation error is sufficiently small. However, the
truncation could change the normalization of the iteration. Therefore, we replace the
scaling with αk by dividing by 〈1,p(k)〉 as shown in Algorithm 1. The procedure
should be continued until the norm of the relative residual is smaller than a given
tolerance tol > 0.

Algorithm 1 Low-rank uniformization(Q,p(0), γ, tol)

1: Pγ = Id + 1
γ Q

2: k = 0
3: s = 1, s(k) = 1
4: p(k) = p(0),psum = p(0)
5: while ‖ (Id − Q)p(k)/s(k) − p(0)‖/‖p(0)‖ ≥ tol do
6: psum = trunc

(
Pγ psum

)
7: s = s · γ /(1 + γ )

8: p(k+1) = trunc
(
p(k) + s psum

)
9: s(k+1) = 〈1,p(k+1)〉
10: k = k + 1
11: end while
12: return p(k)/s(k)

Note that when using the unnormalized approximation p̃(k) by replacing the nor-
malization by s(k) with (1 + γ ), the norm of the relative residual turns out not to be a
useful measure and one must also consider the distance of s(k) and (1 + γ ). By taking
the relative residual of the normalized version, this is done implicitly.

Our sequence
(
p(k)
)
k is defined as a normalized version of

(
p̃(k)
)
k
, which is an

approximation top from below (entry-by-entry). By estimating the Poisson distributed
error of p̃(k), one can obtain

p̂(k) := p̃(k) +
(
1 −

k∑
m=0

γm

(1 + γ )m+1

)
1

for k ∈ N as unnormalized approximation to p from above (entry-by-entry) which also
converges linearly to p. In numerical experiments (not further discussed here), p̂(k)

and also its normalized version turned out to be unpromising, since significantly more
iteration steps were required to achieve the same approximation quality measured by
the relative residual.

In general, Algorithm 1 does not require assumptions (I) or (II) but Q and
p(0) to have appropriate low-rank tensor representations and an upper bound γ ≥
maxx |Qx,x |. In general, computing all diagonal entries ofQ is inO(nd). Nevertheless,
here we focus on Markov chains satisfying (I) and (II) with an infinitesimal generator
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Q in (9) depending on parameters Θ. This allows for the following inexpensive upper
bound:

γ =
d∑

i=1

max
xi∈Si

⎛
⎜⎜⎝ ∑

ti∈Ti
ti=(xi→yi )

d∏
j=1

max
x j∈S j

Θ(ti , x j )

⎞
⎟⎟⎠ , (19)

which can be computed inO
(
d2n2T

)
,3 where T = maxi |Ti | is the maximum number

of possible transitions in an automaton. In the case of strongly varying parameters
Θ, (19) may be a significant overestimation for the diagonal entries ofQ. The question
of how to determine a tighter bound with polynomial effort using low-rank tensor
formats will be dealt with in future work.

4 Numerical experiments

We illustrate our method for the computation of time-marginal distributions in numer-
ical experiments based on the model of Mutual Hazard Networks with d automata
(genomic events). In this case, the parameters can be summarized in a matrix
Θ ∈ R

d×d .

4.1 Setting

4.1.1 Construction of synthetic parameters

We consider d automata and parameters Θ ∈ R
d×d
>0 with a particular block-diagonal

form. Each quadratic block of size b × b characterizes a subset of b automata which
directly affect one another. We draw all within each block so that their logarithmic
values are normally distributed with mean μ = 0 and standard deviation σ = 0.25.
Unless stated otherwise, all other parameters are exactly 1 (logarithmic values of 0),
which corresponds to a neutral direct effect between automata of different blocks.
Based on these blocks we study three types of parameters:

(B1) (Strict) block structure: There are direct effects, i.e., parameters Θi, j �= 1, only
between automata in the same block.

(B2) Neighbor block structure: In addition to the effects within each block in (B1),
there are direct effects between randomly chosen automata in neighboring
blocks. The parameters Θi, j are drawn such that their logarithmic values
log
(
Θi, j

)
are normal distributed with mean 0 and σ = 0.125 and the automata

(i, j) are uniformly randomized in neighboring blocks. For each pair of neigh-
boring blocks 4 random effects.

(B3) Neighbor block structure with additional random effects: Besides the effects
in (B2), there are direct effects between randomly chosen automata of different
blocks. Again the corresponding parameters Θi, j are drawn such that their log-
arithmic values log

(
Θi, j

)
are normal distributed with mean 0 and σ = 0.125.

3 Strictly speaking, the computational cost of the method is therefore quadratic, rather than linear, in d.
However, γ only needs to be precomputed once, the computational cost of which is negligible.
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The choice of (i, j) is also uniformly randomized. For each parameter matrix
Θ ∈ R

d×d
>0 we add 8 random effects.

The blocks in (B1) correspond to non-interacting subsystems of the process. In biologi-
cal models, these often represent well-defined, distinct pathways of genes that regulate
specific functions of the cell such as the cell cycle, apoptosis and growth (Sanchez-
Vega et al. 2018). Note that even if subsystems do not interact, it is not possible to
trivially express the solution as a Kronecker product of solutions per block, since cor-
relations are induced by the observation time acting as a confounding variable, see
also (Gotovos et al. 2021, Section 3.2). Finding such blocks or groupings, e.g., dur-
ing parameter determination, can be important for understanding and treating tumors.
However, in practice, the behavior of a biological system can rarely be separated into
well-defined subsystems that do not interact, so (B1) is an oversimplification. Hence,
we add interactions between different subsystems in (B2) and (B3). For parameters
of type (B2) all automata or events already interact indirectly. For example, if event
A1 favors the occurrence of event A2, i.e., Θ2,1 > 1, and at the same time event
A2 inhibits the occurrence of event A3, i.e., Θ3,2 < 1, then event A1 also indirectly
inhibits event A3 even if the direct effect of A1 on A3 is neutral. We reduce the stan-
dard deviation when sampling the effects between different blocks to simulate that the
influences between different blocks are much smaller than those within.

4.1.2 Default settings for the algorithm

For the application of Algorithm 1 we always choose the bound γ as in (19), which
for Mutual Hazard Networks can be reduced to

γ =
d∑

i=1

d∏
j=1

max{1,Θi, j }. (20)

Unless stated otherwise, we use a canonical balanced dimension tree for the appli-
cation of the hierarchical Tucker format, i.e., the automata are assigned to the
leaves following their ordering, see Fig. 4. We perform all experiments for 100 ran-
domly generated sample parameters for each combination parameter type, number
of blocks and number d of automata. We compute low-rank approximations of the
marginal distribution p using Algorithm 1 with a maximum relative truncation error
‖B − trunc(B)‖/‖B‖ ≤ εtrunc = 10−7, see (12). The algorithm stops when the norm of
the relative residual is smaller than a tolerance value of tol = 10−4. The mean values
we compute are arithmetic means. In the following, we call the representation rank of
this approximation tensor an approximation rank of p.

4.2 Study of singular values

One fundamental assumption for solving linear systems using low-rank tensormethods
is that a solution can be well approximated by a tensor of low rank. According to
the error bound in (12), the truncation error is determined by the singular values of
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Fig. 4 Mean of singular values of matricizations of p for the canonical balanced tree and 100 sample
parameters of type (B1) with d = 8 automata and 2 blocks of size b = 4 each

the matricization corresponding to the chosen dimension tree. A fast decay of those
singular values indicates that a tensor can be approximated accurately by one of low
rank.

To analyze this issue, we solve (10) using classical matrix methods of MAT-
LAB (Natick 2019) and compute the singular values of the correspondingmatricization
using the htucker toolbox (Kressner and Tobler 2014). Figure 4 shows the decay of
the singular values of each matricization corresponding to the canonical balanced tree
for d = 8 automata and parameters of type (B1) with 2 blocks of size b = 4 each. For
each node the semi-logarithmic plot displays the means of the singular values over
100 samples.

We observe that the singular values exhibit an exponential decay. The two matri-
cizations closest to the root are transposes of each other, and therefore their singular
values are identical. The smallest 5 of the 16 singular values are indistinguishable
from zero and therefore cannot be displayed in the semi-logarithmic plot. For other
standard deviation σ , we observed a similar drop in singular values (not shown here).
The exponential decay of the singular values indicates that the marginal distribution
p can be well approximated with low rank.

4.3 Study of the tree structure

In general, the rank in the hierarchical Tucker format depends on the structure of the
tree. In the following, we study how the ordering of the automata in the leaves of the
tree affects the low-rank approximability. We preserve the balanced binary structure
of the tree because this is advantageous for parallelization, cf. (Grasedyck and Löbbert
2018).

We already studied the singular values of the matricizations corresponding to the
canonical balanced tree, see Fig. 4. We now change only the arrangement of the
automata in the leaves of the tree and compute the marginal distribution p again. The
decay of the singular values for each matricization is shown in Fig. 5, where the semi-
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Fig. 5 Meanof singular values ofmatricizations ofp for amodified balanced tree and 100 sample parameters
of type (B1) with d = 8 automata and 2 blocks of size b = 4 each

logarithmic plot at each vertex displays the means of the singular values over 100
samples.

Comparing Figs. 4 and 5, we observe that the choice of the canonical dimension
tree, i.e., the original ordering in the leaves, results in a significantly faster decay of
the singular values close to the root. Figure 5 shows that the singular values closest
to the root also have an exponential decrease, but at a much slower rate. Note that
2 blocks of size b = 4 imply that the automata {A1,A2,A3,A4} interact directly
with one another. The same holds for the automata {A5,A6,A7,A8}. There are no
direct interactions between automata of different blocks. Hence, themodified balanced
tree separates strongly interacting automata, which explains the slower decay of the
singular values in level 1 (level 0 being the root). In contrast, the canonical balanced
tree separates weakly interacting automata, leading to a faster decay of the singular
values. We will make similar observations when studying the approximation rank.
Based on this observation, the question arises whether and how a suitable dimension
tree can be determined. Ballani and Grasedyck (2014) developed a black box method
to determine a dimension tree for general low-rank problems. In our concrete model
problem, however, the parameters Θ already seem to give a-priori information about
suitable structures. How exactly a dimension tree can be constructed based on the
parameters is, however, not a trivial question and requires amore detailed investigation,
which would exceed the scope of this paper. In the following, we will focus on the
investigation of the presented method.

4.4 Comparison with amatrix-basedmethod

We check our method in Algorithm 1 against a classical method based on matrix
operations presented in Schill et al. (2019), see (15). To do so, we use Mutual Haz-
ard Networks computed there and the corresponding infinitesimal generators Q. The
parameters are optimized based on data for breast cancer, colorectal cancer, renal cell
carcinoma and glioblastoma which represent mutual effects between d = 10, 11, 12
and 20 genomic events each. The specific parameters and their interpretation can be
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Table 2 Comparison of the results ptensor of Algorithm 1 based on low-rank tensors and pvector of (13)
based on matrix operations for different Mutual Hazard Networks from Schill et al. (2019)

Disease d Relative
residual
pvector

Relative
residual
ptensor

Relative
Euclidean
distance

Absolute
KL
diver-
gence

Storage
cost
pvector

Storage
cost
ptensor

Breast cancer 10 1.7e−17 8.8e−05 3.3e−04 3.3e−07 1024 3052

Colorectal cancer 11 2.9e−17 9.8e−05 3.5e−04 3.1e−07 2048 4396

Renal cell carcinoma 12 1.1e−17 9.8e−05 1.2e−04 1.4e−06 4096 4553

Glioblastoma 20 1.6e−17 9.7e−05 9.7e−05 4.4e−06 1,048,576 44,065

found in Schill et al. (2019) and its supplementary material. The network for breast
cancer is also shown in Fig. 1. We use the settings in Sect. 4.1.2 for Algorithm 1.

Wecompare the resultptensor ofAlgorithm1using tensormethods andpvector of (13)
based on matrix operations with respect to the relative residual
‖(Id − Q)p − p(0)‖/‖p(0)‖ and the distance of both results. Wemeasure the distance
using the relative Euclidean distance ‖pvector − ptensor‖/‖pvector‖ and the Kullback
Leibler (KL) divergence (Kullback 1997) from ptensor to pvector. The KL divergence
from ptensor to pvector is defined as

KL
(
pvector,ptensor

) =
∑
x

(pvector)x · log (pvector)x
(ptensor)x

(21)

and measures how ptensor differs from pvector with respect to pvector. Since ptensor is
only an approximation of the marginal distribution p, there might be some negative
values which are absolutely small. To deal with this problem, we use the convention
0 · log(0) = 0 and cut off (pvector)x ≤ εcut-off = 10−8 to zero. Besides, we list the costs
for storing pvector and ptensor, respectively, in values which have to be stored for each
solution. Table 2 summarizes the values for four different Mutual Hazard Networks
corresponding to different types of tumors.

By construction, the residuals for ptensor of Algorithm 1 are slightly below the
requested tolerance tol = 10−4. For smaller values of tol (not shown inTable 2) smaller
relative residuals for ptensor can be reached by increasing the number of iteration steps.
The results pvector of (13) solve the equation nearly exactly. The relative Euclidean
distances as well as the KL divergences from ptensor to pvector have very small absolute
values. This implies that both results describe nearly the same distribution. Calculating
the KL divergences for smaller cut-off parameters εcut-off ∈ {10−9, . . . , 10−16}, we
obtain the same values for the first three networks as with εcut-off = 10−8. For the last
(and largest) network, if εcut-off ≤ 10−10, we observe some negative entries with very
small absolute values, i.e., |(ptensor)x | ≤ 10−9. This can be explained by the truncation
used in Algorithm 1 to reduce the storage and computational complexity. Hence, we
need εcut-off > 10−10 for this network.CalculatingKLdivergences requires the explicit
evaluation of all entries of the tensors ptensor, since an efficient method for the entry-
wise application of the logarithm within low-rank tensor formats is unknown. This
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Fig. 6 Cost for storing the marginal distribution of a Mutual Hazard Network with d automata and n = 2
as a vector compared to a hierarchical Tucker (HT) tensor with constant rank r = 8, 16, 32

limits the computation of KL divergences to tensors of small dimension d. Comparing
the storage costs for pvector and ptensor, we observe an overhead of storing the tensor
solution compared to the vector one for diseases with d ≤ 12. However, already for
d = 20 the storage cost for the vector solution explodes, whereas the cost for the
tensor solution remains moderate with about 4% of the cost for pvector.

InFig. 6,we furthermodeled the storage requirements for potential vector and tensor
solutions as a function of d up to 50 in a semi-logarithmic plot. For this purpose, we
made the simplified assumption of constant ranks r = (r , . . . , r) for the hierarchical
Tucker representation of ptensor with r ∈ {8, 16, 32}.

Again, we note an overhead of storing the tensor compared to the vector representa-
tion for d ≤ 20, but for d > 20 the tensor representation is preferable. Figure 6 shows
the exponential increase of storage cost for the vector representation in the number of
automata, i.e., the state-space explosion. In contrast the cost for the hierarchical Tucker
representation grows only linearly in d as expected from Table 1. A low representation
rank is essential in order to overcome the state space explosion, as it enters cubically
into the storage cost. We will now investigate this in more detail.

4.5 Study of the approximation rank

The rank r = (rt )t∈T in a hierarchical Tucker format is a tuple depending on the
underlying tree T . For a simple comparison of tensor representations, we consider the
effective rank reff , which we define such that the storage cost for the representation
equals the cost to store one with rank r = (reff)t∈T . In doing so, we round reff up to
the nearest integer.

We compute low-rank tensor approximations of the marginal distribution p using
Algorithm 1 as described in Sect. 4.1. We plot the effective ranks as a function of the
number d of automata for fixed maximum relative truncation error εtrunc = 10−7 and
fixed tolerance tol = 10−4 in Fig. 7a, and as a function of εtrunc for fixed d in Fig. 7b.
Both plots showmean values of effective ranks for 100 samples of parametersΘ each.
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(a) (b)

Fig. 7 Mean of effective approximation rank of p as a function of the number d of automata in Fig. 7a and
as a function of the maximum relative truncation error εtrunc in Fig. 7b using Algorithm 1 with tolerance
tol for 100 sample parameters

(In both plots the statistical errors, i.e., the variations between samples, are very small
and therefore not shown.)

Figure 7a displays effective ranks for parametersΘ of the three different types. The
parameters of type (B1) have 8 and4blocks, respectively, and those types (B2) and (B3)
have 4 blocks. The size of each block increases in the number d of automata, i.e., for
8 blocks the size of each block is b ∈ {1, . . . , 6} and for 4 blocks it is b ∈ {2, . . . , 12}.
The automata belonging to a block are each grouped by the tree structure as in Fig. 4.

We observe that p is approximated to a tolerance of tol = 10−4 with low rank in all
cases. For separated blocks of type (B1), drawn in blue, the effective rank increases
slightly in the number d of automata. Since the number of blocks is kept constant,
also the size of each block increases in d. For this reason, especially for 4 blocks,
there is a superposition of the effects of increasing d and increasing block size on
the effective rank. This becomes particularly clear in the comparison between 8 and
4 blocks per parameter. In case of 8 blocks, the effective rank increases much more
flatly and seems to be almost independent of the number d of automata constrained
by reff ≈ 8. The larger 4 blocks always combine the automata of two smaller blocks,
i.e., they are twice as large. We thus hold that although the approximation ranks
increase slightly with the number d of automata as well as the number b of directly
interacting automata, they remain comparatively small, provided that the partitioning
in the dimensional tree is preserved. As in Fig. 5, separating the automata of a block
in the dimension tree can lead to an increase in the approximation rank (not shown
here). A similar increase can be observed when further effects are added between
neighboring blocks, i.e., (B2), or between randomly chosen blocks, i.e., (B3). In Fig. 7a
the effective ranks for parameters with additional random effects, drawn in red, both
increase in d until 24 and then remain almost constant at around reff ≈ 20 for (B2) or
slightly decreases respectively for (B3). This suggests that effects that do not fit the
structure of the dimension tree can lead to an increase in the approximation rank. In
addition, direct effects between neighboring blocks appear to have less impact on the

123



7 Page 26 of 30 M. Klever et al.

approximation rank than those betweenmore distant ones. For parameters of type (B3),
we observe more significant differences between effective ranks for different samples.
For some, the effective ranks are significantly above the mean, for some below it. This
supports the conjecture that the location (i, j) of the direct effectsΘi, j �= 1 affects the
approximation rank. However, if only a few of these effects are present, the marginal
distribution can still be approximated with comparatively low approximation rank.
These results suggest that neither the number d of automata nor the size of the blocks
alone are responsible for an increase in rank, but that especially the distribution of the
automata in the dimension tree has a large effect. How to construct an appropriate tree
in order to keep ranks low using a-priori information on the parameters is a topic of
ongoing research.

The semi-logarithmic plot in Fig. 7b displays effective ranks for parameters Θ of
type (B1) for d = 32 automata and 4 blocks of size b = 8 as a function of themaximum
relative truncation error εtrunc for different tolerances tol = 10−1, . . . , 10−4. As the
tolerance is lowered, the approximation of p corresponds to a particular stage during
the iteration. We observe that all effective ranks are nearly constant in the maximum
relative truncation error and the tolerance for tol. For tol = 10−1, the effective rank is
slightly lower and for all other tolerance values it is about reff ≈ 9. This observation
suggests, on the one hand, that p can be accurately approximated with a tensor of
effective rank reff ≈ 9, since a more accurate truncation, i.e., smaller εtrunc, has only
very small impact on the approximation ranks. On the other hand, the fact that the ranks
are low and nearly independent of the tolerance value indicates that the ranks during
the iteration are also low. This allows not only for efficient storage of the resulting
approximation but also for efficient computation using Algorithm 1. For parameters
of types (B2) and (B3), we observed that the increase in the approximation rank is
further amplified for smaller maximum relative truncation errors εtrunc. Therefore, a
suitable truncation accuracy seems to become more important for parameters with
more direct effects between blocks. For Fig. 7a, the maximum relative truncation
error εtrunc = 10−7 is chosen to be comparatively small, but the approximation ranks
remain relatively small for all numbers d of automata and types of parameters. During
the iteration itself, the effective ranks remained almost constant (after a start phase)
similar as shown in Fig. 7b.

4.6 Study of the speed of convergence

Having studied the low-rank structure of the distribution numerically, we now consider
the convergence speed of our method. In Theorem 1 we proved that the iteration
sequence converges linearly to themarginal distribution. If the truncation error is small
enough, then the convergence of the method combined with truncation is preserved,
cf. (Hackbusch et al. 2008). We will now see that this theoretical result also holds in
practice.

To do this, we look at the decay of the relative residual as a function of the iteration
steps. Again we use 100 parameter samples of type (B1) with 4 blocks for d = 8, 16
and 32 automata each. Figure 8a and b show semi-logarithmic plots of the norm of the
relative residual as a function of the iteration step. Figure 8a displays the mean value

123



Low-rank tensor methods for tumor progression models Page 27 of 30 7

(a) (b)

Fig. 8 Norm of the relative residual as a function of the number of iteration steps using Algorithm 1 for
100 sample parameters of type (B1) with d automata and 4 blocks

of the relative residual and Fig. 8b additionally the corresponding box plot illustrating
the variances for d = 32 automata.

We observe a linear convergence of themethod for all values of d. For larger number
d of automata the convergence slows down. A similar behavior can be observed for
larger standard deviations σ of the logarithmic parameters log

(
Θi, j

)
, where a larger

σ means that also the parameters Θi, j are more widely dispersed around 1. Both
observations can be explained by the fact that γ (and our upper bound in (20)) increases
in d and Θi, j > 1, and thus the bound γ

1+γ
on the convergence rate is closer to one,

cf. Theorem 1. In Fig. 8b the ranges for d = 32 given by the boxes are small, which
indicates that there are only a few outliers given by the whiskers. We have confirmed
our results using different numbers d of automata and blocks (not shown). In our tests
we observe that the number of iteration steps needed to achieve a certain tolerance
grows linearly in the number d of automata but is nearly independent of the block
size. This indicates that the number of iteration steps is independent of changes in the
ordering of automata and consequently of changes in the rank.

5 Conclusion and future work

Inspired by current research in tumor progression models, we considered a class of
continuous-time Markov chains that describe interacting processes, e.g., tumor pro-
gression models. Typically the age of a tumor at its diagnosis is unknown. For this
reason, the transient distribution integrated over the exponentially distributed obser-
vation time is required. This so-called time-marginal distribution is uniquely defined
as the solution a large linear system and suffers from the problem of state-space
explosion. We modeled this class of Markov chains with separable transition rates
factorizing according to the current state using Stochastic Automata Networks. This
modeling enabled us to obtain a low-rank tensor representation of the operator and
the right-hand side of this linear system. Based on these low-rank tensor represen-
tations, we derived an iterative method to compute a low-rank tensor approximation
of the time-marginal distribution and hence were able to overcome the state-space
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explosion. The method guarantees that the entries of the approximation sum up to one
as required for a probability distribution. We proved the convergence of the method.
In numerical experiments focused on the concept of Mutual Hazard Networks we
illustrated that the time-marginal distribution is well approximated with low rank. The
method allows for consistently low ranks during the iteration, and linear convergence
was observed independently of the number of processes/automata.

A probability distribution, in addition to being normalized to one, must be non-
negative. An approximation of a probability distribution should also satisfy this
condition. In numerical experiments we observed that our method preserves this non-
negativity for small numbers of automata if the truncation is sufficiently accurate.
How to guarantee non-negativity and at the same time convergence for high numbers
of automata will be part of our future research.Moreover, we observed that the approx-
imation rank for the time-marginal distribution depends strongly on the structure of the
dimension tree and on the effects between automata. To minimize the approximation
rank we plan to develop a strategy to determine an optimal dimension tree a-priori.
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