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Reference panel guided topological
structure annotation of Hi-C data

Yanlin Zhang1 & Mathieu Blanchette 1

Accurately annotating topological structures (e.g., loops and topologically
associating domains) fromHi-C data is critical for understanding the role of 3D
genome organization in gene regulation. This is a challenging task, especially
at high resolution, in part due to the limited sequencing coverage of Hi-C data.
Current approaches focus on the analysis of individual Hi-C data sets of
interest, without taking advantage of the facts that (i) several hundred Hi-C
contact maps are publicly available, and (ii) the vast majority of topological
structures are conserved across multiple cell types. Here, we present RefHiC,
an attention-based deep learning framework that uses a reference panel of Hi-
C datasets to facilitate topological structure annotation from a given study
sample. We compare RefHiC against tools that do not use reference samples
and find that RefHiC outperforms other programs at both topological asso-
ciating domain and loop annotation across different cell types, species, and
sequencing depths.

Chromosome conformation capture assays such as Hi-C1, andmicro-C2

have been developed to measure the spatial proximity between DNA
fragments in genomes as average pairwise contact frequency in cell
populations. These approaches have revealed a hierarchical spatial
organization of topological structures of the genome inside nuclei.
Among them, topological associating domains (TADs) are kilo- to
mega-scale regions with strong interactions between DNA fragments
within the same domain and weaker interactions across domains3.
Loops bring into contact distant loci such as promoters and
enhancers4. These topological structures are dynamic both within
cells5 and during cellular differentiation6. They are essential compo-
nents of gene regulation.

WhileHi-C and its variants remain themost popular approaches to
map chromatin contacts on a genome-wide scale, the analysis of the
data they produce is challenging, in large part due to the moderate
sequencing depth (typically 200–500 Million valid read pairs) com-
pared to the size of the contact frequency matrices that need to be
estimated. Numerous TAD annotation tools exist that rely on various
statistical significance tests7–9. This includes the popular Insulation
score (IS)10, a widely used approach for TAD boundary detection,
andmore robust variants such asRobusTAD11. Still, the performance of
all of these approaches is relatively poor, especially at low coverage,
due to stochastic noise and biases7. Loop detection is even more

challenging4,12 due to their small size in contact maps. Fit-Hi-C13 and
HiC-DC14

fit a global model to estimate the background distribution of
the contact frequency and identify statistically significant contact pairs
by comparing observed values to expected values from the fitted
model. These global enrichment approaches evaluate each contact
pair independently without modeling neighboring patterns and iden-
tify loop clusters instead of discrete loops. In contrast, HiCCUPS4

compares each contact pair to surrounding regions and identifies
locally enriched contact pairs as loops. It requires users to set several
sequencing depth sensitive parameters and can only detect loops that
satisfy the user defined filtering criteria. Both loop and TAD predic-
tions have been shown to benefit from prior smoothing of Hi-C
matrices, e.g., using HIFI15.

Recent approaches tackle topological structure annotations
using computer vision and machine learning techniques. For
instance, Mustache16 treats chromatin loop recognition as a blob-
shaped object detection problem. Chromosight17 employs expert-
designed templates to represent each type of topological structures.
These generic pattern-based approaches work well on data with
sufficient contact pairs but underperform at low sequencing depth.
In contrast, Peakachu12 is a supervised learning approach trained to
recognize loops using data from orthogonal experiments as target
values.
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Many approaches have been introduced to address the issue of
insufficient sequencing depth. Grinch18 proposed a graph-
regularized non-negative matrix factorization algorithm to
smooth sparse Hi-C contactmapwhile detecting TADs. DeepLoop19

identifies significant interactions from sparse Hi-C contact maps by
denoising and enhancing loop signals with a neural network.
Higashi20, a single-cell Hi-Cdata analysis tool, represents a cohort of
scHi-C data as a hypergraph, learns to predictmissing hyperedge to
impute missing interaction, and then performs structural annota-
tion on imputation.

A common strategy in analyzing biological data is to complement
data about the sample of interest with data of the same type obtained
previously for other samples. This strategy has proven effective for
genotype imputation21 and phasing22, as well as protein structure
prediction23, among others. Even though hundreds of Hi-C experi-
ments have been conducted, they have never been analyzed jointly for
topological structure annotation. Here we introduce RefHiC, a refer-
ence panel informed deep learning approach for topological structure
(loop and TAD) annotation from Hi-C data. RefHiC uses a reference
panel that contains high-quality Hi-C data of different cell types. For
each potential contact in the study sample, it uses an attention
mechanism24 that determines which of the reference samples aremost
relevant, and then makes a prediction based on the combined study
sample and attention-weighted reference samples. We demonstrate
that RefHiC enables significant accuracy and robustness gains, across
cell types, species, and coverage levels.

Results
Overview of RefHiC
RefHiC takes as input a Hi-C contact map for a study sample and a
reference panel of Hi-C contact maps (provided with the tool). It
produces highly reliable loop or TAD boundary annotations for the
study sample. RefHiC is based on two components (Fig. 1 and “Meth-
ods”): (i) a neural network predicts loop (resp. TAD boundary) scores
for every candidate pair (resp. locus) based on the local contact sub-
matrix, combining information from the study sample and the refer-
ence panel; (ii) a task-specific component selects one representative
loop/TAD boundary from each high-scoring cluster. For human, the
reference panel contains 30 uniformly processed Hi-C contact maps,
each with at least 350 million contact pairs (Supplementary Table 1).
For mouse, it consists of 20 such maps (Supplementary Table 2).
Normalization of referenceHi-C samples is unnecessary as the network
automatically learns to handle batch effect and coverage differences
from the training data.

To obtain a loop or TAD boundary score for bin pair (i, j) (with i≠ j
for loops and i= j for TAD boundaries), an encoder projects the sub-
matrices centered at (i, j) in both the study sample and reference panel to
low-dimensional embeddings. An attention module24 computes a com-
bined representation of all reference samples as a weighted sum of their
embeddings, with weights based on their local similarity to the study
sample’s embedding. Finally, a multi-layer perceptron predictor com-
putes loop or TAD boundary score from the concatenation of the study
sample’s embedding and the attention output. The process is repeated
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Fig. 1 | RefHiC architecture.Overviewof the RefHiC neural network for loop andTADboundary scoring, followed by clustering or peak finding algorithm fordiscrete loop
and TAD predictions (shown as blue circles).
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for every pair (i, j) to obtain a scoring matrix (resp. vector), from which
discrete loop (resp. TAD boundary) predictions are extracted.

Training RefHiC (i.e., choosing the weights of the encoder, fully
connected layers in attention module, and head) is achieved using a
variety of downsampled versions of a high-coverage Hi-C data set for
GM128784. Following Salameh et al.12, we used as prediction targets a
set of long-range loops identified at 5 kb resolution by either ChIA-PET
on CTCF25 or RAD2126, as well as by HiCHIP on SMC127 or H3K27ac28.
Using multiple experimental data sets ensures a broad coverage of
various types of loops.

Importantly, although RefHiC is trained on GM12878 data, the
model learned is not cell-type specific, andwewill demonstrate in later
sections that the same model can be used to annotate structures in
manyother cell typeswithout retraining andwith similar accuracy. The
same trainedmodel can also be used tomakepredictions onmouseHi-
C data, based on our reference panel for that species.

In our experiments, we used human chromosomes 11 and 12 for
validation, chromosomes 15–17 for testing, and the rest of the auto-
somes for training. To prevent potential data leakage, all results
reported here pertain only to the three test chromosomes.

RefHiC accurately detects chromatin loops from Hi-C con-
tact maps
We first assessed the loop prediction accuracy of RefHiC on a down-
sampled Hi-C data set (500M valid read pairs) for human GM12878
cells4. We then applied Chromosight17, Peakachu12, Mustache16, and
HiCCUPS4 to annotate loops from the same data with default para-
meters. For all tools, we set the same 5% FDR cutoff whenever possible.

The sets of predicted loops are quite different among tools, with
RefHiC making the largest number of unique predictions Fig. 2a and
Supplementary Fig. 1. Aggregate peak analysis (Fig. 2b) shows that
loops detected by Chromosight, RefHiC, and Mustache had a more
diffuse loop center compared to those identified by Peakachu and
HiCCUPS. Finally, the distribution of distances between loop anchors
predicted by RefHiC and Mustache most closely resembled that of
ChIA-PET/HiCHIP-supported loops (Fig. 2c), whereas Peakachu, HiC-
CUPS, and Chromosight predicted more short-range interactions.

We then evaluated predicted loops by comparing them to loops
revealed by loop-targeting experimental data, allowing up to 5 kb shift.
To facilitate interpretation, we considered the top 1700 predictions
from each tool by adjusting the FDR or loop score cutoff. Figure 2d–f

Fig. 2 | Comparison of RefHiC, Chromosight, Peakachu, HiCCUPS, and Mus-
tache on GM12878 Hi-C data (500M valid read pairs). a Venn diagram of loops
predicted by different tools.bAggregate peak analysis profiles for target (ChIA-PET
andHiCHIP identified) and annotated loops. c Cumulative distance distributions of
predicted loops. RefHiC’s predicted loop distance distribution closely resembles
that of ChIA-PET/HiCHIP-supported loops (target). d–f Number of ChIA-PET/
HiCHIP-supported loop predictions, among the top 1700 predictions made by
RefHiC and other tools, for test chromosomes chr15, chr16, and chr17, compared
against CTCFChIA-PET (d), RAD21ChIA-PET (e), and SMC1HiCHIP (f). RefHiC’s loop

predictions matches those experimental data better than predictions made by
other tools on test chromosomes. g Occupancy of ChIP-seq identified CTCF
binding site as a function of distance to predicted loop anchors. h Orientation of
CTCFmotifs at predicted loops. i Transcription factor (TF) occupancy at predicted
loops (RefHiC and Chromosight only). Each dot is a TF or histone modification
(based on 133 ENCODE ChIP-seq data sets for GM12878), whose x-coordinate is the
fraction of loop anchors containing a binding/modification site and the y-axis is the
fold enrichment against genome-wide frequency. Most TFs are more strongly
enriched at RefHiC loop predictions than at Chromosight loop predictions.
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and Supplementary Fig. 2a show that RefHiC produced 1250 CTCF-
supported loops, 784 RAD21-supported loops, 588 SMC1-supported
loops, and 213 H3K27ac-supported loops. In contrast, other tools
yielded 20–52% fewer validated loops. Comparison against
DeepLoop19 reveal similar numbers (Supplementary Note 1 and Sup-
plementary Fig. 3). Finally, to delineate the impact of using a reference
panel, we evaluated a version of RefHiC that operates exclusively
based on the study sample (Supplementary Note 2); while this
reference-free predictor obtains state-of-the-art performance (or bet-
ter), it is far from the reference panel based RefHiC (Supplementary
Fig. 4). As shown in Fig. 2g, predicted loop anchors detected by RefHiC
were strongly enriched with the CTCF binding motifs. TAD-forming
loops have been previously shown to be associated with the presence
of convergent CTCF binding sites at loop anchors5. Indeed, 50% of
RefHiC’s loop predictions are associated with such pairs of sites; sig-
nificantly more than for other tools (Fig. 2h).

Among loops detected by each tool, 46% of RefHiC, 39% of
Chromosight, 50%of Peakachu, and9%ofMustachewerenotdetected
by other tools (Fig. 2a). Supplementary Fig. 5 shows that RefHiC-
specific predictions are not only more numerous but also more accu-
rate when evaluated against CTCF/RAD21 ChIA-PET, and SMC1 HiCHIP
data, though slightly less accurate than Chromosight and Peakachu on
H3K27ac HiCHiP data. Chromosight and Peakachu were slightly better
than RefHiC when being evaluated against H3K27ac HiCHiP data. A
deeper analysis of the properties of loops predicted by each tool is
presented in Supplementary Note 3 and Supplementary Figs. 6–8.

To further study the properties of loops predicted by each tool, we
performed transcription factor (TF) and histone modification enrich-
ment analysis around loop anchors. Figure 2i and Supplementary Fig. 2b,
c show enrichment for known loop-mediating proteins (SMC3, RAD21,
YY1, TRIM22, CTCF, and ZNF143) was strongest for RefHiC compared to
Chromosight and Peakachu, and comparable to Mustache.

Combined, these results demonstrate the overall superior pre-
diction accuracy of RefHiC on GM12878 data (500M read pairs) com-
pared to other approaches.

RefHiC performs well across cell types and species
Although RefHiC is trained on human GM12878 data, we demonstrate
here that the same trained model performs well across other human
and mouse cell types. We applied RefHiC and other tools (5% FDR) to
Hi-C data from human K562, IMR904, and cohesin-depleted HCT-11629

cell lines (test chromosomes 15–17 only), as well as mouse embryonic
stem cells (mESC)30 (all chromosomes). Since the IMR90 data set has
twice the sequencing coverage of the K562 data set, all tools identified
more loops in the former, with Chromosight and RefHiC making the
largest number of predictions (Fig. 3a). However, RefHiC is notably
more robust to sequencing depth, with a decrease of only 22% from
IMR90 to K562, compared to 34–66% for other tools.

Cohesin-depleted HCT-116 cells are expected not to contain any
loop. Indeed, RefHiC, Peakachu, and Mustache made fewer than 24
loop predictions on this data, whereas Chromosight and HiCCUPS had
many more likely false positives.

For the mESC data, which contains only 124M valid read pairs, we
used the same RefHiCmodel trained fromhuman GM12878, but with a
mouse reference panel made of 20 mouse Hi-C data sets (Supple-
mentary Table 2). Applied to the complete set of autosomes, RefHiC
identified more than twice as many loops as any other tool, indicating
that it is much more sensitive than other tools on low-coverage data.

We then assessed these tools’ accuracy using loops revealed by
orthogonal experiments. As before, we included the top 1700 predic-
tions on test chromosomes from each tool by adjusting FDR or loop
score cutoff. For K562 data, as shown in Fig. 3b, c, RefHiC out-
performed other tools as it identified more CTCF- and RAD21-
supported loops. The pileup analysis of CTCF binding sites around
predicted loop anchors (Fig. 3d) shows occupancy 25% higher for
RefHiC than for Peakachu and Mustache, and 51% higher than for
Chromosight and HiCCUPS. Similar results are obtained on IMR90
data (Fig. 3e, f), although its very high coverage enables competing
approaches to get somewhat closer to RefHiC’s performance. For the
mESC data, Fig. 3g, h indicates that RefHiC outperformed alternative
tools significantly as it detected as twice as many CTCF-supported
loops as alternative tools and its loop anchor predictions are more
strongly enriched for CTCF binding sites than other tools. To further
study the ability of RefHiC to identify loops in samples that are very
different from those present in its reference panel, we generated
reference panels excluding samples that are closely related to study
sample GM12878, or even entirely unrelated (e.g., from the incorrect
chromosome). Supplementary Note 4 and Supplementary Fig. 14 show
that RefHiC performs comparably or better than other tools even
under this less favorable scenario. Together, the results show that
RefHiC achieves superior performance across both human andmouse
cell types.

Fig. 3 | Loop detection in Hi-C data from human K562, IMR90, and cohesin-
depletedHCT-116 cells, as well asmouse ESC. aNumber of loops identified in Hi-
C datasets obtained in each data set (human data: test chromosomes 15–17 only;
mouse data: all autosomes). Note that in HCT-116, one would not expect any
cohesin-mediated loops. b, c Number of ChIA-PET/HiCHIP-supported loop pre-
dictions, among the top predictions made by RefHiC and other tools on K562 Hi-C

data, for test chromosomes chr15-17, compared against CTCF (b) and RAD21 ChIA-
PET (c) data.dOccupancy of ChIP-seq identifiedCTCF binding sites in K562 cells as
a function of distance to predicted loop anchors. e, f Same as (b, d), but for data
obtained in IMR90 cells. g, h Same as (b, d), but for data obtained in mESC (all
autosomes).
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RefHiC is robust to sequencing depths
To benchmark RefHiC’s ability to detect loops from Hi-C data at dif-
ferent sequencing depths,we produced downsampled versions a high-
coverage GM12878 Hi-C combined contactmap4 and applied different
loop prediction tools (default parameters; FDR cutoff 0.05 when
possible). Although lower sequencing depths led to fewer loop pre-
dictions for all tools (Fig. 4a), RefHiC was most robust to sequencing
depths. For example, RefHiC identified 731 loops from low coverage
Hi-C data (62.5M contact pairs)—32% of the results obtained from
2000M contact pairs. In contrast, other tools are largely unable to
make sensitive loop predictions at this low sequence depth. Figure 4b
shows that RefHiC detected highly concordant sets of loops across
sequencing depths: ~85%of loops annotated fromHi-C data containing
1000M, 500M, and 250M contact pairs overlapped those annotated
from the 2000M contact pairs data set. This percentage was even
higher (90%) on low-depth Hi-C data (i.e., 125M, and 62.5M contact
pairs). This shows that not only is RefHiC capable of detecting a good
number of loops in low-coverage data, but it also does not introduce
significantly more false positives. Figure 4c–f confirm that RefHiC
predictions on low-depth data sets maintain a very high level of
accuracy when evaluated against loops mediated by CTCF, RAD21,
SMC1, andH3K27ac. In short, thismeans thatpredictionsmadeon low-
coverage data are nearly as specific as those made on the full data, but
are simply less sensitive. At all sequencing depths, RefHiC achieved
higher accuracy than alternative tools (Supplementary Fig. 4). This
superior robustness, accuracy, and reliability is attributable to the use
of reference panel.

RefHiC identifies both rare and common loops
Since RefHiC uses a reference panel to complement data from the
study sample, onemay expect that it performs best on common loops
(i.e., those present in a large number of cell types from our reference
panel). To determine the prevalence of each loop, we ran Mustache
and Chromosight on our reference samples and merged their predic-
tions (allowing a 2-bin shift; the two tools failed on 10of the 29 samples
as one or both detected less than 10 loops, leaving a total of 19 samples

annotated). We then assessed the frequency at which loops predicted
by RefHiC on GM12878 were found in the 19 reference samples. The
distribution of reference panel frequencies among loops predicted by
RefHiC resembled that of Peakachu, Mustache, and Chromosight
(Fig. 5). For all these tools, the majority of highest-scoring loops were
found to be present across nearly all samples, suggesting that con-
stitutive, non-cell-type specific loops have features that make them
easily predictable. Still, more than 20% of loops predicted by RefHiC
are rare (found in at most 5 of the panel data sets), and 4% are specific
to GM12878, demonstrating that the use of a reference panel does not
strongly bias the results in favor of common loops. Still, those pro-
portions are slightly lower than those obtained with the three other
tools, which could be explained by a combination of a weak bias
toward common loops for RefHiC, and an increased false-positive rate
(which usually will appear as cell-type specific loops) for the other
tools. Indeed, the number of GM12878-specific loop predictions that
are supported by experimental data is actually comparable across
tools (Supplementary Fig. 9). Peakachu identified more cell-type spe-
cific validated loops than other tools, but with a lower specificity than
RefHiC. Among loops found to occur at least once in the panel, RefHiC
gets more ChIA-PET/HiCHIP-supported predictions than alternative
tools (Supplementary Fig. 9e, g–t), except that Peakachu identified
more H3K27ac HiCHIP-supported loops (Supplementary Fig. 9f).
Finally, loops predicted by HiCCUPS were very different, containing
moreofwhat looks likeGM12878-specific loops (i.e., loops absent from
the reference panel), many of which are likely false-positives.

RefHiC accurately detects TADs
RefHiC is a versatile framework for topological structure annotation.
Hereweshow that RefHiC candetectTADsonce trainedusing as target
values RobusTAD TAD boundary scores obtained on a high-coverage
HiC data set (see “Methods”).We first comparedRefHiC’s performance
on downsampled versions of a GM12878 Hi-C contact map to that of
two established TAD boundary predictors (RobusTAD11 and insulation
score10). Figure 6a, b and Supplementary Fig. 15 show that at 500M
valid read pairs, RefHiC and RobusTAD succeed at identifying a similar

Fig. 4 | Detection of loops at lower sequencing depths. a Number of loops
predicted by different tools at 5% FDR, for decreasing number of valid intra-
chromosomal read pairs. b Venn diagram of loops predicted from Hi-C data of
different sequencing depths by RefHiC. c–f Number of RefHiC loop predictions

supported by experimental GM12878 ChIA-PET/HiCHIP data (test chromosomes
chr15-17) at different levels of sequencing coverage: CTCF ChIA-PET (c), RAD21
ChIA-PET (d), SMC1 HiCHIP (e), H3K27ac HiCHIP (f).
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total number of CTCF-supported TAD boundaries, although RefHiC’s
specificity is much higher considering that its total number of pre-
dictions (at 5% FDR) is approximately 40% less than with RobusTAD.
Supplementary Figs. 10 and 11 show that at very low coverage (125M
and 62.5M valid read pairs), RefHiC achieves both higher sensitivity
and specificity. In all cases, both RefHiC and RobusTAD outperform
Insulation score.

We then benchmarked RefHiC against 13 TAD callers (TopDom31,
Armatus32, deDoc33, Arrowhead4, HiTAD34, EAST35, OnTAD36, CaTCH37,
Grinch18, Domaincall38, GMAP39, HiCSeg40, and IC-Finder41) on test
chromosomes 15–17. Because there is no universally accepted gold-
standard TAD annotation to compared against, we evaluated various
aspects of the predictions made by the different tools. We first com-
pared the number and size of TADs identified by each tool (Fig. 6c, d).
Although the number varies from 347 to 3499, most tools (including
RefHiC) identified 1000–1500 TADs, withmedian TAD size around 130
kb for RefHiC. TADs are domains with high levels of internal interac-
tion, so one measure of TAD annotation quality is the average
observed/expected ratio within TADs (Fig. 6e). RefHiC’s TAD predic-
tions are among the densest in interaction frequencies. We then cal-
culated the enrichment for ChIP-Seq signals of structural proteins
known to be associated with TAD boundaries (i.e., CTCF, RAD21, and
SMC3)8 at predicted TAD boundaries and nearby (Fig. 6f and Supple-
mentary Fig. 16). Based on this metric, RefHiC is only outperformed by
Arrowhead,which identifies 3 times fewer TADs.Histonemarks usually
correlate with regulatory activity, and most TADs are typically enri-
ched for either activation (H3K36me3) or repression (H3K27me3)
marks, but rarely both. We calculated the ratio between H3K27me3
and H3K36me3 within each TAD prediction and counted the fraction
of TAD predictions where this ratio was particularly large or small (see
“Methods”). RefHiC is among the top three TAD callers under this
metric (Fig. 6g), only bested by tools that predict a much smaller
number of TADs (Arrowhead and CaTCH). Many TADs in mammalian
genomes exhibit a strong contact between their left and right
boundary loci, forming a visible TAD corner; they are often referred to
as loop domains. We compared predicted TAD corners against CTCF

ChIA-PET data (Fig. 6c). RefHiC is the best-performing tool, with 556
(36.5%) TADs corners supported by CTCF ChIA-PET data (allowing
1-binmismatch). Finally, we evaluated the prediction reproducibility at
both the boundary and full TAD levels when TAD callers are applied to
Hi-C data containing different numbers of valid read pairs. RefHiC
proved much more robust than other tools at the TAD boundary
prediction task (Fig. 6h) and better than most (but slightly worse than
GMAP and HiCSeg) at the full TAD prediction task (Fig. 6i). This last
observation is likely is due to the fact that pairing predicted TAD
boundaries to obtain full TAD predictions is a step that does not cur-
rently take advantage of RefHiC’s reference panel.

Discussion
Here we present RefHiC, a deep learning framework that utilizes a
reference panel to guide the annotation of topological structure from
a given study sample. In contrast, existing topological structure
detection algorithms are study-sample based (i.e., reference-free)
detectors and hence their ability to reliably detect topological struc-
tures from typical sequencing depthHi-C data is limited. Our extensive
evaluation demonstrated that RefHiC outperforms existing tools for
both TAD and loop annotations, in data sets ranging from very high to
very low sequencing coverage, with the most striking improvements
observed in the latter case. This benefit comes at little cost in terms of
RefHiC’s ability to identify cell-type specific loops.

Importantly, although RefHiC is a machine-learning-based
model trained primarily on GM12878 Hi-C data, the same trained
model is effective on different cell types, at different levels of cov-
erage, and across human and mouse. Indeed, all results reported
here for loop prediction were obtained with the same trained model,
which is available in our GitHub repository. This model can be used
for mammalian Hi-C data analyses without retraining. Retraining
would only be needed if other types of structures are sought, or if the
experimental protocol used to generate the study sampled differed
significantly from the standard in situ Hi-C protocol. In such cases,
RefHiC would require retraining but would still be able to take
advantage of our Hi-C reference panel, i.e., the reference panel does

Fig. 5 | Comparison of tools’ ability to identify rare and common loops. Loop frequency within the reference panel is assessed based onMustache and Chromosight’s
predictions on individual reference Hi-C data sets.
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not need to be of the same type as the study sample. However,
applying RefHiC to Hi-C data obtained from other species might be
more challenging, due to the lacking of reference samples, than
reference-free alternative tools.

Our method has several methodological contributions. The key
innovation of RefHiC is the introduction of a Hi-C reference panel. Our
attention-based framework enables RefHiC to identify and take
advantage of the reference samples that exhibit similar local structures
as the study sample at the locus pair of interest. This approach based
on local similarity significantly outperformed an analogous approach
based on global similarity (Supplementary Note 5). Besides, we intro-
duced contrastive pretraining42 and data augmentation by down-
sampling Hi-C contact map techniques to train a single model capable
of handling Hi-C data of different sequencing depths. We believe this
training procedure can improve many machine learning applications
for Hi-C data analysis12,43–45.

In principle, reference-based approaches such as RefHiC have the
potential of becoming increasingly accurate as larger compendia of

high-quality Hi-C data sets obtained from diverse cell types become
available and get included in the panel. However, our analyses (Sup-
plementary Fig. 12) suggest that limited benefits for the analysis of
GM12878 data are obtained beyond a panel consisting of 10 high-
coverage data sets. However, we expect that this observation is
dependent on the origin of the study sample of interest, and RefHiC’s
performance on study samples that are divergent from the cell types
represented in the panel would certainly benefit from additional, clo-
ser reference samples.

RefHiC could potentially be improved in several directions.
Expanding the reference panel could improve prediction accuracy, but
this is challenging memory-wise with our current implementation. In
addition to further software optimization, we will develop high-
diversity panels that will aim to capturemost of the structural diversity
through a moderate number of Hi-C data sets. In addition, we can
potentially extend RefHiC to analyze data at an even higher resolution
(e.g., 1 kb), although this too would require optimizing data handling
to limit the memory footprint and IO time.

Fig. 6 | Detection of TAD boundaries and TADs on GM12878 Hi-C data. a TAD
boundary pileups for left boundaries predicted by RefHiC. bNumber of predicted left
TAD boundaries supported by ChIP-seq identified CTCF binding sites (positive strand
only), for RefHiC, RobusTAD, and Insulation score. c–i Benchmarking RefHiC against
13 other TAD callers on TAD annotation. c Number of TADs predicted by different
tools, and proportion of predicted TAD boundary pairs that are supported by CTCF
ChIA-PET data. Size (d), and mean interaction frequency (observed/expected) (e) of
TADpredictions. Thenumber of TADsused to generatedboxplots are provided in (c).
In each box, the upper edge, central line, and lower edge represent the 75th, 50th, and

25th percentile, respectively. Upper whiskers represent 75th percentile + 1.5 ×
interquartile range (IQR), lower whiskers represent minimum values, and dots
represent samples above the 75th percentile + 1.5 × IQR. f Enrichment of CTCF, RAD21,
and SMC3peak signals at TADboundaries.g Fraction of TADs predicted by each caller
with a significant (high or low) H3K27me3/H3K36me3 log10-ratio (FDR<0.1). Jaccard
index of predicted TAD boundaries (h) and Concordance between TADs (i) predicted
on high-coverage GM12878 data (2B valid read pairs) compared to those predicted on
downsampled Hi-C data. Note: a–g are based on a downsampled GM12878 Hi-C data
set that containing 500M valid read pairs).
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Across the different sub-fields of data-driven biology, major leaps
forward have taken place when researchers have developed approa-
ches that enabled the analysis of one data set to benefit from the
availability of other published data sets. RefHiC is an approach to
enable this type of reference-panel-based analysis of 3D genomics
data. It enables high-accuracy annotation of Hi-C data sets even at
moderate sequencing coverage, and boosts the accuracy of the ana-
lysis of even the most deeply sequenced data sets. RefHiC and other
approaches of its kind have the potential to become an essential
method for topological structure annotation from Hi-C contact maps,
paving the way to further our understanding of 3D genome organiza-
tion and functional implications. With the increasing availability of
high-quality Hi-C data sets from diverse cell types, we anticipate that
the power of RefHiC will further develop.

Methods
RefHiC model architecture
The RefHiC network consists of three parts (see Fig. 1 and Supple-
mentary Fig. 13): (i) an encoder, (ii) an attentionmodule, and (iii) a task-
specific head. The encoder takes an input of dimension
(2 ×w + 1) × (2 ×w + 1) × 2, where w is the window size (w = 10 in loop
annotation, w = 20 in TAD boundary annotation) and projects the
input to a d-dimensional embedding (d = 64). It is built with one ReLU-
activated convolution layer with kernel size three and two ReLU-
activated fully connected layers with d hidden units in each layer. In
forward pass, the encoder computes an embedding es 2 R1 ×d for the
study sample and ½e1,e2, . . . , en� 2 Rn×d for the n reference samples.
The attention module takes as input the embeddings for both the
study and reference samples and outputs a 2 R1 ×d that contains
topological structural information learned from the reference panel.
The layer-normalized study sample’s embedding is used as query
(Q 2 R1 ×d) against the layer-normalized reference samples’ embed-
dings, which are used as both keys (K 2 Rn×d) and values (V 2 Rn ×d).
We define the attention weights α = softmaxðQKT Þ 2 R1 ×n, where αj
represents the relative amount of attention paid to sample j in our
reference panel when analyzing the study sample. The attention out-
put a is computed as,

a= softmax ðQKT ÞV+MLPattnðsoftmax ðQKT ÞVÞ ð1Þ

where MLPattn has ReLU-activated fully connected layers with two
hidden layers, and each layer contains d hidden units. Finally, the
head is a task-specific predictor (either for loop or for TAD
boundary prediction) with 2 hidden layers containing 2d and d
hidden units. It has one sigmoid-activated output unit for loop
prediction and two tanh-activated output units for TAD boundary
prediction. Both tasks use the concatenation of the study sample’s
embedding es and attention output a as input. For loop prediction,
it outputs a value indicating loop probability. For TAD boundary
prediction, it outputs two values corresponding to left and right
boundary scores. To make predictions, we apply RefHiC to each
entry in the upper triangular contact matrix to compute loop
probabilities, and each entry on the main diagonal to compute
TAD boundary scores.

Detecting loops by density-based clustering
Applied to the window centered around each bin pair (i, j) (a.k.a pixel),
RefHiCproduces a loopprobability scoreL(i, j). PixelswhereL(i, j) > 0.5
are called loop candidates. Candidate (i, j) is called an isolated predic-
tion if there are less than six candidates within a 5-bin by 5-bin square
centered at (i, j). We excluded all isolated predictions as they are likely
to be false positives. We then grouped the remaining candidates into
clusters using a density-based clustering algorithm46. We first com-
puted local density ρ(i, j) for candidate (i, j) by convolving scoreswith a
Gaussian kernel over candidates ði0,j0Þwheremin f∣i0 � i∣,∣ j0 � j∣g≤ 5.We

then calculated δ(i, j) as the minimum Chebyshev distance between
candidate (i, j) and any candidate ði0,j0Þ with higher density. For can-
didates (i, j) with the highest local density, we defined it as
δ(i, j) = δmax, where δmax is a large constant. We used a KD-tree data
structure to facilitate the fast computation of δ(i, j). We discarded
candidates with δ smaller than five since they were more likely to be
redundant annotations. Among the remaining candidates, we then
used a target-decoy search approach to find cluster centroids by
identifying candidates with high local density. Given a study sample
Hi-C contact map, we created a decoy contact map by permuting
interaction frequencies diagonal-wise, applied RefHiC to detect loop
candidates in the decoy contact map, and calculated ρ and δ for loop
candidates in the decoy contact map. We then sorted candidates
predicted from the study and decoy samples based on local density
(ρ) and selected the top candidates while keeping the false discovery
rate (FDR) at α = 0.05. Last, we assigned the remaining candidates to
their nearest clusters and chose as a loop the highest local density
candidate in each cluster.

Detecting TAD boundary by peak finding
RefHiC annotates right and left TAD boundaries separately. To anno-
tate discrete right boundaries, we represented right boundary scores
produced by RefHiC as sequential data and annotated boundaries by
finding peaks using the find_peak function in SciPy47. When selecting
TADs, we used the target-decoy search approach to find the height
(i.e., score cutoff) parameter in find_peak. We also set the minimum
distance between peaks to 5 to exclude locally redundant TAD
boundaries. We applied the same steps to annotate left boundaries
from left boundary scores. Like TopDom and GMAP, we annotate a
region starting from a left boundary li and ending at a downstream
right boundary rj (rj is on the left of or identical to li+1) as a TAD. We
allow a left boundary pairs with multiple right boundaries. This pro-
duces nested TADs.

Feature vector and training data
RefHiC’s feature vector is defined as a tensor with two channels
(observed interaction frequency and observed/expected ratio) in
the shape of 2 × (2 ×w + 1) × (2 ×w + 1), corresponding to the win-
dow of size 2w + 1 centered at the pixel of interest. w is a hyper-
parameter set to w = 10 for loop annotation and w = 20 for TAD
boundary annotation at 5 kb resolution. We trained RefHiC with Hi-
C contact maps downsampled from the combined GM12878 Hi-C
contact map4.

For loop annotation, following Salameh et al.12, we used as gold-
standard (i.e., positive training cases) a set of long-range loops iden-
tified by either ChIA-PET on CTCF25 or RAD2126, as well as by HiCHIP on
SMC127 or H3K27ac28. Using multiple experimental data sets ensures a
broad coverage of various types of loops. We binned interactions at
5 kb resolution and removed duplicates and any contact pairs with a
distance shorter than 50 kb or longer than 3Mb, resulting in 74,855
interactions used as positive cases for loop annotation.We created the
negative set by selecting non-loop pairs of different types: (i) We
randomly drew 50,000 contact pairs, excluding contact pairs with
Chromosight scores greater than 0, while preserving the distance
distribution between positive loop anchors, (ii) to increase the repre-
sentation of long range negative examples, we randomly selected
10,000 long range (1 ~ 3Mb) pairs, most cases of (i) and (ii) are non-
loop pairs in all samples. The negative set does not contain enough
data representing pairs of loci that do not form a loop in the study
sample, but do in some of the reference samples. Thus, we select
examples (iii) from pairs identified as loops in one or more reference
samples: we applied Chromosight and Mustache with default para-
meters on all samples in the reference panel to annotate loops, mer-
ging annotationswhile excludingduplicates (allowing 1-binmismatch).
Last, we merged the loop annotations of all reference panel samples
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(allowing 2-bin mismatches) and kept only annotations that (i) were
present in at least 5 reference samples, but (ii) were absent (Chromo-
sight score less than 0) in GM12878, obtaining 170,283 negative pairs.
Overall, the entire set contains 74,855 unique positive and 256,609
unique negative examples.

For TAD boundary annotations, we first applied RobusTAD on the
combinedGM12878Hi-C contactmap and reference samples to obtain
TAD boundary scores and identified boundaries. By merging TAD
boundaries that were identified from all samples while excluding
duplicates (allowing a 2-bin shift), we collected 48,945 loci. We then
selected another 54,464 loci by picking one locus every five bins along
every autosome. We define the targets for the 103,409 examples as
RobusTAD scores from the combined GM12878 Hi-C data. In addition,
we created another 103,409 examples at the same loci by using fea-
tures from a shuffled GM12878 Hi-C contact map and the corre-
sponding RobusTAD scores as targets. In total, there are 206,818
examples.

Model training and evaluation
The model was trained, evaluated, and tested on contact maps
downsampled from the combined GM12878 Hi-C data. During model
development, we used chr11 and chr12 for validation, chromosome
15–17 for testing, and the rest of autosomes for training. For loop
prediction, the dataset contains 260,940 training, 34,174 validation,
and 36,350 test examples. For TAD prediction, the dataset contains
164,458 training, 22,449 validation, and 19,911 test examples. RefHiC
takes feature vectors from the study and reference samples as input
in the forward pass. To reduce training computation, we sampled 10
reference samples for each example in each epoch independently.
During evaluation, we used all samples in the reference panel. For
both TAD and loop models, we trained models with a batch size of
1024 for 1000 epochs on an RTX6000 GPU and used AdamW
optimizer48 (weight_decay = 0.1; learning rate = 1e−3).We selected the
learning rate that yields the highest validation accuracy in our grid
search and used early stopping to prevent overfitting. In the first 5
training epochs, we warmed up the learning rate from 0 to the initial
learning rate (i.e., 1e−3) and then reduced the learning rate to 1e−6 in
the first 95% epochs using the cosine annealing learning rate sche-
duler. In addition, we used dropout (rate = 0.25), batch normal-
ization, and layer normalization to regularize network training. We
trained the TAD boundary model with MSE loss, and the loop model
with focal loss �ð1� ptÞγ log ðptÞ (γ = 2)49. To handle various sequen-
cing depths in a single model, which many existing machine learning
applications in Hi-C data analysis are unable to do43,44, we performed
data augmentation by downsampling Hi-C contact maps during
training. This transformation preserves topological structures in Hi-C
data. However, a Hi-C contactmap is too large, and downsampling on
the fly is infeasible. We downsampled Hi-C training data and stored
them on disk in advance. During training, we randomly selected one
contact map from these downsampled contact maps for each train-
ing example in each epoch independently. This operation seamlessly
worked as a data augmentation by downsampling Hi-C contact map
operator during training.

Contrastive pretraining
We pre-trained the encoder by supervised contrastive learning42

using Hi-C contact maps downsampled from the combined GM12878
Hi-C data. For each training example, we defined items extracted
from the downsampled contact maps at the sample locus as similar
items and all Hi-C contact map submatrices in the same batch
with different labels as negative items. We aimed to train the encoder
such that the distances of embeddings for a training example and
its similar items are as close as possible while of embeddings
between a training example and its negative items are as far as
possible. Following ref. 42, we defined the loss for training instance

i as cross-entropy with in-batch negatives

li = � log
esimðhi ,h

+
i Þ=τ

P
j≠ie

simðhi ,h
�
j Þ=τ

ð2Þ

where hi, h
+
i , and h�

j are embeddings: hi represents item i, h+
i repre-

sents one of item i’s similar items, h�
j represents an item with a label

different from i (i.e., negative item). τ is a temperature that controls
training, and we set it as 1. We pre-trained the encoder for 20 epochs
with the LARS algorithm50 using Adam as a base optimizer. We set
batch size to 512 and learning rate to 0.1 during training.

Hi-C data downsampling
We downloaded the combined Hi-C contact map (.mcool file) for
GM12878 cells from 4DN Data Portal (https://data.4dnucleome.org).
We downsampled the combined Hi-C contact map to train RefHiC
and evaluate sequencing depths’ impact on annotating topological
structures. We did bilinear downsampling with the downsample
function provided in FAN-C51 from the combined Hi-C contactmap to
get a series of downsampled data until reaching at ~62M valid
read pairs.

Loop detection with Chromosight, Peakachu, Mustache, and
HiCCUPS
We used a variety of loop prediction tools to benchmark against
RefHiC. They are executed as follows. Chromosight: We applied the
program to each Hi-C contact map with parameters ‘detect -p 0.2’ to
detect loops, sorted detected loops according to scores, and selected
the top loops from our test chromosomes. Peakachu: We trained dif-
ferent models for different sequencing depths on GM12878 Hi-C data
using our training and validation examples. To match RefHiC, we set
the width parameter to 10 and other parameters as default values. We
applied the trained models to Hi-C contact maps, adjusted the prob-
ability threshold in its pool function to identify loops, sorted loop
annotations, and included top loops from test chromosomes as its
predictions.Mustache: We used the program by adjusting ‘-pt’ and ‘-st’
to detect at least 1700 loops on our test chromosomes, sorted and
selected top loops according to FDR. HiCCUPS: We converted .mcool
to .hic files at 5 kb resolution using the ‘pre’ function provided in
Juicer52. We applied HiCCUPS by adjusting the ‘-f’ parameter to detect
at least 1700 loops on our test chromosomes, sorted and selected top
loops according to FDR (obtained as the product of FDR for different
filters) as HiCCUPS’ prediction. To evaluate the performance of the
recommended setting of each tool, we also applied them to annotate
loops with their recommended parameters and set FDR as 5% when-
ever possible.

TAD detection with alternative tools
Weused a variety of TADcallers to benchmark againstRefHiC. All tools
take .mcool file or files coverted from .mcool file as input. We ran
TopDom, Armatus, Arrowhead, EAST, CaTCH, Domaincall (DI), GMAP,
ICFinder, and HiCSeg as suggested in ref. 8. We have updated para-
meters to reflect that we were analyzing data at 5 kb resolution, as
needed. We ran HiTAD and deDoc with their default settings. OnTAD:
We set maxsz = 600 to allow OnTAD to detect TADs as large as 3Mb.
Grinch: following Lee and Roy18, we detected TADs by setting the
expected TAD length as 2Mb, 1Mb, and 500 kb in three runs and
combined all results. Supplementary Table 4 contains parameters that
we used to execute each TAD caller.

We also comparedRefHiC’s boundary prediction to twoboundary
prediction tools. We reimplemented RobusTAD in Python (https://
github.com/zhyanlin/RobusTAD)53 and used Insulation score (IS)
function in cooltools54 in our study. Both take a .mcool file as input.We
used RobusTAD to calculate TAD boundary scores and identified
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boundaries with default parameters. We ran IS with win = 10 to detect
TAD boundaries. As IS only detected insulating bins, to assign
boundary orientation (i.e., left vs right), we used RobusTAD’s left and
right boundary scores to classify IS annotations.

Enrichment analysis of structural proteins and Histone-3 marks
at predicted TADs
Tocompare theperformanceofTADcallers,weusedanestablishedTAD
caller benchmarking scripts8 to study Histone-3 marks and structural
proteins enrichment inside TADs or at TAD boundaries. Briefly, we
downloaded ChIP-Seq peak files for CTCF (ENCFF796WRU), RAD21
(ENCFF662DRZ), SMC3 (ENCFF887CRE), H3K36me3 (ENCFF171MDW),
and H3K27me3 (ENCFF039JOT) from ENCODE26. For structural protein
enrichment, we counted the average number of peaks per 5-kb intervals
within the regions flanking predicted TAD boundaries (±500kb). Next,
we computed the fold-change as the average peaks in a narrow interval
surrounding a boundary (±10 kb) over the average peaks coverage at
distant flanks (±400–500kb). For Histone-3 marks enrichment analysis,
we split TADs into 20kb intervals, summed ChIP-Seq signals inside each
interval, computed the log10-ratio of H3K27me3 and H3K36me3 signals
(LR), and obtained the average LR for eachTAD.We then shuffled the LR
values ten times to compute an empiricalp-value forwithin-TADLRs and
corrected the p-value with the Benjamini–Hochberg procedure to select
TADs with significant preference for high or low ratios (FDR≤0.1). To
compare TAD partitions, following Zufferey et al.8, we used theMeasure
of Concordance (MoC), which ranges from 0 (absence of concordance)
to 1 (full concordance) and is defined as follows,

MoC ðP,QÞ=
1 if NP =NQ = 1

1ffiffiffiffiffiffiffiffiffi
NPNQ

p
�1

PNP
i = 1

PNQ

j = 1
∣Fi,j ∣

2

∣Pi ∣∣Qj ∣
� 1

� �
otherwise

8<
: ð3Þ

where P = {Pi}, andQ = {Qi} are sets of TADs including NP and NQ TADs,
Fi,j is the overlap region between Pi and Qj, and ∣ ⋅ ∣ represents car-
dinality. MoC does not handle nested TADs, thus we only included
TADs without any smaller TAD in this analysis.

Enrichment analysis of transcription factors and histone mod-
ifications at loop anchors
We downloaded ENCODE ChIP-Seq peak files for 122 TFs and 11 his-
tone modifications in the GM12878 from the UCSC genome
browser26,55 and calculated occupancy fold changes for each TF at
loop anchors. We first created a list of unique loop anchors inferred
by each tool. For each TF, we counted the number of anchors that
overlapped with at least one binding site. We denoted this value as
the target. For each chromosome, we randomly created 100 control
sets of anchors from the whole genome excluding blacklisted
regions26. The number of anchors in each control set equals the
number of loop anchors in the target set. We then computed the
expected overlaps as the mean of overlaps between each control set
and the TF’s binding sites. Last, we computed fold change as the ratio
between the target and the expectation calculated based on
control sets.

Hi-C reference panel
Human reference panel: We downloaded Hi-C sequencing data from
the GEO repository and processed them with distiller (https://github.
com/open2c/distiller-nf). Briefly, we used bwa mem56 to map reads to
hg38 with option ‘-SP’ and processed the aligned reads with pairtools
(https://github.com/open2c/pairtools) to remove duplicates and low-
quality read pairs (MAPQ< 10). We then created and normalized con-
tactmatrices at 5 kb resolutions using cooler57 and saved contactmaps
in .mcool files. Last, we converted these .mcool files into the .bcool file
format using cool2bcool function provided in RefHiC. The .bcool

format represents aHi-C contactmap as a bandmatrix and enables fast
random access to square submatrices. Supplementary Table 1 lists all
Hi-C data sets included in the human referencepanel.Mouse reference
panel: We downloaded 20 Hi-C contact maps from 4DN Data Portal
(https://data.4dnucleome.org) and processed them as for human.
Supplementary Table 2 lists all Hi-C data sets included in the mouse
reference panel. Our distributed reference panels contain the afore-
mentioned reference samples. In our experiments, we excluded sam-
ples that belong to the study sample’s cell type from the reference
panel to prevent potential data leakage.

RefHiC implementation
RefHiC is a Python program available at https://github.com/
BlanchetteLab/RefHiC. We implemented the neural network with the
PyTorch library58, and the filtering components for TAD and loop
selection with libraries including Pandas59, SciPy, and NumPy60. Using
RefHiC to predict loops or TAD boundary scores requires loading data
from the study and reference Hi-C contact maps. To reduce memory
usage, we extended the Cooler57 library by implementing a band
matrix representation for a contactmap and a square function to fetch
contact pairs in a given square region and used it to read Hi-C contact
maps. ReHiC canmake predictions on both CPU and GPU, but is much
faster on the latter. RefHiC requires at least 3GB free space for saving
reference panel data and at least 12GB RAM for loading reference
samples during prediction. We tested RefHiC to annotate TAD
boundaries and loops using 20 CPU threads and an RTX6000 GPU.
RefHiC calculated TAD boundary scores for whole genome annotation
at 5 kb resolution in 30min. It is impractical and unnecessary to cal-
culate loop scores for all pairs of loci. RefHiC only computes loop
scores at bin pairs located within 3Mb and for which at least one read
pair is observed. Thus, the loop annotation running time depends on
the study contact map. For instance, it annotates Hi-C data containing
500M valid read pairs in 275 min and Hi-C data containing 250M valid
read pairs in 180min.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding
author upon reasonable request. All data used in this study are publicly
available and their reference numbers are listed in Supplementary
Tables 1, 2, and 3. Hi-C contact maps were obtained from 4DN data
portal with the following accession code: 4DNFIXP4QG5B (GM12878),
4DNFI4DGNY7J (K562), 4DNFIJTOIGOI (IMR90), 4DNFILP99QJS (HCT-
116), and 4DNFIDA2WGV8 (mESC). ChIP-Seq data were obtained from
the ENCODE portal with the following accession code: ENCFF796WRU
(GM12878 CTCF), ENCFF039JOT (GM12878 H3K27me3), ENCFF662DRZ
(GM12878 RAD21), ENCFF171MDW (GM12878 H3K36me3), ENCFF887
CRE (M12878 SMC3), ENCFF508CKL (mESC CTCF), ENCFF203SRF (IMR-
90 CTCF), ENCFF119XFJ (K562 CTCF). The CTCF ChIA-PET for IMR-90
were obtained from ENCODE with accession code ENCFF682YFU. The
CTCF ChIA-PET for mESC were obtained from ENCODE with accession
code ENCFF550QMW. The RAD21 ChIA-PET for GM12878 were obtained
from ENCODE with accession code ENCLB784HEF. The CTCF ChIA-
PET for K562 were obtained from ENCODE with accession
code ENCFF001THV. The RAD21 ChIA-PET for K562 were downloaded
from the GEO repository with accession code GSM1436264. The
H3k27acHiChIPdata forGM12878wereobtained from ref. 28. The SMC1
HiCHIP data for GM12878 were obtained from ref. 27. The CTCF ChIA-
PET data for GM12878 were obtained from ref. 25. Experiment results
and intermediate data generated in this study have been deposited in
the zenodo repository with https://doi.org/10.5281/zenodo.713319461.
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Code availability
Software and documentation available at https://github.com/
BlanchetteLab/RefHiC or at this https://doi.org/10.5281/zenodo.
732466962. All scripts required to reproduce figures and analyses are
available at https://doi.org/10.5281/zenodo.713319461.
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