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Abstract
Purpose of Review Inhibition of receptor activator of nuclear factor kappa-B ligand (RANKL) with denosumab is an effective
treatment in a number of conditions including osteoporosis where suppression of bone resorption is desired. However,
denosumab discontinuation is associated with rebound increase in bone resorption and subsequent loss in bone mass and a rapid
return to baseline fracture risk. We review recent data on the rebound increase in bone resorption following denosumab
discontinuation and the potential mechanisms behind this phenomenon.
Recent Findings Osteoclasts have been considered to be highly specialised cells that undergo apoptosis after fulfilling their
function of bone resorption. However, recent studies suggest that osteoclasts are longer lived cells which migrate through
vasculature and are capable of undergoing fission into a novel cell type (the osteomorph) and re-fusion in a process termed
osteoclast recycling.
Summary The life cycle of the osteoclast is more complex than previously appreciated. Osteoclast recycling provides a novel
mechanistic framework to examine changes in osteoclast biology in response to treatment of bone diseases and provides an
exciting new avenue towards personalised medicine.
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Introduction

The human skeleton is constantly turning over in a tightly
regulated process known as bone remodelling. Bone remod-
elling occurs at a cellular level within a microscopic unit
known as the basic multicellular unit (BMU), which consists

of osteoblasts and osteoclasts coupled together on the bone
surface, interacting through cell-to-cell contact and local
and systemic cytokine networks, to regulate bone resorp-
tion and formation and maintain bone homeostasis [1].
Several bone diseases, such as osteoporosis, lead to an im-
balance in bone remodelling resulting in net increase in
bone resorption and subsequent bone loss. The osteoclast
is the primary cell responsible for bone resorption and
therefore has been the therapeutic target for several agents
directed towards inhibiting bone resorption and increasing
bone mass. Historically, osteoclasts have been thought to
undergo apoptosis following completion of bone resorp-
tion. Alternative osteoclast cell fates such as fission had
been postulated but were unable to be confirmed until re-
cently. Advances in lineage tracing, single cell RNA se-
quencing and imaging technologies have challenged this
long-held dogma. This review will briefly outline the his-
torical life cycle of the osteoclast, from formation to fate.
We will then focus on how recent discoveries have uncov-
ered an increased life cycle and a novel cell fate, namely
osteoclast recycling, and the relevance of this discovery to
current and emerging therapies targeting bone resorption.
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Osteoclast Formation and Function

The osteoclast is a highly specialised, multinucleated,
tissue-specific macrophage responsible for bone resorp-
tion. Bone resorption by the active osteoclast occurs
through the development of an acidic environment in
which H+ ions are transported via proton pumps [2]
and lytic enzymes tartrate resistant acid phosphatase
(TRAP) and cathepsin K [3] are released into the re-
sorption compartment. This dissolves hydroxyapatite
and allows enzymatic degradation of the bone matrix
proteins which are then phagocytosed by the osteoclasts
and excreted [4]. Osteoclasts differentiate from mono-
cyte precursors at or near the bone surface. Three mol-
ecules: receptor activator of nuclear factor kB ligand
(RANKL) and its receptor RANK, and the decoy recep-
tor osteoprotegerin (OPG), form the RANKL/RANK/
OPG pathway (Fig. 1) which plays a critical role in
t h e d i f f e r e n t i a t i o n o f o s t e o c l a s t s f r om i t s
haematopoietic progenitors.

Osteoclastogenesis and the RANK/RANKL/OPG
Pathway

Our current understanding of osteoclast differentiation and
activity comes from initial observations made in animals and
patients with osteopetrosis, a condition of increased bone
mass due to arrested bone resorption. Pioneering parabiosis
experiments in the 1970s showed restoration of bone resorp-
tion in osteopetrotic mice [5, 6], showing that precursors of
these resorptive cells are of haematopoietic origin. Subsequent
co-culture experiments [7] provided supporting evidence for a
hypothesis that osteoblasts played a key role in mediating
osteoclastogenesis [8], revealing that osteoclast formation re-
quires physical contact between haematopoietic precursor
cells with specific bone marrow derived stromal cells [9,
10]. This led to the discovery of OPG which plays a key role
in osteoclastogenesis.

OPG is a protein of the TNF receptor superfamily and is
predominantly secreted by osteoblasts and osteocytes [11].
Transgenic mice overexpressing the gene Tnfrsf11b encoding

Fig. 1 RANKL/RANK/OPG pathway. RANKL is produced by cells of
the osteoblast lineage, includingmatrix-embedded osteocytes.Membrane
bound RANKL is cleaved by proteases to form soluble RANKL. OPG is
predominantly secreted by osteoblasts to bind to RANKL to suppress its
activity and regulate osteoclastic bone resorption. RANKL binding to its

receptor RANK promotes the differentiation of mature osteoclasts which
are capable of attaching to and resorbing bone. Abbreviations: RANKL,
receptor activator of nuclear factor kappa beta ligand, OPG,
osteoprotegerin, MSC, mesenchymal stem cells, HSC, haematopoietic
stem cells
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OPG displayed an osteopetrotic phenotype due to a profound
decrease in osteoclasts [12]. Conversely, targeted ablation of
OPG in mice led to severe osteoporosis due to marked increase
in osteoclastogenesis and bone resorption [13]. Hence, OPG
was determined a negative regulator of osteoclastogenesis.

OPG expression is regulated by Wnt signalling in osteo-
blasts [14] and local production of OPG by osteoblasts, rather
than osteocytes. Interestingly, circulating OPG levels were
unchanged in mice with conditional deletion of Tndrsf11b in
osteoblasts which exhibited reduced cortical thickness and
cancellous bone in the femur, demonstrating that local OPG
is essential in regulating bone resorption [15]. OPG therefore
was determined to be a decoy receptor for RANKL, blocking
RANK and RANKL interac t ion and subsequent
osteoclastogenesis.

RANKL is initially produced as an integral membrane
bound protein but can be cleaved by proteases into a functional
soluble form [17]. RANKL binds to its receptor RANK on
osteoclast progenitors and stimulates osteoclast differentiation
and function [16]. RANKL is involved in the fusion of osteo-
clast precursors into multinucleated cells, differentiation into
mature osteoclasts and continued survival [17]. RANKL relies
on macrophage-colony stimulating factor (M-CSF, also known
as CSF-1) as a co-factor for osteoclast differentiation [18].

Genetic deletion studies show that RANKL is produced at
various stages of the osteoblast lineage, including matrix-
embedded osteocytes, though the relative contribution of
RANKL at each stage remains unclear. Osteopetrosis was dem-
onstrated in mice with RANKL deletion throughout the osteo-
blast lineage, and less so in mice with deletion restricted to
differentiated osteoblasts and osteocytes only [19, 20]. Soluble
RANKL, cleaved from itsmembrane bound form, ismeasurable
in the circulation and increases with stimulated bone resorption
[21]. Recent studies have demonstrated that the membrane-
bound form of RANKL is responsible for the majority of
RANKL functions and more potent than soluble RANKL in
stimulating osteoclastogenesis in vitro [22]. This highlights the
importance of the local microenvironment and cellular interac-
tions between the different cell types within the BMU.

Elucidation of the RANK/RANKL/OPG pathway has
revolutionised our understanding of osteoclastogenesis.
Under the influence of RANKL and M-CSF and regulated
by OPG, mononuclear haematopoietic cells of the monocyte
lineage differentiate and fuse to form multinucleated osteo-
clasts capable of resorbing bone. However, until recently, little
has been known about what happens to osteoclasts following
completion of bone resorption.

Osteoclast Cell Fate and Recycling

Following bone resorption, mature osteoclasts are typically
thought to undergo apoptosis at the end of their lifespan of

approximately 2–3 weeks, and hence, the number of osteo-
clasts is dependent on the rates of osteoclast differentiation
and death [23]. This has been a long-standing dogma, initially
described in 1920 where osteoclasts were no longer visible
after bone resorption due to degeneration [24] and supported
by observations of reduced osteoclast numbers following ces-
sation of bone resorption [25, 26].

The first reported evidence of osteoclast apoptosis in vitro
was in 1993 where mature osteoclasts died when the cultures
were depleted of M-CSF. The authors concluded that the sur-
vival of mature osteoclasts occur through the suppression of
apoptosis by factors such as M-CSF [27]. While RANKL and
M-CSF are sufficient for osteoclast differentiation and en-
hance osteoclast survival, several proinflammatory cytokines,
including TNFa, IL-1 and IL-6, have been shown to enhance
osteoclast survival through activation of the NF-kB pathway
[28, 29]. Parathyroid hormone (PTH) is an important hormone
in calcium homeostasis as it stimulates osteoclast formation
through RANKL expression by osteoblasts and reducingOPG
expression by stromal cells [30, 31]. Therefore, proinflamma-
tory cytokines and PTH predominantly act to inhibit osteo-
clast apoptosis by enhancing RANKL signalling to increase
survival.

Conversely, several endogenous inducers of osteoclast
apoptosis have also been identified which work through
inhibition of RANKL signalling. In cultures, OPG en-
hances osteoclast apoptosis in a dose-dependent manner
and upregulating molecular controllers of programmed cell
death, including Fas ligand and caspase [32]. The important
role of oestrogen in the regulation of bone homeostasis is
evident in the pathophysiology of postmenopausal osteo-
porosis, where accelerated bone loss occurs with decreased
circulating oestrogen in postmenopausal women [33].
Oestrogen appears to have a direct influence on osteoclasts
with selective ablation of the oestrogen receptor on osteo-
clasts leading to trabecular bone loss in female mice and
induction of apoptosis and upregulation of Fas ligand [34].
Oestrogen also indirectly promotes osteoclast apoptosis
in vivo and in vitro which is mediated in part by
transforming growth factor-B (TGF-B) signalling [35].

However, the role of these so called pro-apoptotic
factors on osteoclast survival in vivo remains unclear.
Indeed OPG has also been shown to suppress osteoclast
apoptosis through the inhibition of TNF-related apopto-
sis inducing ligand (TRAIL) [36]. Oestrogen has been
shown to reduce osteoclast numbers attached to bone
and changes their morphology and size [37] which was
accompanied by increased osteoclasts in the marrow
space. This suggests that oestrogen treatment causes dis-
sociation and morphological changes in osteoclasts rath-
er than driving apoptosis, contrary to previous studies
showing induction of apoptosis with ablation of the
oestrogen receptor [34, 35].
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Bisphosphonates are inhibitors of bone resorption and
have revolutionised the treatment of a variety of bone dis-
eases where excessive osteoclast activity is a pathological
feature [38]. Bisphosphonates are selectively taken up and
adsorbed to bone surfaces where they are internalised by
osteoclasts, leading to loss of osteoclast function and induc-
t i o n o f a pop t o s i s . Th e mechan i sm v i a wh i c h
bisphosphonates induce apoptosis differs between the two
pharmacological classes of bisphosphonates. The nitrogen-
containing bisphosphonates (such as alendronate and
zoledronate) inhibit protein prenylation in osteoclasts
[39], whereas non-nitrogen-containing bisphosphonates
(such as clodronate) inhibit adenosine triphosphate
(ATP)-dependent enzymes. This leads to osteoclast apopto-
sis [40], loss of the ruffled border and prevents attachment
to bone [41]. Through these mechanisms, bisphosphonates
increase bone mass and is now well established as an effec-
tive antiresorptive agent in the treatment of osteoporosis.

Osteoclast Recycling

While osteoclasts have been thought to undergo apoptosis
following bone resorption or under the influence of
proapoptotic factors, several historic studies postulated an al-
ternative cell fate. Osteoclast fission had been hypothesised
following observations under microscopy, though this was not
able to be confirmed [42]. Decreased number of nuclei per
osteoclast followed by an increases in the number of osteo-
clasts was observed in the presence of calcitonin in vivo [25]
and while this was thought to be due to fission of pre-existing
osteoclasts, again this could not be confirmed. Advances in
live cell imaging allowed the novel observation of osteoclast
fission in vitro in 2012, where multinucleated osteoclasts were
observed to split up into smaller, functional cells [43•].

More recent studies also challenge the long-held dogma
that osteoclasts undergo apoptosis following bone resorption
after a lifespan of 2–3 weeks and support an alternative cell
fate of the osteoclast. Recent parabiosis and cell-fate studies
have shown that osteoclasts are longer lived with a lifespan of
around 6 months [44•, 45•]. Advances in single cell RNA
sequencing and intravital imaging have revealed that osteo-
clasts behave as long-lived cells that circulate and undergo
fusion and fission [46]. Mixed bone marrow chimeras were
used to form osteoclasts that are formed through the fusion of
bone marrow cells where the cells express a green or red
fluorescent protein. The reporter proteins were driven by an
osteoclast gene LysozymeM-tdTomato and CSF1R or Blimp-
1-GFP leading to formation of multinucleated osteoclasts that
express both tdTomato and GFP following cell fusion. These
cells were multi-nucleated, secreted cathepsin K and were
capable of resorbing fluorescently labelled bisphosphonate
from bone, confirming their functional capacity as osteoclasts
[47•].

Intravital imaging of these cells under RANKL stimulation
revealed that osteoclasts undergo fusion in vivo and provided
the first in vivo evidence of osteoclast fission. These fission
events were distinct from osteoclast apoptosis. The fate of the
fission products was tracked and were demonstrated to fuse
with neighbouring osteoclasts and with each other, in a pro-
cess now termed osteoclast recycling. These recycling cells,
termed osteomorphs, are detectable in the blood and bone
marrow and are identifiable as a unique cell population ex-
pressing 151 unique genes when compared to osteoclasts and
osteoclast precursors using scRNA sequencing [47•].

Detailed skeletal phenotyping of mouse lines with single-
gene deletions was available through the Origin of Bone and
Cartilage Disease program [48], allowing the examination of
40 mouse lines in which one or both copies of an upregulated
osteomorphs gene was deleted. A number of these genes were
associated with skeletal phenotypes, suggesting that these
osteomorphs genes pay a role in the regulation of skeletal
structure and function. Analysis of human orthologs showed
that osteomorph genes were strongly associated with changes
in estimated bone mineral density (BMD) [47•].

Furthermore, inhibition of RANKLwith OPG:Fc treatment
led to the ablation of osteoclasts and the accumulation of os-
teoclast precursors and osteomorphs. These results indicate
that osteoclast recycling is regulated by RANKL signalling
and RANKL inhibition leads to the accumulation of
osteomorphs which provides a pool of primed osteoclast pre-
cursors capable of re-fusing to form active osteoclasts when
RANKL inhibition is discontinued (Fig. 2). This led to rapid
resumption of bone resorption and reduced bonemass in these
studies [47•]. Elucidating how osteoclast recycling is affected
in different disease states could provide new avenues for
personalised treatment of bone diseases [49]. In addition to
challenging the long-standing dogma that osteoclasts have a
linear fate ending in apoptosis, these discoveries also provide
a mechanistic framework to examine emerging clinical phe-
nomena observed with anti-RANKL therapies.

Denosumab Discontinuation
and the Rebound Phenomenon

Denosumab

Inhibition of RANKL-RANK signalling leads to increased
bone mass through inhibition of osteoclastic bone resorption.
RANK- and RANKL-deficient mice display severe
osteopetrosis due to arrested osteoclast differentiation [16,
50]. This led to the exploration of OPG as a therapeutic agent
in the management of diseases where inhibition of osteoclastic
bone resorption is desired. Although initial studies exploring
the use of OPG-Fc showed promise in suppressing bone turn-
over in humans, further development was discontinued due to
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safety concerns over the development of neutralising immune
response to endogenous OPG. Therefore, approaches
targeting RANKL activity was preferred over increasing
OPG, leading to the development of the anti-RANKL anti-
body denosumab [51].

Denosumab is a fully humanised monoclonal antibody that
binds to both soluble and membrane bound RANKL with
high affinity and specificity, thereby neutralising the effect
of RANKL in a similar mechanism of action to OPG [52].
Denosumab reduces the number of osteoclasts and therefore
increases bone mineral density [51]. Denosumab circulates in
the bloodstream and is cleared through the reticuloendothelial
system with a half-life of approximately 26 days. Unlike
bisphosphonates, denosumab is not incorporated into the bone
matrix.

Denosumab has revolutionised the management of os-
teoporosis. The efficacy of denosumab has been demon-
strated in the landmark FREEDOM trials and has been
associated with reduced fractures [53]. Treatment with
denosumab leads to sustained increases in bone mineral
density as long as treatment continues which was shown
in a 10-year extension study [54]. This appears to be in
part attributable to preservation of modelling-based bone
formation during treatment [55].

Denosumab is a 6-monthy subcutaneous injection which is
administered by a health professional. This is preferred and
better tolerated by patients compared to bisphosphonate ther-
apy [56]. This has led to progressive increases in denosumab
prescription, and in Australia, denosumab is the most com-
monly prescribed antiresorptive agent [57]. Current guidelines
recommend denosumab as first line therapy for the treatment
of osteoporosis [58, 59]. Denosumab’s potent inhibition of
osteoclast-mediated bone resorption has been utilised in other
clinical settings where suppression of bone resorption is de-
sired, often at higher doses and increased dose frequency.
Adjuvant denosumab is used in patients with cancer to reduce
the risk of clinical fractures related to cancer therapy [60, 61].
Denosumab is often utilised in paediatric bone diseases where
increased BMD, reduced bone turnover and preventing
growth of skeletal metastases is desired [62, 63].

Rebound Phenomenon Following Denosumab
Discontinuation

Patients receiving denosumab continue to experience BMD
gains and fracture prevention. However, there are several clin-
ical scenarios where denosumab discontinuation may be re-
quired. Drug “holidays” from antiresorptive therapy have

Fig. 2 Osteoclast recycling. Osteoclasts have been thought to undergo
apoptosis at the end of its life cycle. Under RANKL stimulation,
osteoclasts are capable of undergoing fission into daughter cells termed
osteomorphs which can circulate and fuse to re-form osteoclasts in a
process termed osteoclast recycling. This is regulated by RANKL

signalling and inhibition of RANKL with OPG:Fc leads to the
accumulation of osteomorphs and osteoclast precursors (preosteoclasts).
Abbreviations: RANKL, receptor activator of nuclear factor kappa beta
ligand, OPG, osteoprotegerin, HSC, haematopoietic stem cells, MCSF,
macrophage colony stimulating factor
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been advocated to reduce the risk of rare, but serious, compli-
cations arising from long-term use such as atypical femoral
fractures or osteonecrosis of the jaw [64, 65]. Adjuvant
denosumab in cancer treatment may be discontinued when
cancer treatment has completed. Patients may also develop
contraindications to denosumab such as chronic kidney dis-
ease or need to consider a change in therapy due to inefficacy
and ongoing fractures. Alternatively, patients discontinue
denosumab as they are no longer at high risk of fractures or
no longer have indications to continue treatment with
denosumab. However, discontinuation of denosumab leads
to rapid reversal of its therapeutic effect, leading to “rebound”
bone loss to baseline bone density and fracture risk [66]. This
was also observed in a post hoc analysis of the FREEDOM
study cohort, showing an increase in vertebral fracture risk
following denosumab discontinuation to the level observed
in untreated participants [67].

Upon denosumab cessation and withdrawal of its effect,
there is a rebound increase in bone resorption which is high-
lighted clinically as a rapid rise in the bone turnover markers.
Both markers of bone formation, such as procollagen 1 intact
N-terminal propeptide (P1NP), and bone resorption including
C-terminal telopeptide (CTX) and TRAP-5b are increased
following the offset of denosumab’s effect indicating a high
bone turnover state [66, 68]. The net effect of this is bone loss,
observed as a decrease in BMD which occurs throughout the
skeleton and especially in the spine [66]. This has led to in-
creases in the rates of preventable fractures following
denosumab discontinuation [69]. Concerningly, prescription
data in Australia shows that denosumab treatment is frequent-
ly discontinued or interrupted, placing many patients at in-
creased risk of fractures [57].

Significant increases in bone remodelling following
denosumab discontinuation is accompanied by a rise in serum
RANKL, though this only reached statistical significance after
12months following the loss of effect of denosumab [70]. The
mechanism underlying the delay in this RANKL rise is un-
clear but supports the possible mechanism where osteoclast
precursors and osteomorphs form active, resorbing osteoclasts
following the offset of denosumab effect (Fig. 3).

This is supported by an in vivo study examining the effect
of mouse anti-RANKL monoclonal antibody which showed
significantly increased TRAP-positive mononuclear cells in
the bone marrow compared to controls in femoral sections
following treatment discontinuation [71]. These mononuclear
cells were predominantly found near, but not on, trabecular
bone surfaces which may represent the fission of osteoclasts
and the accumulation of osteoclast precursors and
osteomorphs with anti-RANKL treatment. There was also in-
creased expression of pro-osteoclastic genes including C-fms,
RANK and RANKL in the bone marrow [71] suggesting a pro-
osteoclastogenic bone marrow environment during RANKL
inhibition. Thereby following treatment discontinuation, this

leads to resumption of bone resorption and bone loss. This is
consistent with the process of osteoclast recycling, where in-
hibition of RANKL with OPG:Fc led to the fission of osteo-
clasts into osteomorphs which then recycled to form resorbing
osteoclasts once the RANKL inhibition was withdrawn.

Further evidence of this in humans is recent reports of
accumulating of osteoclast precursors in the circulation
of postmenopausal women receiving denosumab [72].
This supports the concept of a block in differentiation
of osteoclast precursors and the fission of osteoclasts
into osteomorphs during denosumab therapy. This may
therefore lead to a pool of osteoclast precursors and
osteomorphs primed to differentiate into osteoclasts and
resorb bone once their inhibition by denosumab is with-
drawn (Fig. 3).

Rebound increase in bone resorption following treatment
discontinuation is not typically observed in patients treated
with bisphosphonates. In ovariectomised (OVX) mice,
risedronate demonstrated increased bone mass and suppres-
sion of bone turnover, whereas OVX mice that discontinued
anti-RANKL antibody treatment experienced bone loss asso-
ciated with an increase in bone turnover [73]. This may be due
to the differences in the offset of antiresorptive activity be-
tween bisphosphonates, which are embedded into the bone
matrix and therefore have a long duration of effect, compared
to anti-RANKL antibodies which display a more rapid offset
of effect as the drug is cleared from circulation. How
bisphosphonates affect osteoclast recycling is yet unclear.
Examination of osteoclast precursors in postmenopausal
women treated with bisphosphonates showed a reduction of
osteoclast precursors with treatment compared to healthy un-
treated controls, and there was no significant effect on
RANKL and OPG levels [74]. As bisphosphonates inhibit
bone resorption by predominantly acting on mature osteo-
clasts, it may not have a direct effect on osteoclast recycling.
However, an apparent rebound increase in bone resorption
following treatment discontinuation in OVXmice treated with
NE-58025, a bisphosphonate with a low hydroxyapatite bind-
ing affinity, has been observed but the mechanism behind this
remains unclear [75]. Studies to directly examine the effect of
bisphosphonates on osteoclast recycling are therefore
warranted.

Bone biopsies allow visualisation of histomorphometric
changes that occur following denosumab discontinuation.
Iliac crest bone biopsies from patients who experienced
rebound fractures following denosumab discontinuation
were compared to biopsies from patients receiving
denosumab and treatment-naïve patients. This study dem-
onstrated elevated bone turnover in patients discontinuing
denosumab, with increased number of osteoclasts and erod-
ed bone surface, as well as higher osteoblast numbers and
osteoblast-covered bone surface [76]. Furthermore, there
was a reduction in cortical and trabecular bone structure,
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Fig. 3 The effect of denosumab on osteoclast recycling. A Inhibition of
RANKL with denosumab prevents the differentiation of preosteoclasts
and leads to fission of osteoclasts into osteomorphs. Osteomorph fusion
into osteoclasts is also inhibited by denosumab, leading to the
accumulation of osteomorphs during denosumab treatment. B
Denosumab discontinuation and its subsequent withdrawal of RANKL
inhibition leads to increased RANKL and the resumption of osteoclast

differentiation and osteomorphs fusion into osteoclasts. The
accumulation of preosteoclasts and osteomorphs provide a pool of
primed cells from which bone-resorbing osteoclasts can form.
Abbreviations: RANKL, receptor activator of nuclear factor kappa beta
ligand, OPG, osteoprotegerin, HSC, haematopoietic stem cells, MCSF,
macrophage colony-stimulating factor
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with reduced cortical thickness and significantly lower tra-
becular bone volume, demonstrating compromised bone
structure in patients following denosumab discontinuation
[76]. In addition, there were alterations in osteocyte
histomorphometry with a significant reduction in viable
osteocytes with denosumab treatment which persisted at
12 months post-denosumab discontinuation, highlighting
the accumulation of apoptotic osteocytes and retention of
old bone during treatment due to suppressed bone turnover.
These changes in osteocyte morphology following
denosumab discontinuation highlight the complex cellular
interaction between osteoclasts and the cells of the osteo-
blast lineage, particularly given the latter’s role in local
RANKL and OPG production. This presents potential ther-
apeutic opportunities to prevent the rebound phenomenon
following withdrawal of RANKL inhibition.

Sequential Therapy Following Denosumab
Discontinuation

Current approaches following denosumab discontinuation
aim to prevent the rebound changes in bone remodelling to
avoid bone loss and reduce risk of fractures [68]. Randomised
controlled trials of sequential bisphosphonate, which pre-
vent mature osteoclasts from resorbing bone, have not
succeeded in consistently prevent rebound bone loss fol-
lowing denosumab discontinuation [77]. Sequential treat-
ment with the PTH-analogue teriparatide following
denosumab discontinuation leads to accelerated BMD loss
[78]. PTH mediates bone homeostasis in a coupled manner,
affecting both bone formation and bone resorption. PTH
signalling in osteoblasts and osteocytes increases the
RANKL/OPG ratio which recruits osteoclast precursors
and stimulates osteoclastogenesis [79]. Therefore, the ob-
served changes in BMD with transition from denosumab to
teriparatide may reflect an accumulation of osteoclast pre-
cursors and osteomorphs during denosumab treatment and
the formation of active resorbing osteoclasts, accelerated in
the presence of PTH.

Targeting osteoblasts with newer therapies such as the
sclerostin inhibitor romosozumab provides an alternate thera-
peutic target in the setting of denosumab discontinuation.
Local production of OPG by mature osteoblasts play a critical
role in suppressing RANKL activity and osteoclastogenesis
[15]. Transgenic mice treated with denosumab showed almost
complete absent osteoclasts and osteoblasts on the bone sur-
face and gene expression analysis showed a striking reduction
in OPG mRNA expression [80]. These findings highlight that
the lack of osteoblasts and the OPG produced by these cells
may contribute to the rebound bone resorption following
denosumab discontinuation. Therefore, increasing

osteoblastogenesis could be an alternative strategy for sequen-
tial therapy.

The effect of prior treatment on treatment response to
romosozumab was examined in a real-world observation-
al study in Japan which showed significant attenuation of
bone mineral density response in patients with prior
denosumab use [81]. The cellular changes that occur with
transition from denosumab to ROMO remains unclear but
most likely involves changes in RANKL and OPG sig-
nalling given that sclerostin promotes osteoclastogenesis
via a RANKL-dependent pathway [82]. There is also
documented decrease in RANKL:OPG following anti-
sclerostin treatment [83]. Given the complex cellular in-
teraction at play, a multi-pronged approach targeting not
only osteoclasts, but also cells of the osteoblastic lineage
may prove to be the most effective in preventing the
rebound phenomenon following denosumab discontinua-
tion. Furthermore, investigation into how osteoclast
recycling could be directly targeted and also how it is
affected by anabolic therapies would contribute signifi-
cant insight into the optimal sequential treatment ap-
proach in these patients.

Conclusion

The discovery of osteoclast recycling provides a novel mech-
anistic framework to examine osteoclast biology and their role
in skeletal diseases. Osteoclasts are long-lived cells with a
complex life cycle and are capable of fission into
osteomorphs, circulating and recycling to maintain bone ho-
meostasis. Changes in osteoclast recycling, including the ac-
cumulation of the novel osteomorphs and their fusion to form
mature osteoclasts, provides a mechanism underlying the re-
bound phenomenon following denosumab discontinuation
and paves the way to a better understanding of the cellular
responses to therapies targeting bone. As we improve our
understanding of how other bone-targeted therapeutics impact
osteoclast recycling, we will optimise sequential therapy ap-
proaches to prevent denosumab withdrawal induced bone
loss. Finally, this paradigm shift in osteoclast biology will lead
to more targeted and optimal treatment strategies in patients
with skeletal diseases in which osteoclast recycling may be
implicated.
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