
Heliyon 8 (2022) e11792
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
Traffic sign classification using CNN and detection using faster-RCNN
and YOLOV4

Njayou Youssouf *

Department of Computer Science and Engineering, Islamic University of Technology, Gazipur 1704, Bangladesh
A R T I C L E I N F O

Keywords:
Convolutional neural network
Object detection
Faster R–CNN
YOLOv4
Traffic sign recognition
Traffic sign classification
GTSDB
GTSRB
* Corresponding author.
E-mail address: njayou@iut-dhaka.edu.

https://doi.org/10.1016/j.heliyon.2022.e11792
Received 25 September 2021; Received in revised
2405-8440/© 2022 The Author(s). Published by Els
A B S T R A C T

Autonomous driving cars are becoming popular everywhere and the need for a robust traffic sign recognition
system that ensures safety by recognizing traffic signs accurately and fast is increasing. In this paper, we build a
CNN that can classify 43 different traffic signs from the German Traffic Sign Recognition benchmark dataset. The
dataset is made up of 39,186 images for training and 12,630 for testing. Our CNN for classification is light and
reached an accuracy of 99.20% with only 0.8 M parameters. It is tested also under severe conditions to prove its
generalization ability. We also used Faster R–CNN and YOLOv4 networks to implement a recognition system for
traffic signs. The German Traffic Sign Detection benchmark dataset was used. Faster R–CNN obtained a mean
average precision (mAP) of 43.26% at 6 Frames Per Second (FPS), which is not suitable for real-time application.
YOLOv4 achieved an mAP of 59.88% at 35 FPS, which is the preferred model for real-time traffic sign detection.
These mAPs are obtained using Intersect Over Union of 50%. A comparative analysis is also presented between
these models.
1. Introduction

Technology around Advanced Driving Assistance Systems (ADAS) is
ever so increasing. To keep improving Intelligent Driving and Traffic
Safety, Object detection plays an important role in the upcoming trend of
self-governing cars [1]. Tesla inc. is the leading self-driving car manu-
facturer in the world and became the most valuable car company in the
world during the writing of this paper. This shows the tremendous de-
mand for self-driving cars in the auto industry. The ability of autonomous
vehicles to detect, classify and act upon the different traffic signs can be a
matter of human life. This means the technology ought to be accurate and
fast to detect promptly. Because such a system has the benefits of saving
lives and saving costs, developing and improving such a system is one of
the main motivations for this paper. Using deep learning algorithms to
design such a system is the main objective of our work. One of the ad-
vancements in scene understanding was OLIMP, introduced by Amira et
al (2020) [2]. It made use of the multimodal dataset for a better
perception of the environment. The different shapes and color coordi-
nation allow us to identify and differentiate between different signs.
Though there are different aspects of traffic signs which make them
differentiable, it is still a challenging task due to the problems of a variety
of colors, shapes, environmental conditions, occlusion, illumination, etc.
form 28 June 2022; Accepted 14
evier Ltd. This is an open access
[3] Presents different classes of low-light image improvement algorithms
and their improved versions to tackle the problem of illumination on
images.

A system that aims at tackling these problems of recognizing traffic
signs, should be able to detect traffic sing in an image or a video feed
camera and then classify these images. In traffic sign detection, the al-
gorithm has to scale since the vehicle of the device capturing might be at
a different distance at different times. We explored the different filter
sizes to identify the effect of size on the performance of the models. In
this paper, we look at the different classifications that exist and we
proposed our CNN that is lighter and faster but slightly less accurate. We
also explored the algorism for real-time object detection.

Our contributions can be listed below:

1. We introduced a lighter and faster CNN with a highly acceptable
accuracy of 99.20% for traffic sign classification from GTSRB.

2. We Fine-tuned the Faster R–CNN and YOLOv4 network architecture
to train and detect traffic signs from GTSDB.

3. The original GTSDB dataset divided the data into only 3 categories
i.e., prohibitory, mandatory, and danger. Our paper used this dataset
not only to detect the 3 categories but to detect all 43 categories of the
German traffic sign individually.
November 2022
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:njayou@iut-dhaka.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e11792&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e11792
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.heliyon.2022.e11792

Table 1. Comparison of different networks for object detection.

Model name (backbone) Speed (ms) COCO mAP (%)

YOLOv4 CSPDarknet-53 38 43.5

SSD VGG-16 43 39.5

Faster R–CNN ResNet50 92 34.9

YOLOv2 DarkNet-19 25 21.6

YOLOv3 DarkNet53 45.5 42.4

N. Youssouf Heliyon 8 (2022) e11792
4. A comparative analysis between these twomodels to understand each
model's performance and compromise over the other.

In the next section, 2, we do a literature review and understand what
existed, what exists, and why they need improvements. Then in section 3,
we discuss the methodologies that were used in this paper and all
implementations. Experimental Results, IV, is the section where we
compared our obtained results to the state-of-the-art algorithms. And
also, a comparative analysis between our usedmodels. And we concluded
our work in section 5.

2. Related works

First, the task of Traffic Sign Recognition (TSR) can be subdivided
into two main categories: Traffic sign detection (TSD) and Traffic sign
classification (TSC). Many CNN networks have been designed in recent
years to perform object classifications and detections. Comparing the
different results achieved by different researchers is a challenging task
because of the use of different datasets, GTSDB, BTSD, etc. which have
different properties like the number of training datasets, and quality of
training images, which affects considerably the performance of the
network (Fang et al., 2018) [4]. proposes a novel technique for classi-
fying land use based on images captured by different users under
different conditions. Nevertheless, over the years new techniques have
been developed to improve the performance of classification and
real-time object detection by reducing network size, increasing accuracy,
and reducing detection time.

Before the advent of CNN, object classification and recognition were a
bit more difficult and expensive to achieve. Maximally Stable Extremal
Regions (MSER) were used in combination with Class-Specific Extremal
Regions (CSER) in [5] to detect text-based regions and recognize
matching text fields, with CSER and MSER attaining a precision of 80%
Figure 1. a) Top row shows images from GTSDB dataset and b)

2

and 50% respectively. Traditional network for image classification has
been developed over the years, AlexNet [6] introduced in 2012 was
revolutionary in image classification. It improved the traditional CNN. It
made use of the importance of the ReLU activation function over the tanh
function. In ImageNet Large-Scale Visual Recognition Challenge
(ILSVRC), a contest for best performing networks, AlexNet [6] had the
best performance [6]. was used as the standard model for image classi-
fication. VGG [7] (2012), which is considered to be the next step after
[6], focused on a particular aspect of CNN, which is the depth of the
network. Also decreased the size of the network and increase accuracy.
ResNet [8] also decreased the amount of computation compared to
VGG [7] by a factor of 5. Other algorithms [9] did not employ. CNNs are
good for classification at a high level because of their invariance prop-
erties [10].

Application-specific classifications of objects like traffic signs [11,
12], and [1], have been introduced with different techniques to achieve
better accuracy. L. Chen et al (2017) [11] presented a Combined
Convolution Neural Network. It consisted of two separate CNN, one for
superclass recognition which consisted of 6 classes, and the other CNN
for subclass recognition which consisted of 43 classes. Then combined
the result of both CNN to determine the final label using vector sum-
mation. The framework in [11] achieved a recognition accuracy of
95.6%. However, the proposed framework time cost is 2.7 ms. Though
the result was acceptable, the classification time was too slow for
real-time application. Kedkarn et al. 2015 [1] also use techniques like
SVM to classify traffic signs from GTSRB. In object detection, the
methodology developed so far can be classified into mainly two cate-
gories: one-stage detection and two-stage detection approaches. R–CNN
[13] used Region proposals to extract the features and also improved
precision [13]. uses selective search to generate all the proposed re-
gions, about 2000 regions. This selective search slowed down the
network. A better network has been designed soon which achieved
better performance. SSP Net allowed the detection of input images of
different resolutions. Fast R–CNN [14] used a parameter aggregation
network (SPP) to improve the precision compared to R–CNN. The Faster
R–CNN [15] discarded the selective search method and used the RPN for
feature extraction, which saw considerable improvement in the perfor-
mance of the network. Abdullah et al [16] proposed a system to detect
vehicles by using deep learning algorithms [16]. used mainly R–CNN
and fast R–CNN which achieved an mAP of 64% and 75% respectively,
the high mAP in [16] is because the detection and recognition are that of
vehicles rather than traffic signs which are much smaller and more
Bottom row shows images from Belgium traffic sign dataset.

Figure 2. Samples of images from GTSRB for classification.

Figure 3. Preprocessing images samples.

N. Youssouf Heliyon 8 (2022) e11792
similar [15]. also uses ROI pooling to scale its input. The network looks
at the image twice before it completes. In one-stage detection, the image
is looked at by the network only one which makes it faster and more
suitable for real-time application. Liu et al. [17] introduced SSD. SSD
[17] uses a grid system to divide the image into multiple sections. In
each independent grid, that grid is responsible for detecting objects in its
region [17]. has better accuracy compared to YOLO [18] which com-
bined detection and classification into one CNN. Which makes [18]
faster but less accurate.
Figure 4. CNN architecture fo

3

Then YOLOv2 [19] and YOLOv3 [20] were an improvement on the
previous versions [20]. use the DarkNet53 which is a bigger network, 53
CNN, than [19] DarkNet19 of 19 CNN, therefore increasing the accuracy
of [20]. YOLOv4 [21] (2020) is the latest in the YOLO series at the time of
writing paper. YOLOv4 [21] used CPSDarkNet53 and which makes it
capable of detecting smaller objects. Can be used in1080 Ti or 2080 Ti
GPU for training. A comparison of these networks on the COCO 2017
dataset is given in Table 1.

3. Methodology

3.1. Dataset collection and organization

For the classification module, the German Traffic Sign Recognition
Benchmark, GTSRB, was used. This dataset consists of about 51822 im-
ages stored in the Portable Pixmap (ppm) format. About 39209 images
were used for training and 12630 were used for validation. The sizes of
these images range from 15 � 15 to 250 � 250 pixels. The Region of
Interest ROI, for each image, is provided and was used. The annotation of
these images was also collected in comma-separated values (CSV) files.
There was a total of 43 different classes in the dataset. Samples of some
classes in our dataset are shown in Figure 2.

The dataset that was used in the detection module of this work is the
German Traffic Sign Detection Benchmark dataset (GTSDB), it consists of
900 images all of size 1360� 800 pixels, stored in ppm format. The labels
of these images were also collected in a CSV file which contained the file
name and the information about the ground truth location of the actual
traffic sign on the image. This dataset was divided into two, the training
and the validation sets. The training set consisted of randomly selecting
600 images among all the images and the remaining 300 images were
used for the validation set. Since the training set was not large enough,
only 600 images, additional 300 images from the Belgium Traffic Sign
Dataset (BTSD) which contained images of traffic signs were also
collected, making a total of 900 images for the training set and 300 im-
ages for the testing set. The image size is 1628 � 1236 pixels for every
image from BTSD and 1360 � 800 for images from GTSDB. Then these
r traffic sign classification.

Figure 5. Distribution of images across the 43 different classes.

N. Youssouf Heliyon 8 (2022) e11792
images’ ROIs were manually labeled in the Pascal VOC (Visual Object
Classes) format. Any of these images may contain more than one traffic
sign in the same image. The images were taken under different lighting
conditions, different angles of the sign, and occlusion in some cases, see
Figure 1. The GTSRB, GTSDB, and BTSD datasets used in this paper are
publicly available for use.
3.2. Data pre-processing

In the detection phase, the image ROI annotations were converted to
Pascal VOC format from the CSV format annotations and the same was
also done for the classification model. In the classification phase, the
images were resized to 32� 32, then converted to grayscale, and then the
images were normalized. Resizing of the images was because the image
size of the dataset ranged from 15 � 15 to 250 � 250 pixels. In addition,
since our CNN receives only input images with the same size, all images
must be resized to a specific size before being passed into the network.
Then converting the images to grayscale was because the colors of the
images are not a very important determinant factor for the classification
of the image. And it also reduces the complexity of processing the CNN.
There is significant scientific value in enhancing system robustness in
adverse weather conditions and ameliorating image quality [22]. Then
the normalization of the images was done by dividing each pixel by the
maximum pixel. This ensures that the input pixels have analogous data
distribution. It also makes convergence faster while training the network.
Figure 6. Convolutional neural ne

4

The results of this preprocessing are shown in Figure 3. The distribution
of the images across the 43 classes is shown in Figure 5. Image
augmentation techniques like shifts, Brightness, and zoom were used to
even the distribution of the number of images per class to improve the
classification accuracy and reduce bias. The two-stage detection network
is more accurate in the detection of bounding boxes and class objects.
3.3. Traffic sign classification module

For the classification module, the GTSRB was used. The dataset was
split in a ratio of 20% for testing, 20% for validation, and 60% for
training. The number of images in each class is not evenly distributed
therefore an augmentation technique was used to increase the number of
training sets.

The class ‘speed limit 20 km/h’, represented by 0 in Figure 5, has 210
images while the class ‘Speed limit 50 km/h’, represented by 2, has 2250
images. Because of these discrepancies, the model may become biased
towards the class with more images. The different augmentation pa-
rameters included random rotating, stretch, and flips. These augmenta-
tion parameters are used to balance the dataset to reduce bias. From the
dataset, the images occur successively for the same class and similar
images occur one after the other, because of this presence, random
shuffling was performed on the dataset to avoid fluctuation of the
training and loss functions. A Convolutional Neural Network CNN was
constructed to do feature extraction and classification on the training set.
twork used for classification.

Figure 7. Object detector architecture.

Figure 8. Accuracy and loss function for our CNN classifier.

N. Youssouf Heliyon 8 (2022) e11792
The convolutional filter size was 3 � 3 since it was better for smaller
objects. A ReLU activation function was used in different hidden layers
and the categorical cross-entropy loss function together with the Adam
optimizer and a learning rate of 0.001was also applied. A summary of the
architecture of the CNN for classification in Figure 4, shows the different
hidden layers and filters and pooling applied to the neural networks. The
network architecture that was developed is shown in Figure 6. The
proposed CNN for traffic sign classification was developed using the
python framework, TensorFlow, in addition to other libraries.

3.4. Traffic sign detection module

Most of the prominent state-of-the-art object detection techniques are
divided into two: One-stage detection and two-stage detection. Examples
of two-stage detection techniques are Faster R–CNN (Region-based
CNN), and Mask R–CNN, which uses RPN. Examples of one-stage
detection include You Only Look Once (YOLO) [18], EfficientNet [9],
and SSD (Single Shot MultiBox Detector) MobileNet. [18], compared to
an SSD which has a high inference speed. So, our objective is to reduce
the compromises between speed and accuracy that exist between the
one-stage and two-stage object detection techniques. The two techniques
followed in this work are YOLOV4 [21] and Faster R–CNN [15] object
detection techniques.

3.5. Faster R–CNN

Faster R–CNN [23] is a deep convolutional network used for object
detection [23]. proposed a model that is made up of two modules: the
fully convolutional neural network called Region Proposal Network
(RPN), which proposes region boxes, and the next module is the de-
tector, which classifies the object. In the first module, there is a fully
connected convolutional neural network that is used for feature
extraction. This CNN will extract the main feature of an image and the
output of this CNN is a feature map. The feature map is then passed to
another network layer, the Region Proposal Layer, which is responsible
for proposing the potential regions where an object might exist and
giving the class and the probability or score of that particular proposed
region belonging to that class. For every other location on the feature
map, a sliding window is used in the RPN (Region Proposal Network).
Different bounding boxes are used for each location. 3 scales (128,256,
512) and 3 aspect ratios (1:1, 1:2, 2:1) are used in each location for the
proposed regions. This increases the generalization of the network. It
checks which of these locations contain objects and then these objects
will be passed to the next network for detection. Non-max Suppression
is used to remove overlapping regions. For detection, it goes through an
ROI pooling layer, then each ROI feature vector goes through a CNN,
and then through SoftMax where the final prediction will be made. This
network architecture was fine-tuned to detect traffic signs from GTSDB.
5

Fine-tuning is the process of using pre-trained weights of a model for
recognition on a new dataset. The first few layers of Faster R–CNN can
extract generic features (Faster R–CNN [23], 2017) since it is trained
with a big dataset. We used Faster R–CNN architecture trained on the
PASCAL VOC 2007 dataset (Shaoqing et al. (2017)) as the pre-trained
model. As our dataset was relatively large (39,186 images) compared
to the PASCAL VOC 2007 dataset, we theorize that fine-tuning the first
layers of the Faster R–CNN rather than the later layers would improve
performance. We fine-tuned the earlier CONV þ ReLU layers of the
Faster R–CNN by decreasing the depth to 32 and the filter size to 3 � 3,
because our training images are smaller (32 � 32 pixels), thereby
decreasing the network size and increasing performance. We also
initialized the FC þ ReLU layer to enable training from scratch for
multi-class classifications. Random Adjust Hue, Random Adjust satura-
tion, and random Adjust Contrast were used to minimize the effect of an
unbalanced dataset in training.

Figure 9. A comparison of the results from Faster R–CNN and YOLOv4. The first column (a) is from Faster R–CNN and the second column (b) is from YOLOv4. From
the first row, Faster R–CNN misses the No overtaking sign and falsely classifies Speed limit 120 as speed limit 70. YOLOv4 correctly detects and classifies all the signs.
From the second row, Faster R–CNN miss classifies give way sign as bend sign. YOLOv4 correcly classifies the give way sign. From the third row, both Faster R–CNN and
YOLOv4 correctly classify the speed limit 100 traffic sign. The last row shows how Faster R–CNN result in low light and YOLOv4 results in bright light. Both the models
perform well in conditions of low light and bright light.

N. Youssouf Heliyon 8 (2022) e11792
3.6. YOLOv4

The Single-Stage Detection used is the YOLOv4. A faster speed and
better accuracy can be achieved by YOLOv4 which uses several network
architectures [21], Figure 7. The Input section in the figure represents the
input of the image which can be of variable resolution from 32 � 32 to
512� 512 or more. Some data augmentation process occurs to generalize
the network so it can recognize objects of different sizes. Then it is passed
to the backbone section, which is where the feature extraction occurs.
This backbone can be the different networks of VGG, EfficientNet, dar-
kNet53, or ResNet. In Figure 7, the backbone used is CSPDarknet53,
which separates the layers into different parts, of which one to passes
through convolution and the other part does not, and then the results are
6

combined, which improves the learning capabilities of CNN. The next
section of the YOLOv4 architecture is the Neck. The Neck adds more
layers from the backbone to the dense prediction block. It serves as an
aggregation layer. In YOLOv3, the Feature Pyramid Network is used to
extract the features of different resolutions from the backbone, but in
YOLOv4, the Path Aggregation Network (PANet) is used for this purpose,
which gives higher accuracy. Then the Spatial Pyramid Pooling (SPP)
used in R–CNN is also used to map any size input to a particular fixed
output size. The final section is the head section (Dense Prediction),
similar to YOLOv3, which is responsible for locating the bounding box
coordinates (x, y, w, h) from the previous layers and classifying the image
section within the bounding box. It concurrently predicts numerous
bounding boxes and the likelihood of those bounding boxes to belong to a

Table 2. Comparison between our CNN and other states of the art CNN classifier
on GTSRB.

Model name Time Loss Accuracy No. of Parameters

Our CNN 6.631 s 0.031 99.20% 0.8 M

Enet-V1 [12] 7.794 s 0.064 98.69% 0.9 M

Enet-V2 [12] 3.090 s 0.2642 96.78% 0.31 M

MCDNN [24] 11.4 0.024 99.46% 38.5 M

Co. CNNs [16] - - 99.35% 5.22 M

Table 3. Comparison between our developed models.

Model mAP Speed (FPS)

Faster R–CNN 43.26% 6

YOLOv4 59.88% 35

Table 5. Performance of the models on Video 1.

N. Youssouf Heliyon 8 (2022) e11792
specific class. The network uses Intersection over Union (IoU) in Eq. (1)
to detect the boundary boxes for the region proposals, where Agt is the
background truth and Ap is the predicted.

IoU¼Agt \ Ap

Agt [Ap
(1)
Table 4. Results of our CNN under certain conditions of ambiguity, very low
illumination, low illumination, blurriness, occlusion, and high illumination. All
were correctly predicted.

Input Predicted Confidence

Speed limit (30 km/h) 100.0 %

Speed limit (100 km/h) 98.67%

Speed limit (80 km/h) 67.18%

Slippery road 99.77%

Slippery road 98.28%

Speed limit (30 km/h) 99.96%

7

YOLOv4 was fine-tuned to detect traffic signs from GTSDB. YOLOv4
has been pre-trained on PASCAL VOC 2007 with acceptable mAP (mean
average precision). The purpose of fine-tuning is to decrease the time of
training and increase accuracy and also reduce the cost of training. It
increases the data space. The fine-tuned network was trained on the
GTSDB dataset. We fine-tuned the YOLOv4 architecture which was the
pre-trained model. The fine-tuning technique was applied to the state-of-
the-art object detection algorithm YOLOv4, trained on the COCO dataset,
to specifically suit the needs of Traffic Sign recognition and detection
using some custom dataset. The weights of the pre-trained YOLOv4
model, convolutional layers, were kept the same as the pre-trained
model. The input resolution size was increased to 614 � 614 making
the YOLOv4 model easier to detect smaller objects. The weights of the
dense layers were updated by passing new data. The pre-trained YOLOv4
was trained on the COCO dataset, which was a dataset of 80 different
classes for detection. In our model, there are only 43 classes and it uses
the same weights in the convolution layers which makes the model much
faster and also increases its performance of the model.

4. Experimental results

For classification purposes, the developed CNN shown in Figure 4
achieved a good accuracy of 99.20% on the GTSRB test dataset. The
accuracy and loss graphs for training and validation of the model are
shown in Figure 8, Our model took approximately 6.63 s to classify all the
images in the test set. The test set consists of 12360 images; therefore, the
model takes 0.14 ms to classify a single image. It is considered fast for
applications that are not real-time. The comparison between our CNN
and other state-of-the-art CNN image classification is given in Table 2
[12, 16, 24]. The accuracy of our CNN is less than some of the prominent
CNN for classifications but considering that the number of parameters for
our network is 1/5 that of MCDNN [24] and 1/38 that of Co. CNNs [16].
To prove the robustness of our network, some of the successful classifi-
cations under different tough conditions, low and high illumination,
occlusion, and blurring, are provided in Table 4.

To evaluate the performance of the different methods used in this
work for object detection, Faster R–CNN, and YOLOv4, an experiment
was conducted as mentioned above and then the resulting weights from
these object detection techniques were evaluated on a real-time video

N. Youssouf Heliyon 8 (2022) e11792
feed from the street of berlin. The process of labeling, training, and
evaluating these models was done on a PC with a 3.4GHx Intel CPU, 16G
RAM, and 4G NVIDIA GeForce 1060 GPU. CUDAwas used to improve the
performance and speed of the model. The fine-tuned Faster R–CNN
reached an mAP (mean Average Precision) of 43.26% on the GTSDB,
with a speed of 6 FPS (Frame per Second) and the YOLOv4 reached a
much higher mAP of 59.88% on the same dataset. Table 3 shows the
comparison between these models. The Faster R–CNN is too slow and
would need improvements to be used in real-time applications. A video,
Video 1, was fed to the inference of both model and the traffic that was in
the video, along with whether the model correctly detected and recog-
nized it is given in Table 5.

Supplementary video related to this article can be found at https://
doi.org/10.1016/j.heliyon.2022.e11792

5. Conclusion

In this paper, a novel CNN architecture was designed for traffic signed
recognition and was tested on the GTSRB dataset and achieved a very
high accuracy of 99.20% with minimal loss, which is comparable to the
state-of-the-art architecture [12, 16, 24]. Though this was achieved with
only 0.8 million trainable parameters and so is a light model that can be
used in computers with small resources for traffic sign recognition. This
high accuracy can be justified by the pre-processing techniques that were
used before training and the robustness of the CNN.

This paper was further extended to recognize traffic signs in real
time. The dataset used is the GTSRB dataset which was originally
designed for the recognition of 3 super classes, i.e., prohibitory,
mandatory, and danger signs. The dataset consists of 600 images for
training and 300 images for testing. There is an average of 200 images
per category in training. Our goal was not only to detect the 3 super
classes but all 43 classes of the German traffic sign using the same
dataset. As such, we had an average of 14 images per class for training.
Faster R–CNN weights that were used to train on the COCO dataset were
then fine-tuned into training for the recognition of traffic signs. The
fine-tuned parameters and process is explained in section 3 E. Fine-
tuning enabled the model to take less time to train. And the Faster
R–CNN achieved a mean average precision (mAP) of 43.26% at a frame
rate of 6 fps. Another model that was also investigated for the recog-
nition task is the YOLOv4 [18] model. This model was fine-tuned for
traffic sign detection. YOLOv4 achieved a mean average precision
(mAP) of 59.88% at a frame rate of 35 fps.

The comparisons between these models were done and some results
are shown in Figure 9. The YOLOv4 model was able to detect and classify
the different German traffic signs despite using a very small amount of
data for training. Other data augmentation techniques could be used to
increase the number of training datasets and lead to a better performance
of the models.

Declarations

Author contribution statement

Njayou Youssouf: Conceived and designed the experiments; Per-
formed the experiments; Analyzed and interpreted the data; Contributed
reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies
in the public, commercial, or not-for-profit sectors.
8

Data availability statement

Data associated with this study has been deposited at https://driv
e.google.com/drive/folders/1DHnRnM4B0qCHOZaexG30kAScKHT7H
D2o?usp¼sharing
Declaration of interest’s statement

The authors declare no conflict of interest.
Additional information

No additional information is available for this paper.

References

[1] C. Kedkarn, H. Anusara, C. Ratiporn, K. Kittisak, K. Nittaya, "Traffic sign
classification using support vector machine and image segmentation", in:
International Conference on Industrial Application and Engineering, 2015,
pp. 52–58.

[2] A. Mimouna, I. Alouani, A. Ben Khalifa, Y. El Hillali, A. Taleb-Ahmed, A. Menhaj,
A. Ouahabi, N.E. Ben Amara, OLIMP: a heterogeneous multimodal dataset for
advanced environment perception”, Electronics 9 (4) (2020) 560.

[3] W. Wang, X. Wu, X. Yuan, Z. Gao, An experiment-based review of low-light image
enhancement methods, IEEE Access 8 (2020) 87884–87917.

[4] F. Fang, X. Yuan, L. Wang, Y. Liu, Z. Luo, Urban land-use classification from
photographs, Geosci. Rem. Sens. Lett. IEEE 15 (12) (2018) 1927–1931.

[5] Mehmet Serdar Guzel, “A novel framework for text recognition in street view
images”, Int. J. Intel. Syst. Appl. Eng.. 3. 140-144.

[6] A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep
convolutional neural networks, Proc. Adv. Neural Inf. Process. Syst. 120 (Jan)
(2012) 1097–1105.

[7] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image
recognition, CoRR 21 (3) (2014) 51–56.

[8] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, Proc.
CVPR (2016) 770–778.

[9] Abdullah A. Yilmaz1, Mehmet S. Güzel, I. Askerbeyli, Bostanci Erkan, A Vehicle
Detection Approach Using Deep Learning Methodologies”, Cornell University, 1804
arXiv.

[10] Shervin M, Yuri B, Fatih P, "Image segmentation using deep learning: a survey," in
IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11] L. Chen, G. Zhao, J. Zhou, L. Kuang, Real-time traffic sign classification using
combined convolutional neural networks, in: IAPR Asian Conference on Pattern
Recognition, 4th IAPR, 2017.

[12] X. Bangquan, W. Xiong, Real-Time Embedded Traffic Sign Recognition Using
Efficient Convolutional Neural Network” 7, May 2019, pp. 53330–53346.

[13] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, Proc. CVPR (2014) 580–587.

[14] R. Girshick, ‘‘Fast R-CNN,’’ Proc. ICCV, Dec. 2015, pp. 1440–1448.
[15] S. Ren, K. He, R. Girshick, J. Sun, ‘‘Faster R-CNN: towards real-time object detection

with region proposal networks, ’’ in Proc. NIPS (2015) 91–99.
[16] D. Ciresan, U. Meier, J. Masci, J. Schmidhuber, A committee of neural networks for

traffic sign classification, in: Proceedings of the International Joint Conference on
Neural Networks, 1921.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Fu, A. Berg, “SSD: Single Shot
MultiBox Detector”

[18] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, “You only look once: unified, real-
time object detection”, unified, real-time object detection, May 2016 arXiv preprint
arXiv:1506.02640.

[19] J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in: In Computer Vision
and Pattern Recognition (CVPR), IEEE Conference on, IEEE, 2017, pp. 6517–6525.

[20] J. Redmon, A. Farhadi, YOLOv3: an Incremental Improvement”, Apr 2018 arXiv
preprint arXiv:1804.02767.

[21] A. Bochkovskiy, C.Y. Wang, H.Y. Liao, YOLOv4: optimal speed and accuracy of
object detection, in: Proc. Unified, Real-Time Object Detection, Apr 2020 arXiv
preprint arXiv:1506.02640.

[22] W. Wang, X. Yuan, X. Wu, Y. Liu, Fast image dehazing method based on linear
transformation, IEEE Trans. Multimed. 19 (6) (June 2017) 1142–1155.

[23] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection
with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell. 39 (6)
(2017) 1137–1149.

[24] D. Ciregan, U. Meier, J. Schmidhuber, Multi-column deep neural networks for
image classification, in: IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3642–3649.

https://doi.org/10.1016/j.heliyon.2022.e11792
https://doi.org/10.1016/j.heliyon.2022.e11792
https://drive.google.com/drive/folders/1DHnRnM4B0qCHOZaexG30kAScKHT7HD2o?usp=sharing
https://drive.google.com/drive/folders/1DHnRnM4B0qCHOZaexG30kAScKHT7HD2o?usp=sharing
https://drive.google.com/drive/folders/1DHnRnM4B0qCHOZaexG30kAScKHT7HD2o?usp=sharing
https://drive.google.com/drive/folders/1DHnRnM4B0qCHOZaexG30kAScKHT7HD2o?usp=sharing
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref1
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref1
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref1
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref1
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref1
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref2
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref2
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref2
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref3
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref3
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref3
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref4
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref4
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref4
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref6
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref6
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref6
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref6
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref7
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref7
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref7
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref8
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref8
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref8
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref9
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref9
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref9
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref11
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref11
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref11
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref11
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref12
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref12
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref12
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref13
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref13
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref13
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref14
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref14
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref15
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref15
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref15
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref16
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref16
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref16
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref18
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref18
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref18
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref19
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref19
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref19
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref20
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref20
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref21
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref21
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref21
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref22
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref22
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref22
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref23
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref23
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref23
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref23
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref24
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref24
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref24
http://refhub.elsevier.com/S2405-8440(22)03080-8/sref24

	Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4
	1. Introduction
	2. Related works
	3. Methodology
	3.1. Dataset collection and organization
	3.2. Data pre-processing
	3.3. Traffic sign classification module
	3.4. Traffic sign detection module
	3.5. Faster R–CNN
	3.6. YOLOv4

	4. Experimental results
	5. Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interest’s statement
	Additional information

	References

