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Graph-based autoencoder integrates spatial
transcriptomics with chromatin images and
identifies joint biomarkers for Alzheimer’s
disease

Xinyi Zhang 1,2, Xiao Wang1,2, G. V. Shivashankar3,4 & Caroline Uhler 1,2

Tissue development and disease lead to changes in cellular organization,
nuclear morphology, and gene expression, which can be jointly measured by
spatial transcriptomic technologies. However, methods for jointly analyzing
the different spatial data modalities in 3D are still lacking. We present a
computational framework to integrate Spatial Transcriptomic data using over-
parameterized graph-based Autoencoders with Chromatin Imaging data
(STACI) to identify molecular and functional alterations in tissues. STACI
incorporates multiple modalities in a single representation for downstream
tasks, enables the prediction of spatial transcriptomic data from nuclear
images in unseen tissue sections, and provides built-in batch correction of
gene expression and tissue morphology through over-parameterization. We
apply STACI to analyze the spatio-temporal progression of Alzheimer’s disease
and identify the associated nuclear morphometric and coupled gene expres-
sion features. Collectively, we demonstrate the importance of characterizing
disease progression by integrating multiple data modalities and its potential
for the discovery of disease biomarkers.

Developmental and disease processes are accompanied by changes in
the spatial organization and interactions of different cell types and
states. These changes are reflected in both a cell’s gene expression
profile as well as its spatial location within a tissue1,2. The recent
development of spatial transcriptomic technologies has the potential
to provide unprecedented insights into biological processes in tissues
at cellular scale. In the context of Alzheimer’s disease (AD), early stu-
dies, using candidate marker genes in single-molecule FISH experi-
ments, revealed the importance of spatial resolution by identifying
the proximity of disease-associatedmicroglia to amyloid plaques1. The
advent of spatial transcriptomics makes jointly measuring the
expression of a large number of genes at high spatial resolution pos-
sible. This ranges from several thousand genes with sub-micron reso-
lution in STARmap, seqFISH, and MERFISH to whole-transcriptome

coverage with 10–55 µm resolution in Slide-seq and 10x Genomics
Visium3–8. The resulting datasets provide an opportunity to identify
complex spatialmotifs of cells in tissueswell beyond the localizationof
a single cell type. To fully exploit the potential of such spatial tran-
scriptomic data, novel computational methods are required that can
incorporate the expression of all genes together with the 3D context.

The analysis of spatial transcriptomic data has so farmainly relied
on methods developed for single-cell RNA-sequencing (scRNA-seq) to
perform standard workflows such as dimensionality reduction and the
clustering of cells/beads/spots for the identification of cell types and
states3,5. Since suchmethods takegene expression as inputwithout any
spatial context, the use of single-cell methods to analyze spatial tran-
scriptomic data is akin to performing image analysis based on dis-
sociated pixels. Recent studies that allow for the incorporation of
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spatial information perform statistical tests on individual genes to
identify genes that are non-randomly distributed in space9–13. These
methods analyze single genes and do not explicitly learn the compo-
sition of cell types and cell states in different tissue neighborhoods.
More importantly, the distribution of individual genes can provide
only limited insights into tissue region-specific behaviors, for example,
with respect to disease progression or response to external stimuli. A
different line of computational approaches for spatial transcriptomics
aims to infer the types of cells contained in each measured bead/spot
for platforms with lower than single-cell resolution14–16, which is dif-
ferent from our goal of integrating gene expression and cell location
for downstream analysis. Recently, autoencoders, prominent neural
network architectures that are widely used for representation
learning17, have shown promising results in the context of single-cell
scRNA-seq analysis18–20. We overcome the limitations of previous
methods for spatial transcriptomics by proposing a graph-based
autoencoder framework that learns a joint representation of both the
expression of all measured genes and the spatial location of cells, such
that the separation of cells into different clusters depends on patterns
in the expressionof combinations ofmeasured genes aswell as cellular
neighborhoods.

While correcting for batch effects is a critical and standard step in
the analysis of scRNA-seq data19–24, sample-to-sample variations are
even more pronounced in spatial transcriptomics given the complex-
ity of sample preparation. Deep learning models for scRNA-seq ana-
lysis either require separate pre-processing or use additionalmodeling
parameters to remove batch effects in gene expression19,25,26. In addi-
tion to the biological and technical variations that are also found in
scRNA-seq data, spatial transcriptomics data contains sample-to-
sample variations due to differences in tissue morphology, the tissue
slicing region, as well as due to distortion, rotation, translation, and/or
rupture of the tissue during experimental handling. Correcting for
these additional morphological differences between samples is
necessary for consistent downstream data analysis and cannot be
achieved by the previous batch correction methods for scRNA-seq
data.We introduce amethod for integrating different samples byover-
parameterizing a given neural network, i.e. expanding the hidden layer
sizes of the network to be larger than the input feature dimension.
While intuitively the use of such networks may result in overfitting,
they have recently been shown to generalize well and self-
regularize27,28. Such an approach based on over-parameterization is
generally and directly applicable to any neural network architecture.
We demonstrate batch effect removal using an over-parameterized
graph-based autoencoder for the analysis of STARmap PLUS data
taken from different mouse brains.

A relatively unexplored area that is ideally suited for exploration
based on spatial transcriptomics data is the coupling between a cell’s
gene expression and its mechanical microenvironment. For example,
nuclear shape and chromatin packing as measured by chromatin
staining contains important information about the mechanical
microenvironment of a cell and is tightly coupled to its gene
expression29. Technologies such as STARmap and 10x Genomics Vis-
ium measure chromatin staining paired with spatial transcriptomics,
but current analysis methods do not make use of all three modalities
together (chromatin staining, transcriptomics, and spatial coordi-
nates) or only use images as a cell similarity metric for denoising the
gene expression data30. Given the coupling between chromatin orga-
nization and gene expression, incorporating the chromatin imaging
data is critical to fully exploit spatial transcriptomic data and also
provides an avenue to study the coupling between the mechanical
microenvironment of a cell and its gene expression. We build on our
earlier work on combining scRNA-seq and imaging31 to incorporate the
paired chromatin images into our graph-based autoencoder repre-
sentation of spatial transcriptomic data. A schematic of our approach,
which we call STACI (Spatial Transcritpomics combined using

Autoencoders with Chromatin Imaging) is shown in Fig. 1b. Once
STACI is trainedwith suchmultimodal data, the joint representation of
gene expression, cell location, and DNA staining can be used to infer
missing modalities for new samples, thereby providing an avenue for
reducing experimental costs by allowing to perform only chromatin
imaging on some samples and inferring the corresponding tran-
scriptomic profiles (Fig. 1c). Importantly, the joint representation
provides a powerful approach for the identification of disease bio-
markers to track disease progression in different tissue regions
using features that combine chromatin packing and gene expres-
sion (Fig. 1d).

With the rise of spatial transcriptomic data, several compu-
tational approaches have been developed to integrate different
data modalities in the tissue context. STACI is the first method, to
our knowledge, that simultaneously integrates all the available
modalities, namely gene expression, cellular neighborhoods, and
chromatin imaging, and is capable of translating between differ-
ent data modalities and identifying combined morphometric and
molecular disease biomarkers in the tissue context. In particular,
various methods have been developed that integrate or can be
adapted to integrate single-cell gene expression with images
through a joint latent space, but do not incorporate cell location
into their analysis32–34. In addition, other methods such as HMRF35

incorporate spatial information into the analysis of gene expres-
sion to identifying spatial regions with consistent patterns of cell
states but do not make use of imaging data. It is the joint latent
representation of gene expression and cell location used by
STACI that enables us to incorporate chromatin imaging data into
the analysis and perform various downstream analysis, such as
clustering cells into finer spatial regions, without retraining the
model. An interesting method that integrates all three modalities
available in spatial transcriptomic datasets is stLearn, a denoising
approach that replaces the gene expression of a cell by the
average expression of its neighboring cells, weighted by their
image similarity30. In contrast, STACI aims to identify patterns in
cell neighborhoods, which can consist of diverse cell types/states,
by taking into account all cells in the physical neighborhood
regardless of morphological similarity. Both stLearn and HMRF
are unable to predict gene expression from images or identify
morphological disease markers associated with the identified
tissue regions. Finally, another key feature of STACI compared to
current methods for multimodal integration is the built-in cor-
rection of batch effects that applies to all modalities in the joint
latent space.

As a concrete application, we apply STACI in the context of AD to
study its spatio-temporal progression based on a recently released
STARmap PLUS dataset taken from TauPS2APP transgenic mice, a
model system for AD (Fig. 1a). The STARmap PLUS dataset consists of
fourmousebrain samples taken fromADand controlmice at 8months
and 13 months each (Fig. 2a)4. Spatial transcriptomics, chromatin
images, the deposition of amyloid-β plaques, and neurofibrillary tau
tangles, hallmarks of AD36,37, were jointly measured in each tissue
section. Previous studies observed chromatin condensation, which is
associated with apoptosis, in cortical neurons treated with plaques
in vitro38,39. In addition, disease-specific subtypes of glial cells have
been identified by RNA-seq and spatial transcriptomics1,4,40,41. These
analyses investigated onemodality at a time and lack a comprehensive
integration of high-throughput sequencing with chromatin imaging in
the tissue context.We apply STACI to analyzeplaquedeposition jointly
with gene expression, cell location, and chromatin images in mouse
brains, thereby identifying biomarkers of disease progression. Our
approach could be applied in the same way to tau tangles or any other
protein of interest. In addition, while we here apply STACI to STARmap
data, our method is broadly applicable to spatial transcriptomic
technologies including Visium and MERFISH5.
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Results
STACI uses a graph-based autoencoder to obtain a joint repre-
sentation of cell neighborhood and gene expression
Autoencoders are prominent neural network architectures that have
been widely used for representation learning17. In the context of
scRNA-seq, an autoencoder consists of two parts: the encoder learns a

latent representation of each cell and the decoder reconstructs the
cell’s gene expression from its latent representation19,20. In its standard
implementation, an autoencoder is trained to minimize the recon-
struction error. Due to the sparsity in scRNA-seq data, instead of exact
reconstruction, models have been explored that only estimate the
parameters of a statistical model of gene expression18–20. To learn a

Ad
ja

ce
nc

y

ce
lls

cells

G
en

e 
ex

pr
es

si
on

ce
lls

genes

Encoder

b

DecoderJoint latent space 

Gene expression 
(RNA)

Cell adjacency DNA & protein images 

a

C
hr

om
at

in
 im

ag
in

g

Predict gene expression from chromatin images via joint latent space

New tissue sample Joint latent space 

Image convolution

Gene expression 

Graph decoder

c

ce
lls

genes

Identify spatial biomarkers for disease progression 

Less affected by 
disease

More affected by 
disease

Chromatin imaging markers

Cluster 1

Cluster 2

Gene markersDisease progression

d

Ad
ja

ce
nc

y

ce
lls

cells

G
en

e 
ex

pr
es

si
on

ce
lls

genes

C
hr

om
at

in
 im

ag
in

g

Article https://doi.org/10.1038/s41467-022-35233-1

Nature Communications |         (2022) 13:7480 3



joint latent representation of gene expression, cell location, and
chromatin images, we build an autoencoder model that encodes the
multiplemodalities of a cell to a single latent representation. Toensure
that the joint latent representation captures information from all
modalities, we use a separate decoder to reconstruct each of the
modalities from the same joint latent representation of each cell
(Fig. 1b, Supplementary Fig. 1).

We first describe the subnetwork used to encode the spatial
transcriptomics data (see below for integrating chromatin imaging
data). To obtain a representation of gene expression that takes into
account cellular neighborhoods, we use a graph representation of
each tissue slice, where each cell is a node and an edge is placed
between two nodes if the corresponding cells are in spatial proximity
(Fig. 1a). The latent representation of a cell’s gene expression profile
informed by its location can then be obtained by using a graph-based
convolutional encoder based on Kipf and Welling’s definition, which
performs a weighted average of a cell’s gene expression vector with
its neighbors’ based on the edge weights in the graph42–44; see Sup-
plementary Fig. 1. To ensure that both a cell’s gene expression and its
location are sufficiently captured in the latent representation, we use
two separate decoders, one that ensures accurate reconstruction of
gene expression and the other accurate reconstruction of cell
adjacencies.

Our graph-based encoder approach leads to consistent and bio-
logically meaningful tissue region annotations in the four STARmap
PLUS samples of AD and control mouse brains (Fig. 2b). In particular,
our model automatically segments the brain samples into continuous
regions that correspond to the anatomical regions (cortex, hippo-
campus, dentate gyrus) described in the Allen Mouse Brain Atlas
(Fig. 2f)45. Note that the resulting tissue segmentations are consistent
across the four differentmice, despite differences in tissue slicing, age,
and disease states. Interestingly, our model identifies three clusters in
the cortex (Fig. 2b, f), which correspond to the outer layers of the
primary somatosensory area (cluster 1), inner layers of both the
somatomotor area and the primary somatosensory area (cluster 2),
and both the retrosplenial area and the outer layers of the somato-
motor area (cluster 3). Although no data on amyloid plaque distribu-
tionwasused in training ourmodel, the three cortex clusters identified
by our model show different distributions of amyloid plaques
(Fig. 2g, h). Larger plaque sizes are observed in clusters 2 and 3 as
compared to cluster 1 in both the 8-month AD mouse (p-values:
0.00042 for cluster 2 vs cluster 1 and 3.3e−20 for cluster 3 vs cluster 1)
as well as the 13-month AD mouse (p-values: 0.0062 for cluster 2 vs
cluster 1 and 1.7e−68 for cluster 3 vs cluster 1). We applied the trained
STACI model and the same analysis to four new mouse samples held
out for validation. All the resulting tissue segmentations are consistent
in the new samples, including the separation into 3 clusters in the
cortex regions with cluster 1 consistently having smaller plaques than
the other two cortex clusters (Supplementary Fig. 2). This suggests
that the cortex clusters obtained by our approach are disease-relevant
and identify regions at different stages of AD progression.

In addition to over-parameterization discussed in the following
section (Fig. 2b, c), the key ingredients of our graph-based auto-
encoder are its neural network architecturewith separate decoders for

gene expression and cell adjacency, the choice of the statistical model
of gene expression, as well as the definition of cell adjacency used in
the decoder. As discussed in the following paragraphs, each of these
components is critical for obtaining consistent and biologically
meaningful segmentation of tissue sections.

Neural network architecture. The graph autoencoder structure
introduced by Kipf andWelling uses a single decoder that reconstructs
node adjacencies43, and was applied in the context of spatial tran-
scriptomics in a previous study46. However, we find that using only a
decoder for cell adjacency, in general, cannot sufficiently capture
variations in gene expression. In fact, such an architecture cannot
separate the hippocampal CA1 and CA2/CA3 regions, despite them
being dominated by distinct cell types, and leads to inconsistent
clusters in the cortex (Fig. 2e). Similar inconsistencies are observed if
the adjacency decoder is removed instead (Supplementary Fig. 4c) or
both decoders are removed leaving only the effect of graph convolu-
tion (Supplementary Fig. 4d). In contrast, ourmodel with two separate
decoders for gene expression and cell adjacency is able to recover the
CA1 and CA2/CA3 regions (Fig. 2b). If cell locations are not used as
input, the resulting clusters in the latent space mainly capture differ-
ences in gene expression stemming from different cell types and little
spatial information, even when a cell adjacency decoder is used
(Fig. 2d, Supplementary Fig. 4e). This variant of ourmodel can be used
for analyses focused on gene expression such as for cell type classifi-
cation (Supplementary Fig. 5a).

Statistical model of gene expression. Instead of training the gene
expression decoder of our model using the standard l2 reconstruction
loss, we build on the Deep Count Autoencoder method18 to model
gene expression by predicting the parameters of a zero-inflated
negative binomial (ZINB) distribution. In fact, given the sparsity of
gene expression profiles in STARmap data, the standard l2 recon-
struction loss is unable to reconstruct the observed gene expression
profiles from the latent representations (Supplementary Fig. 3n). This
suggests that a Gaussian distribution is unsuitable for modeling gene
expression in STARmap datasets17. Modeling gene expression using
other distributions, such as a negative binomial (NB) distribution,
either results in inconsistencies with known anatomical structures of
mousebrains or fails to recover consistent clusters in the cortex region
(Supplementary Fig. 4f). In addition, using NB instead of a ZINB dis-
tribution results in aworse feature reconstruction loss (Supplementary
Fig. 3i, m). Similar performance gains when using a ZINB distribution
were observed also in the scRNA-seq setting18.

Definition of the cell adjacency matrix. The definition of neighbor-
hood of cells can be customized to the particular application. To
demonstrate our model, we used a 20-nearest-neighbor adjacency
matrix based on the Euclidean distance between the centroid of each
cell in each sample to obtain the results in Fig. 2. Reducing the size of a
cell’s neighborhood from 20 nearest neighbors by half when defining
the cell adjacencymatrix reveals temporal dynamics and the impact of
disease across samples: In the dentate gyrus (DG), cells separate into
three clusters by samples, with DG of 8-months control and disease in

Fig. 1 | STACI learns a joint representation of gene expression, cell adjacency,
and chromatin images. a STARmap PLUS jointly measures gene expression,
chromatin condensation, and protein accumulation in whole tissue sections. Cell
adjacencies are determined based on the location of the cell nuclei. b A joint latent
space is computed for gene expression, cell adjacency, and chromatin images using
an autoencoder neural network architecture. Separate decoders are used to
reconstruct the three modalities from the joint latent space. UMAP is used to
visualize the joint latent representationof all cells in the tissue samples; the cells are
colored by clustermembership, with clustering performed in the joint latent space.

cWhen a new tissue sample with only chromatin imaging is obtained, then the joint
latent representation of this new sample can be inferred through the image enco-
der. Gene expression profiles of the new sample at single-cell resolution can be
predicted from the joint latent representation using the trained gene expression
decoder. d The joint latent space can be used to analyze the spatio-temporal pro-
gression of disease in a holistic manner using all available data modalities and to
identify disease biomarkers including disease-associated changes in gene expres-
sion, cellular neighborhoods, nuclear morphology, and chromatin condensation.
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the same cluster (Supplementary Fig. 4a); interestingly, subclustering
the spatial cluster corresponding to DG in our model using a larger
neighborhood size recovers the same bifurcate trajectory from
8 months to 13 months (Supplementary Fig. 4b). In the cortex, con-
sistent with our observation that the cluster 3 region indicates a more
advanced disease stage (Fig. 2g, h), the model with smaller neighbor-
hoods identifies differences in disease progression by separating the

cluster 3 region in the 8-months AD sample from the 13-months AD
sample; in contrast, cluster 1, which indicates an earlier stage of AD, is
dominated by age differences when using smaller neighborhoods
(Supplementary Fig. 4a). Other definitions of cell adjacency/neigh-
borhoods, for example based on a physical distance cutoff instead of
k-nearest neighbors, can also be used depending on the particular
application (Supplementary Fig. 3a, h, i, o).
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STACI identifies consistent tissue regions across different sam-
ples through over-parameterization
Unlike standard autoencoders, which use lower-dimensional latent
spaces for dimension reduction, STACI uses over-parameterized
autoencoders, which represent the data in a higher dimensional
latent space than the input space. The benefit of using over-
parameterized autoencoders might be unintuitive since such net-
works have enough parameters to learn the identity map. However,
over-parameterized autoencoders have been shown to self-regularize
and lead to embeddings that stretch along the top principal compo-
nents (PCs) of the data28. Thus, if the main sources of variation are
biological, such as cell type differences, we hypothesize that over-
parameterization can be used to emphasize the biological signal and
reduce the sample-to-sample differences, thereby allowing for the
integration of data from different tissue slices. In addition, over-
parameterization is a simple approach that directly applies to any
neural network model and avoids the use of separate methods to
explicitly model batch effects19,25,26.

Consistent with our hypothesis, encoding data from different
tissue slices into a joint over-parameterized latent space yields clusters
that are consistent across different samples (Fig. 2b). Namely, clusters
in the latent representation correspond to the same tissue region
across different samples with comparable fractions of cells in each
tissue sample (Fig. 2b, Supplementary Fig. 6d). Note that the under-
parameterized version of the same model results in strong sample-to-
sample differences in the resulting clusters with different fractions of
cells from each tissue sample (Supplementary Fig. 6a) as well cells in
the same cluster corresponding to different spatial regions in different
samples (Fig. 2c). Assessing batch effects using the average silhouette
width, ameasure used in previous studies47–49, also indicates that over-
parameterization leads to a significant reduction of batch effects
(Supplementary Fig. 7a, Methods). This improvement in batch
separation is further confirmed by using entropy of mixing, which
improved from 0.79 in the under-parameterized model to 1.12 in the
over-parameterized model and shows consistent improvements in
each cluster (Supplementary Figs. 7a, Methods). The clusters were
obtained by applying Leiden clustering50 to the top 40 principal
components of the latent representation with a clustering resolution
of 0.1. Batch effect correction using an over-parameterized latent
space is also observed when different Leiden resolutions are used
(Supplementary Fig. 7b–d) and when different clustering methods are
applied (Supplementary Fig. 7e, f, 8). Interestingly, the sample-to-
sample variation in the under-parameterizedmodel is less significant if
cell location is not incorporated into the latent representation (Sup-
plementary Fig. 6a, e), which indicates that the development of simple
and effective methods for removing sample-to-sample variations is
even more critical for the analysis of spatial transcriptomics data than
what it already is for scRNA-seq data.

Consistent with our hypothesis, over-parameterization sig-
nificantly increases the variance of the top PCs, and these do not
correspond to sample-to-sample differences (Supplementary Fig. 6).
Once the latent space dimension is increased sufficiently to remove
sample-to-sample differences, the resulting embedding is insensitive
to the exact number of latent dimensions being used (Supplementary
Fig. 6b–d). An alternative neural network-based approach used stan-
dardly for batch effect correction in scRNA-seq data is to add an
adversarial loss term in the latent space and train an additional neural
network to penalize for any sample-to-sample differences51.While such
an approach is able to reduce sample-to-sample differences also in the
analyzed STARmap dataset, they are still present in some regions
(Supplementary Fig. 9); over-parameterization achieves better per-
formance without requiring additional neural networks or changing
the training procedure.

Our approach is also applicable to other spatial transcriptomics
technologies, such as the commercially available 10x Visium platform,
and sequencing datasets beyond spatial transcriptomics, whenever the
main sources of variation are biological and not given by batch effects
or sample-to-sample differences. To demonstrate this, we applied
STACI to a 10x Visium dataset of 12 mouse brain samples consisting of
AD and control mice at different time points52. Compared to the clus-
ters given by 10x based on gene expression alone (Supplementary
Figs. 10a, 11), STACI achievesmore consistent results across all samples,
given the known anatomical regions of mouse brains (Supplementary
Figs. 10c, 12). STACI also achieves better results in terms of consistency
across samples and consistency with the known anatomical regions as
compared to applying the same architecture with an under-
parameterized latent space to input data batch corrected by mutual
nearest neighbors (MNN)48 or ComBat53,54 (Supplementary Fig. 13). The
computational resources required for the analysis of this dataset were
recorded over six training epochs (Supplementary Fig. 14).

STACI translates chromatin images to their corresponding gene
expression profiles through the learned joint latent space
Current spatial transcriptomic technologies, such as STARmap and
Visium, often obtain nuclear images together with spatial tran-
scriptomic data in the same tissue section. Although these images
contain rich information about cell type, epigenetic state, and the
mechanical microenvironment of a cell, they are usually used only for
pre-processing tasks such as cell segmentation or manual annotation
of tissue regions, but not for downstream tasks3,4,8. In addition, current
spatial transcriptomic methods are more expensive and time-
consuming to obtain than DNA staining and it is thus of interest to
develop methods that can translate from chromatin images to spatial
transcriptomics.

To predict the gene expression profile of each cell, we use image
patches centered at each cell of a diameter (15.14 µm) slightly larger

Fig. 2 | Over-parameterized graph-based autoencoder model enables con-
sistent and biologicallymeaningful annotation of spatial tissue regions across
multiple samples and tissue sections. a The STARmap PLUS dataset4 contains
four mouse brain samples at 8 months and 13 months. Each time point consists of
an AD mouse and a control mouse. Each tissue slice contains the cortex, corpus
callosum, and hippocampus regions. b Clustering of the cells in the latent space
learned by our over-parameterized autoencoder model leads to consistent spatial
clusters across the fourmouse samples. The latent dimension of thismodel is 6000
and a 20-nearest-neighbor graph was used to obtain the input cell adjacency
matrix. Each dot is a cell plotted with its physical coordinates in the tissue and
colored by the cluster memberships inferred in the latent space. c The use of
standard (under-parameterized) autoencoder models leads to inconsistent spatial
clusters across mouse samples: cells from the same cluster (blue) correspond to
different regions in 13-months control (left) and 13-months AD (right) mice. The
latent dimension of this model is 1024. d Clustering of the cells in the latent space

by our autoencoder model without cell adjacencies as input cannot separate dif-
ferent spatial neighborhoods. e Clustering of the cells in the latent space by our
autoencoder model without the gene expression decoder fails to separate the CA1
region from the CA2/CA3 region and produces inconsistent spatial regions in the
cortex across mouse samples. f A reference slice from the Allen Mouse Brain Atlas
and Allen Reference Atlas - Mouse Brain45 showing approximately the same ana-
tomical region as in the STARmap samples. Our model automatically segments the
brain samples into continuous regions that correspond to the reference anatomical
regions (cortex, hippocampus, dentate gyrus). g Binary images of amyloid plaque
in the cortex of the 8-months AD sample (top) and 13-months AD sample (bottom)
showing the spatial differences in plaque distribution in the three cortex clusters
identifiedbyourmodel.hHistogramsof plaque size,measured innumber of pixels,
plotted for the three cortex regions, indicate larger plaque sizes in clusters 2 and 3
ascompared to cluster 1. Frequency isnormalizedby the areaof each cortex region.
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than an average cell size to ensure that the entire nucleus is contained.
The image patches are embedded into the same latent space as the
spatial transcriptomics data using a convolutional autoencoder that
not only minimizes the reconstruction error of the image, but also the
distance in the latent space between the transcriptomic and image
representation of each cell (Supplementary Fig. 1, Method). The
resulting joint latent space contains information from both spatial
transcriptomics and chromatin images. When an unseen sample with
only chromatin images is acquired, the sample can be embedded into
the joint latent space by the image encoder and decoded to a gene
expression profile, thereby enabling the translation from chromatin
images to gene expression profiles. We here demonstrate the inte-
gration of images with only the chromatin channel to hold out the
plaque images as an orthogonal validation of our analysis, but plaque
and other multiplexed imaging channels (if available) can be incor-
porated into the joint latent space by using multi-channel cell images
as input to the CNN autoencoder. Also unpaired datasets (such as
scRNA-seq or scATAC-seq, if available) can be integrated without
updating the existing autoencoders by training an additional auto-
encoder per new modality and choosing an appropriate distance
metric, such as KL divergence31, formatching the latent representation
of the new modality with the existing joint latent representation.

To test our model, we omit the 8-month control sample from the
training of both the graph-based autoencoder for the spatial tran-
scriptomic data and the convolutional autoencoder for the chromatin
images. We test our model by translating chromatin images of the
8-month control sample into gene expression profiles (Fig. 3a, Sup-
plementary Figs. 15 and 16). Visualization of the resulting gene
expression profiles by UMAP shows that the variation of the predicted
gene expression profiles falls within that of the three training samples
(Fig. 3c). Clustering the predicted gene expression profiles of all
samples and comparing the expression of cluster markers to a refer-
ence atlas53 shows that the clusters correspond to cell types (Fig. 3c, d,
Methods), that the proportion of different cell types are consistent
across samples (Supplementary Fig. 17c), and that the cluster identities
aswell as the identified cell typemarkers are consistentwith a previous
study4 (Fig. 3e, Supplementary Fig. 17d). Although our model is not
optimized for predicting gene expression of single cells, it is able to
translate chromatin images to gene expression profiles in unseen
samples and generalize to new experimental conditions, thereby
indicating that the joint latent space captures functional information in
both gene expression and chromatin organization.

Chromatin condensation is predictive of the size of amyloid
plaques in a cell’s neighborhood
With the joint latent space providing a joint representation of
both spatial transcriptomics and chromatin images, we can study
how disease progresses in different regions of the tissue and
connect the disease mechanism to both nuclear morphology and
gene expression. To do this, we train a fully connected neural
network on the joint latent space to predict the size of plaques in
an image patch, which encompasses a similarly sized neighbor-
hood as the 20-nearest-neighbors used to form the adjacency
matrix for the spatial transcriptomics autoencoder, centered at
each nucleus (Fig. 4a, b, Supplementary Fig. 18b). We define a cell
as positive if there is plaque in the image patch centered at the
cell. Applying our regression model to this classification task
using a cutoff in the predicted plaque size is able to generalize to
all cortex regions in the 8-month and 13-month control mice
(Supplementary Data 1, model #18). In addition, it can differ-
entiate the positive and negative cells of cluster 1 in the AD
mouse at both 8 and 13 months (Supplementary Data 1, model
#18). This suggests that the joint latent space captures the
changes in cells in response to nearby plaques and that our model

is able to identify such changes. But despite the good general-
ization accuracy across various clusters and samples, our model is
unable to differentiate the positive and negative cells in cluster 3
in the 13-month AD mouse, even when using them for training
(Supplementary Fig. 18c, Supplementary Data 1). This indicates
that cells further away from plaques in cluster 3 have similar gene
expression, cell neighborhood, and nuclear morphology as cells
close to plaques (within the input image patch). Indeed, when
plotting the classification predictions by cell location in the tissue
samples, we observe that while cells classified as positive are
mostly within the input image patches containing plaques in
cluster 1, positive classifications also appear at larger distances
from plaques in cluster 3 (Supplementary Fig. 18d). This obser-
vation further supports our hypothesis that cluster 3 corresponds
to a cortex region that is more advanced in the disease progres-
sion as compared to cluster 1. A similar analysis also suggests that
cortex cluster 2 is more advanced than cluster 1 with respect to
disease progression (Supplementary Fig. 18d, Supplemen-
tary Data 1).

Next, we examine which chromatin and gene expression features
are used by our regression model for predicting plaque size. To
determine the features in the joint latent space that contribute posi-
tively to the plaque size prediction, we use gradient backpropagation
from the regression output to the latent features. Similar to the Grad-
CAMmethod54, the latent feature activations are then used tomap the
last convolutional layer of the image encoder back to the input chro-
matin images (Methods; Fig. 4c). This results in a value (the gradient)
per pixel in the chromatin images, which indicates the predictiveness
of the pixel for plaque size. By segmenting the nuclear images
(Methods, Supplementary Fig. 20) and computing the average gra-
dient in each nucleus, we find notable cell-type specific differences;
microglia in the AD mice, for example, have a higher gradient at both
time points than excitatory or inhibitory neurons, indicating that they
are more predictive of plaque size (Fig. 4d, Supplementary Fig. 21).

A more careful inspection of the regression gradient in each cell
indicates that the chromatin features used for plaque prediction are of
subcellular scale and may be associated with chromatin condensation
(Fig. 4e–g). Changes in chromatin condensation patterns have pre-
viously been found to be associated with mechanical signals from the
microenvironment8,18. Interestingly, the distribution of chromatin
intensity increases with disease progression in all cell types, and the
distribution in non-neuronal cells tends to become bimodal, thereby
indicatingmore pronounced euchromatin and heterochromatin states
(Figs. 4e, 5a, Supplementary Figs. 24, 25).We summarize the chromatin
condensation state of a cell by its heterochromatin ratio (total chro-
matin pixel intensity of heterochromatin regions in the cell normalized
by total chromatin pixel intensity of the cell), where heterochromatin
regions are defined via a threshold on chromatin intensity established
in aprior study18.While the thresholdwas established infibroblasts, it is
consistent with the natural cutoff in the bimodal distributions that we
observe (Figs. 4e, 5a, Supplementary Fig. 24). Similar to the gradient of
plaque size regression, heterochromatin ratio exhibits differences
between cell types, e.g. microglia and oligodendrocytes have higher
heterochromatin ratios than excitatory and inhibitory neurons, and the
heterochromatin ratio increases significantlywith disease across nearly
all cell types (Fig. 4f, Supplementary Fig. 22). This is particularly notable
given the general trend that chromatin decondenses with aging55,
which manifests itself through a decrease in chromatin intensity and
heterochromatin ratio from 8 to 13 months (Supplementary Figs. 22,
26, 27). Interestingly, the heterochromatin ratio shows a strong asso-
ciation with the gradient of plaque size regression in all cell types
(Fig. 4g, Supplementary Fig. 23). Thus, chromatin condensation, as
measured by the heterochromatin ratio, is indicative of disease pro-
gression at single-cell resolution within the tissue microenvironment.
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Nuclear morphology and gene expression are associated with
cell type-specific spatio-temporal disease response
Characterizing cells by chromatin condensation and regression gra-
dient has the potential to allow the identification of spatio-temporal
changes in AD. Indeed, the spatial distribution of chromatin con-
densation is in linewith our previous observation that cortex clusters 2
and 3 are more advanced in disease than cluster 1—the chromatin
intensity and heterochromatin ratio in cluster 1 are lower than in

clusters 2 and 3 for all cell types in both the 8-months and 13-months
AD samples (Fig. 5a, Supplementary Figs. 22, 24, 25). To analyze whe-
ther changes in regression gradient and heterochromatin ratio are also
associated with changes in subtype composition, we divide cells of
each cell type into four quadrants by setting thresholds for regression
gradient and heterochromatin ratio (Fig. 5a, Supplementary Figs. 24,
25). For all cell types, the fraction of cells with high heterochromatin
ratios and high gradients (top right quadrant), is larger in cortex
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clusters 2 and 3 as compared to cluster 1, in line with our hypothesis
that the cortex regions corresponding to clusters 2 and 3 are at amore
advanced disease state. Lookingmore closely atmicroglia, we observe
an increase in their number in each cluster of the two AD samples
compared to the controls (Fig. 4e, Supplementary Fig. 28); in fact, the
proliferation of microglia is known to accompany microglia activation
in AD56,57. Looking more closely at the different subtypes of microglia
(M1-M3)4 reveals that in cortex cluster 1 of the 8-month AD sample,
which we hypothesize to be at the earliest stage of AD, the known
disease-associated subtype of microglia (DAM, M3) has high hetero-
chromatin ratio and high regression gradient, whereas the other sub-
types dominate the lower left quadrantwith lowheterochromatin ratio
and low gradient (Fig. 5a). As the disease progresses in cluster 2, we
observe that the non-disease subtypes (M1 and M2) start to show high
chromatin condensation and regression gradient. Finally, the cluster 3
region of the cortex shows a large number of DAM cells, a majority of
which have high gradient and high heterochromatin. This suggests
that healthy subtypes of microglia undergo chromatin condensation
and become predictive of nearby plaques before differentiating into
the DAM subtype and changing their gene expression profiles.

Given our observation that the regression gradient and hetero-
chromatin ratio are associated with functional properties of disease
progression including subtype composition, we hypothesize that
these features can be used to obtain more powerful and more specific
gene markers of disease. We identify such disease markers through a
differential expression analysis (DE) of AD cells in the high-gradient
high-heterochromatin quadrant and control cells in the low-gradient
low-heterochromatinquadrant. Inmicroglia, suchan analysis identifies
the twoknownmarker genes of theDAMsubtype, CD9 andCST7, to be
strongly associated with the cluster 3 region in the cortex, which are
not identified by a standard differential expression analysis of micro-
glia that are found in spatial proximity to plaques versus further away
(Fig. 5b, Supplementary Fig. 19). Similarly, in oligodendrocytes, we
identify a disease gene marker PPP1R9B and three myelin-associated
genes, MOBP, JPH4, and PLP1 to be strongly associated with clusters 2
and 3, which are not identifiable using a standard differential expres-
sion analysis (Fig. 5b, Supplementary Fig. 19). Similarly, in excitatory
neurons, there is a significant increase in the number of discovered
marker genes in the 8-months AD sample when thresholding by het-
erochromatin ratio and gradient, compared to a standard differential
expression analysis of diseased versus control (Fig. 5b, Supplementary
Fig. 19). Thesemarker genes also show a consistent spatial distribution
across the three cortex regions we identified, e.g. CTSB is increasingly
upregulated in microglia from cluster 1 to cluster 2 and 3 (Supple-
mentary Fig. 29). These marker genes are enriched in gene ontology
terms related to synaptic transmission, secretion, protein localization,
and transport (Fig. 5c), which have known associations with AD36,58,59.
Consistent with the association between chromatin condensation and
disease as an indication of the change in the mechanical micro-
environment, six of the marker genes are annotated for regulation of
cell size and/or cellular component size (KCNMA1, PAK1, DBN1, PFN2,

SEMA3C, CFL1), in addition to marker genes involved in transmem-
brane signaling and cellular component organization. There is a loss of
excitatory neurons in cortex cluster 3 of the 13-months AD sample,
compared to both the 13-months control and the 8-months AD sam-
ples (Supplementary Fig. 28), which is another indication that cluster 3
is ahead in disease progression as compared to the other cortex
clusters. Differential expression analysis identifies genes that can
mostly be attributed to the subtype Ex2, which is the dominant sub-
type in cluster 3 and shows strong signs of cell death (Fig.5b, Supple-
mentary Figs. 25, 27). While FAIM2, an anti-apoptotic gene, is also
identified by our analysis, most genes including DDIT3 are associated
with cell death, signaling, and synaptic transport60,61. Our analysis
demonstrates that chromatin condensation together with our regres-
sion model is capable of identifying spatio-temporal changes in dis-
ease as well as disease gene markers.

Discussion
We presented STACI, a framework for integrating multi-modal spatial
data with built-in batch correction. Current strategies that analyze
spatial transcriptomics data using scRNA-seq methods ignore the
spatial context of cells, although biological processes often involve
changes in the spatial organization of cells1,2,62. Analogous to image
convolution, where taking the neighborhood of each pixel into
account is critical for the performance of downstream tasks, we
introduced a graph convolutional autoencoder that integrates both
the gene expression of a cell and thatof its neighbors.Our graph-based
autoencoder structure decodes both a cell’s gene expression profile as
well as its adjacencies. Unlike when using other graph convolutional
methods43,46, clustering cells in the latent space embedding obtained
by STACI leads to segmentations of the tissue sections into known
anatomical regions. In addition, we proposed the use of over-
parameterization as a simple and effective strategy to integrate dif-
ferent samples into the same latent space and showed that this results
in consistent clusters across different tissue samples, despite the gene
expression and morphological differences in the tissue slices. Batch
correction methods developed for scRNA-seq do not take tissue
morphology into account and are ineffective when both gene
expression and cell location are used in the analysis. STACI is applic-
able in this situation and provides a simple batch correction approach
through over-parameterization that retains the neural network archi-
tecture and does not require specifying a statistical model of batch
effects. Besides the separation into known anatomical regions, such as
cortex and corpus callosum, ourmodel separates the cortex into three
regions. Interestingly, our analysis suggests that this separation is
disease-relevant, with the three regions showingdifferences innumber
and size of amyloid plaques as well as gene expression and chromatin
condensation states of cells.

STACI provides a framework for integrating additional data
modalities with spatial transcriptomics data. In particular, we explored
the integration of spatial transcriptomics with chromatin imaging. A
number of studies have revealed that chromatin organization reflects

Fig. 3 | STACI translates chromatin images to gene expression profiles through
the learned joint latent space. The 8-months control sample was not used in
training the graph or image autoencoders. a An example of the reconstruction of a
chromatin image in the 8-months control sample using the image autoencoder.
Similar reconstruction quality of chromatin images is observed across the
8-months control sample with 8062 cells. b Schematic of translating chromatin
images to gene expression. The joint latent space embedding is inferred from the
chromatin images by the image encoder. Single-cell gene expression profiles are
predicted from the inferred joint latent space by the gene expression decoder.
c UMAP of the predicted gene expression profiles. The predicted single-cell gene
expression profiles of the test sample (8-months control) falls within the variation
of the training samples (left). Leiden clustering applied to the predicted gene
expression profiles identifies five clusters (right). d Bar plot of average cosine

similarity between cells in each of the five clusters and the mean expression of the
top two cell types in a reference atlas53 (ranked by average cosine similarity). The
lower table shows the number of reference cell types in the atlas corresponding to
excitatory neurons (Ex), oligodendrocytes (Oligo), and dentate gyrus (DG). e Cell
type composition in each cluster in the 8-months control sample as annotated in
Zeng et al.4 (left) is consistent with the predicted cell type annotations in (d).
Predicted expression of known cell type markers in each cluster in the 8-months
control sample excluded from training (right) show cell type specificity. *Differ-
entially expressed cluster markers for each cell type; p-val < 0.05 and fold
change > 1.1. Excitatory neurons (excluding CA1, CA2, CA3), DG, and oligoden-
drocytes in the corpus callosum are included in the clustering to represent major
neuronal and glial cell types. All samples were used for clustering and differential
expression analysis.
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the mechanical microenvironment of a cell and is critical for the co-
regulationof genes29,63–67. Various cell types aremechano-sensitive and
mechano-chemical signals are known to be associated with the pro-
gression of different diseases63–67. It is conceivable that the accumu-
lation of amyloid plaques in AD changes the mechanical
microenvironment, but little is known about its effect on neighboring

cells. In order to link the physical and biochemical space, STACI
simultaneously represents gene expression, cell location, and chro-
matin features in a joint latent space. By associating this joint latent
space with amyloid plaques, we found that chromatin condensation of
cells is predictive of the size of nearby plaques (as measured by
regression gradients). Interestingly, STACI also allows incorporating
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new samples where only a single modality is available to predict the
missing modality and e.g. translate between chromatin imaging and
spatial transcriptomics, as well as perform downstream tasks in the
joint latent space given just one modality.

While we demonstrated the use of STACI on STARmap PLUS data,
it can be directly applied to data from other spatial transcriptomics or
proteomics technologies including 10x Visium, Slide-seq, MERFISH,
seqFISH, and CODEX5,6,8,68. Cells/beads/spots in these datasets are
represented as nodes in a graph, and adjacencies in the graph can
be customized to represent a fixed-size neighborhood with a distance
threshold or to capture density changes with k-nearest neighbors. To
ensure over-parameterization, the latent dimension of the model
should be larger than the input feature dimension, i.e. the number of
genes or proteins, but themodel is not sensitive to the exact choice of
the latent dimension. We demonstrated the integration of different
data modalities based on paired spatial transcriptomics and imaging
data obtained in the same tissue section by using an l2 loss to match
the different modalities in the latent space. It is possible to extend our
method to datasets where the spatial transcriptomics and imaging
data are not obtained in the same tissue section, such as in Slide-seq,
by using a discriminative loss31. Collectively, we presented a method
for analyzing disease progression in complex tissue microenviron-
ments by combining multiple data modalities, thereby allowing the
identification of disease biomarkers that capture gene expression
combined with cell location and chromatin condensation patterns.

Methods
Ethical statement
All animalprocedures followed animal careguidelines approvedby the
Genentech Institutional Animal Care and Use Committee (IACUC) and
animal experiments were conducted in compliance with IACUC poli-
cies and NIH guidelines4.

Graph convolutional autoencoder
We introduced a graph convolutional autoencoder to compute a joint
representation of gene expression and cell adjacency. A graph G= (V,
E) is constructed for each tissue sample. Each node vi is a cell and its
feature is the gene expression of cell i. An edge is added between two
cells given a user-defined distance threshold for spatial proximity. We
tested k-nearest neighborsby Euclidean distance andphysical distance
thresholds (Supplementary Fig. 3). The input featurematrix X contains
the gene expression of all cells in the sample and is of size N ×D, where
N is the number of cells and D is the number of genes. The input
adjacency matrix AN x N is binary in our paper, but can be weighted
by a function of the distance between cells based on the particular
application of interest. Our model builds on variational graph
autoencoders43, using the same graph encoder and adjacency matrix
decoder. The graph encoder consists of two graph convolutional lay-
ers and computes a latent feature zi of size F for each cell i. The

adjacencymatrix decoder calculates a reconstructed adjacencymatrix
eA, such that eAij = sigmoidðzTi zjÞ is the reconstructed edge weight
between cells i and j. We added a gene expression decoder that
decodes thedropout rateπ,meanμ, anddispersionθ of a zero-inflated
negative binomial (ZINB) distribution18 from the latent space of
the graph encoder that maximizes the likelihood of the input gene
expression. The inferred parameters of the ZINB distribution have the
same sizeN ×D as the input gene expressionmatrix and are defined as:

H = LeakyReLU ZW0

� � ð1Þ

π = sigmoid HWπ

� � ð2Þ

μ= expðHW μÞ ð3Þ

θ= exp HW θ

� � ð4Þ

Alternatively, we tested a variant of our model, in which the gene
expression decoder predicts the parameters of a negative binomial
(NB) distribution, i.e. omitting the dropout rate π. In training, we
simultaneously minimize the reconstruction loss of the two decoders
and the Kullback-Leibler (KL) divergence between the latent distribu-
tion Z and a Gaussian prior:

L=Binary CrossEntropy eA,A
� �

� α* log½ZINBðX ;π,μ, θÞ�
+β*KL½q X ,Að Þ∣pðZ Þ�,

ð5Þ

where α and β are hyperparameters, and qðX ,AÞ and pðZ Þ correspond
to the inference model and Gaussian prior defined previously43.
ZINBðX ;π,μ, θÞ is replaced byNBðX ;μ, θÞ in the NBmodel. Leaky ReLU
activation69 is used for all hidden layers. In training, we omitted 15% of
randomly selected nodes and their corresponding edges; 5% of the
omitted nodes were used for validation and the remaining 10% were
used for testing. All models were trained using the Adam optimizer17

with a learning rate of 0.001.

Clustering and visualization of the latent features. All clustering was
performed using the Leiden clustering method implemented in the
SCANPY package24,50. We followed the standard procedure for Leiden
clustering of single-cell data by computing a neighborhood graph
from the top 40 principal components of the latent features and
clustering the neighborhood graph24. For the neighborhood graph, the
neighborhood size, “n_neighbors”, was set to 10. The resolution of
Leiden clustering was set to 0.1 to obtain the clustering in Figs. 1b and
2b. The visualization of latent features of cells using UMAP70 also

Fig. 4 | Prediction of amyloid plaque size from the joint latent representation
results in the identification of cell types and chromatin features that are pre-
dictive ofplaquenear cells. aAn example of overlaid chromatin (red) and amyloid
plaque (green) channels from the 13-months AD sample with 10021 cells.
b Schematic of our regressionmodel that predicts plaque size from the joint latent
representation of gene expression, cell adjacencies, and chromatin images.
c Regression gradient (blue) projected to the input chromatin image (red). The
analysis uses the two ADmouse sampleswith at least 7257 cells each.dDistribution
of regression gradients within single cells in each cell type in cluster 3 of AD sam-
ples. *p-value <0.05 for 8-month vs 13-month samples. Cells are from twomicewith
at least 7257 cells each. Bounds of boxes indicate quartiles. Whiskers indicate
extrema. Two-sided T-tests are performed and raw p-values are 0.2446 (Astro),
0.002677 (Endo), 0.04300 (Ex), 0.2872 (Inhi), 0.002549 (Micro), 0.6968 (OPC),
0.01780 (Oligo), 0.1019 (SMC). e Histogram of chromatin pixel intensities of

microglia in the cortex of the 8-months samples (normalized to sum to 1, since the
proportion of microglia increases in AD; see inset). Red line: threshold of hetero-
chromatin pixels (seeMethods). fDistribution of heterochromatin ratio of each cell
type in cluster 3 of 13-months control andADsamples. *p-value < 0.05 for control vs
AD samples. Cells are from twomice with at least 7766 cells each. Bounds of boxes
indicate quartiles. Whiskers indicate extrema. Two-sided T-tests are performed and
raw p-values are 8.715e−9 (Astro), 0.07304 (DG), 2.705e−8 (Endo), 1.380e−41 (Ex),
9.950e−8 (Inhi), 6.053e−8 (Micro), 1.111e−4 (OPC), 4.544e−13 (Oligo), 9.479e−4
(SMC). g Heterochromatin ratio versus log2 average gradient of cells in the cortex
of the 8-months AD sample colored by cortex cluster membership. Red line fitted
using linear regression. P-values are calculated by two-sidedWald Test and the null
hypothesis that the slope is0. Ex excitatory neuron,Micromicroglia, Inhi inhibitory
neuron, Endo endothelial cell, Astro astrocytes, OPC oligodendrocyte precursor
cell, SMC smooth muscle cell.
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used a neighborhood size, “n_neighbors”, of 10 and “min_dist” was
set to 0.25.

Metrics of batch effect correction. The silhouette score is computed
using the silhouette_batchmethod in the scib package49. The entropy
of mixing follows the implementation in a previous study48. Given

100 randomly selected cells from all four samples, the entropy of
each cell is computed given the sample label of the 50 nearest cells in
the latent space. The average entropy over the 100 randomly selec-
ted cells was averaged over 100 bootstrap samples. The entropy of
mixing is calculated for all cells and also for cells in each cluster
separately.

Chromatin condensation in microglia increases as disease progresses

GO Biological Process #genes Fold enrichment FDR Child term (#genes)
Macromolecule localization 19 2.87 4.20e-2

protein localization to organelle (6)Cellular protein localization 15 3.32 7.65e-2
Modulation of chemical synaptic 

transmission 15 2.93 9.57e-2 regulation of neurotransmitter secretion (4)
Regulation of hormone levels 10 4.26 1.05e-1 regulation of hormone secretion (4)

Regulation of biological quality 27 1.73 1.15e-1 regulation of anatomical structure size (6)
Organic substance transport 14 2.86 1.22e-1 phospholipid transport (1)

Intracellular transport 11 3.52 1.31e-1 transport along microtubule (2)
Nitrogen compound transport 13 3.05 1.32e-1 -

Secretion 10 3.64 1.91e-1 exocytosis (5)
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Joint latent space of spatial transcriptomics and chromatin
images
A standard variational CNN autoencoder17 was trained on 2D chro-
matin images obtained through maximum projection of the 3D
chromatin images. Each input image patch is a d × d square centered
at the centroid of a cell and min-max scaled to [0, 1]. When the joint
latent space is used for predicting gene expression of single cells in a
new sample with only chromatin images, we set d to 15.14 µm, which
is slightly larger than the diameter of a cell allowing the prediction of
the gene expression to focus on the target cell. When the joint latent
space is used for downstream analysis, such as for the regression of
plaque sizes, d was set to 75.68 µm, which is comparable to the
neighborhood size of the 20-nearest-neighbors cell adjacency used
in the graph convolution. The CNN encoder has five convolutional
layers, followed by two fully connected layers to separately compute
themean and dispersion fromwhich the latent features are sampled.
The decoder is the inverse of the encoder. This is similar to the CNN
autoencoder in our earlier work31. Leaky ReLU activation69 was used
for all hidden layers. We trained and fixed the parameters of the
graph autoencoder before training the CNN autoencoder. The latent
space Z’ of the CNN has the same dimension as the latent space Z of
the graph autoencoder. The training loss of the CNN autoencoder is
the sum of the CNN reconstruction loss calculated by the standard l2
loss and the l2 loss between Z and Z’. The same split of training and
validation as for the graph autoencoder training was used. To further
test themodel’s ability to predict gene expression of unseen samples,
we omitted the entire 8-month control sample from training both the
graph autoencoder and the CNN autoencoder. To test the incor-
poration of unseen samples in the joint latent space for the down-
stream regression, both 8-month control and AD samples were
omitted in training the graph and CNN autoencoders. When incor-
porating an unseen sample, the CNN encoder was used to infer the
joint latent space from the chromatin images. The gene expression
decoder of the graph autoencoder was used to predict the gene
expression from the inferred latent space. The mean μ of the ZINB
distribution was used as the predicted gene expression. The average
negative log ZINB likelihood loss of the gene expression predicted
from DNA images is comparable to the reconstructed gene expres-
sion when gene expression and cell locations are used as the input to
the graph convolutional autoencoder (prediction loss = 1.3969;
reconstruction loss = 1.3725).

Cell type annotation using predicted gene expression
Weused a reference gene expressiondataset53 to annotate amixtureof
three representative neuronal and glial cell types by their predicted
gene expression: oligodendrocytes in the white matter, DG, and cor-
tical excitatory neurons. Five clusters were obtained from the pre-
dicted gene expression by Leiden clustering50 (resolution = 0.2).
Cluster markers of each cluster compared to all other cells outside of
the cluster were obtained by differential expression analysis using the

predicted gene expression. The union of upregulated genes in each
cluster was used for the following comparisons. For each subtype of
oligodendrocytes, DG, and cortical excitatory neurons, we calculated
the cosine similarity between its mean gene expression in the refer-
ence dataset and the predicted gene expression of each cell in our
dataset. The cosine similarity of each reference subtype was averaged
across all cells in the same cluster.

Adversarial loss in the latent space
In addition to the over-parameterization approach for batch effect
removal, we explored the use of an adversarial loss in the latent space
by training an additional discriminator. The discriminator was trained
to assign the correct sample labels to cells from each sample given the
latent representation of cells as the input. For the discriminator we
used a fully connected network with one hidden layer of size 128 and
leaky ReLU activation69. For the loss of the discriminator we used the
cross-entropy lossbetween the true sample label and thediscriminator
output after sigmoid activation. In order to train the graph auto-
encoder to make the discriminator output equal probabilities of all
sample labels for any given input sample, an additional adversarial loss
term was added to the loss of the graph autoencoder. For this adver-
sarial lossweused the cross-entropybetween the discriminator output
after sigmoid activation and the vector ½0:5,0:5,0:5,0:5�T , using the
discriminator updated in the previous epoch. The target vector
represents a cell having equal probability of being in any of the four
tissue samples. We alternated the training between the under-
parameterized graph autoencoder (1024 dimensions) and the dis-
criminator, such that only one model was updated in each epoch and
the other model’s parameters remained fixed.

Spatial transcriptomics data pre-processing
We obtained the raw count matrix of gene expression and the spatial
location of cell centroids from Zeng et al.4 The 2112 genes, which
passed filtering in Zeng et al.4, were used in our analysis. For the graph
autoencoder, the raw gene expression �xi of cell i was normalized as
xi =min maxðlog2ð �xi +0:5ÞÞ to a range of [0, 1]. This normalization
method achieved lower gene expression reconstruction loss in vali-
dation and testing than scaling the expression of each gene across all
cells by z-score normalization (Supplementary Fig. 3i, p). For differ-
ential expression analysis, the input gene expression in each cell was
normalized by the total number of gene counts in the cells, following
Zeng et al.4.

Experimental setup for imaging
All images were obtained with a Leica TCS SP8 confocal micro-
scope and with a 40× objective. The voxel size is
0.0946 × 0.0946 × 0.3463 μm3 (x, y, and z dimensions respec-
tively). Propidium Iodide (PI) staining was applied according to
the manufacturer’s protocol. A detailed protocol of the experi-
ment can be found in the STARmap PLUS paper4.

Fig. 5 | Chromatin condensation is indicative of the impact of amyloid plaques
on cells. a Chromatin intensity, heterochromatin ratio, and regression gradient of
plaque size inmicroglia. The knowndisease-associated subtype ofmicroglia (DAM,
M3) has high heterochromatin ratio and high regression gradient, whereas the
other subtypes dominate the lower left quadrant with low heterochromatin ratio
and low gradient. Histograms: chromatin pixel intensities of all microglia in the
three cortex clusters at each time point, normalized to sum to 1 (seeMethods). Red
line: threshold for identifying heterochromatin pixels (see Methods). Pie charts:
microglia grouped into four quadrants by heterochromatin ratio (threshold at 0.8)
and log average gradient (threshold at 6.7). Size of a pie chart is proportional to the
fraction of cells in the respective quadrant. Angles in a pie chart are proportional to
the fraction of each cell subtype in the respective quadrant. b Using regression
gradient and heterochromatin ratio to obtain more powerful and specific tran-
scriptomic markers of disease. Differential expression analysis of cells with high

gradient and high heterochromatin ratio (top right quadrant) in the AD samples
compared to cells with low gradient and low heterochromatin ratio (lower left
quadrant) in the control samples at the same time points. The threshold of dif-
ferential expression using Wilcoxon rank-sum test79 is p-value <0.05 after adjust-
ment by Benjamini-Hochberg procedure73 and fold change of at least 10% in either
direction. At most 25 upregulated and 25 downregulated genes with the smallest
p-values are shown. *Genes not found in the standard DE analysis between cells
close to and far away from plaques (see Supplementary Fig. 19). The exact p-values
and log fold changes of all differentially expressed genes are provided in Source
Data 1. cGeneontology enrichment analysis of upregulateddifferentially expressed
genes in excitatory neurons in cortex cluster 2 of the 8-months AD sample are
related to synaptic transmission, secretion, protein localization, and transport,
which have known associations with AD. The background of the enrichment ana-
lysis consists of all genes in the STARmap PLUS dataset.
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3D segmentation of chromatin images
We used 3D chromatin images to obtain nuclear features and asso-
ciated these features to plaque size using the regression gradient.
The python package py-clesperanto of CLIJ was used for the 3D
segmentation of chromatin images71. For each cell, we used all
the z-stack images and cropped the horizontal directions to
37.84 × 37.84 µm2 centered at the cell centroid. After min-max scaling
to [0, 1], the 3D stack of each cell was further cropped to
18.92 × 18.92 µm2 in the horizontal directions. The images were
resampled in the z-direction to have isotropic voxels. Then we
applied Gaussian blur, spot detection, a second Gaussian blur with
sigma set to 3, Otsu thresholding, and Voronoi labeling. The first
Gaussian blurwas optimizedwith two iterative searches to obtain the
maximum sigma value for which a cell can be detected at the given
centroid. We used “binary_fill_holes” in the SciPy package with a
2 × 2 × 3 matrix of ones as the structuring element on the resulting
mask after Voronoi labeling72.

Regression of plaque size
We trained a fully connected network with three hidden layers of size
1024 to predict the size of plaque near a cell given the cell’s latent
representation. The input was either the joint latent representation as
described previously or an image-only latent representation by train-
ing an image autoencoder independently of the graph autoencoder
latent space. The image autoencoder used for computing the joint
latent representation and the image autoencoder used for computing
the image-only latent representation have the same architecture. An
image patch size of 75.68 × 75.68 µm2 was used for training the auto-
encoders, which takes into account a neighborhood size comparable
to the 20-nearest-neighbor cell adjacency used in the graph auto-
encoder. All regression models were trained with cells in: (1) cluster 1;
(2) cluster 3; or (3) both cluster 1 and cluster 3. For training the
regression model, we either used both 13-month samples or only the
13-month AD sample without the control. Descriptions for all models
together with the corresponding classification errors can be found in
Supplementary Data 1.

Plaque images were preprocessed by setting an intensity thresh-
old of 10 to filter out noise, applying Gaussian blur with sigma of 10, a
second intensity threshold of 100, and a minimum size filter of 1111
pixels (8.95 µm2). A cell was labeled as positive if there was plaque
within the 75.68 × 75.68 µm2 image patch centered at the cell and it was
labeled as negative otherwise. The hidden layers used leaky ReLU
activation69 and a dropout rate of 0.5. The output layer used ReLU
activation because plaque size is non-negative. The output is a positive
prediction if the output value is larger than 1111 pixels. 15% of randomly
selected cells in each training tissue sample were held out for valida-
tion and testing. We chose the training epoch that resulted in
approximately equal true positive rate (TPR) and true negative rate
(TNR) based on the validation set (Supplementary Fig. 18b). If there
was no epoch that resulted in both TPR and TNR <0.5, we concluded
that the regressionmodel was unable to train on the input data, i.e. the
positive and negative inputs were indistinguishable (see Supplemen-
tary Data 1).

Keeping all other conditions the same, training the regression
model on the joint latent space of cells consistently achieved lower
classification error than training on the image-only latent space of the
CNN autoencoder. This indicates that chromatin images contain
additional information not reflected in gene expression. When only
cluster 3 in the 13-months AD sample was used in training, the
regression model was unable to train, i.e., there was no epoch that
resulted in both TPR and TNR <0.5. The regression model was able to
train after adding more negative cells by incorporating the 13-months
control sample in training. This is another indication that cluster 3 is
more advanced in AD progression and that cells further away from
plaque in cluster 3 have similar gene expression, cell neighborhood,

and nuclear morphology and condensation patterns as cells close to
plaque (within the input image patch).

All downstream analyses involving regression gradients were
performed using the regression model trained on the joint repre-
sentation of the cells in cluster 1 and 3 in both 13-month samples
(Supplementary Data 1, model #14). The gradient of plaque size with
respect to the input chromatin images was calculated using back-
propagation and activation mapping. We backpropagated the gra-
dients from the regression output of plaque size to the joint latent
space. This activation of latent features was further backpropagated
through theCNNencoder to the last convolutional layer to calculate an
average weight for each channel in the last layer. These weights were
used to calculate a weighted average of the channels in the last con-
volutional layerwhichwas thenprojected to the inputDNA image. This
activation mapping from the latent features to the input image is
adapted from theGrad-CAMmethod54. The 3D segmentationmaskwas
projected to the x-y plane to obtain the average gradient within
each cell.

Chromatin condensation
Chromatin pixel intensities of each cell, used for calculating the het-
erochromatin ratio, were obtained from the 3D chromatin images of
cells after 3D segmentation. The histograms of chromatin pixel
intensities were normalized by the total number of chromatin pixels of
each cell type in the given tissue region, i.e. the histogram bins of each
sample sum to 1 (Figs. 4e, 5a, Supplementary Figs. 24–26). Chromatin
pixels within a cell were divided into either euchromatin pixels or
heterochromatin pixels based on intensities. The threshold for iden-
tifying heterochromatin pixelswas calculated for each cell type at each
timepoint using all cells in the cortexof the control sample at the given
time point. Following prior work67, this threshold was calculated as
(0.4 × max + min + 0.35 × (max-min))/2, where max and min are the
maximum and minimum of all pixel intensities of a given cell type in
the control sample. The heterochromatin ratio of a cell was then
definedas the total chromatin pixel intensity of heterochromatin in the
cell normalized by the total chromatin pixel intensity of the cell. When
fitting the linear regression between heterochromatin ratio and
regression gradient, we removed outlier cells with log2 average gra-
dient <4 (Fig. 4g, Supplementary Fig. 23). For plotting the pie charts by
grouping cells based on their heterochromatin ratio and gradient, we
used a threshold of 6.5 for the log2 gradient for excitatory neurons and
6.7 for glial cells in order to balance the cell numbers, because we
found glial cells to be more predictive of nearby plaque (Supplemen-
tary Fig. 21). For the threshold for heterochromatin ratio we used 0.5
for excitatory neurons and 0.8 for glial cells in order to balance the cell
numbers, because we found glial cells to have more condensed nuclei
in general (Supplementary Fig. 22).

Differential expression analysis and gene ontology enrichment
The differential expression analysis was performed with the SCANPY
package24. Statistical significance was defined as p-value < 0.05 after
correction using the Benjamini-Hochbergprocedure73 and fold change
of at least 10% in either direction. Gene ontology and enrichment
analysis were performed using the Gene Ontology database (release
date 2021-12-15)74–76. The list of all 2112 genes in the STARmap PLUS
gene expression matrix was used as the background for the enrich-
ment analysis.

Statistics and reproducibility
Eight mouse brain samples were used for the STARmap PLUS experi-
ment as described in Zeng et al.4. No data published in the STARmap
PLUS paper was excluded from our analyses. The initial four mouse
samples (8-months AD and control, 13-months AD and control)
were replicatedwith four additionalmice samples. Our analyses on the
replicates reproduced the results obtained on the initial four mice
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samples (Supplementary Fig. 2). The experiments were not rando-
mized. The Investigators were not blinded to allocation during
experiments and outcome assessment. The mice used for STARmap
PLUS include the pR5-183 line expressing the P301L mutant of human
tau and PS2N141I and APPswe (PS2APP

homo; P301Lhemi) and non-transgenic
control. Mouse brains were transferred to cryostat (Leica CM1950) for
tissue sectioning. The STARmap PLUS protocol4 was then applied to
the tissue sections to obtain the spatial RNA and protein signals. Image
processing was implemented in MATLAB R2019b, which includes
multi-dimensional histogram matching, tophat filtering, image regis-
tration, spot calling, barcode filtering, and 2D cell segmentation4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets used in this work are publicly available from the fol-
lowing sources: The STARmap PLUS data was obtained from Zeng
et al.4 and is available at https://singlecell.broadinstitute.org/
single_cell/study/SCP1375/integrative-in-situ-mapping-of-single-
cell-transcriptional-states-and-tissue-histopathology-in-an-
alzheimer-disease-model as well as on Zenodo at: https://doi.org/
10.5281/zenodo.733209177. The reference gene expression used
for cell type classification of the predicted gene expression is
available from the Allen Brain Map53: https://portal.brain-map.
org/atlases-and-data/rnaseq/mouse-whole-cortex-and-
hippocampus-10x. The 10x Visium dataset is available at https://
www.10xgenomics.com/resources/datasets/multiomic-
integration-neuroscience-application-note-visium-for-ffpe-plus-
immunofluorescence-alzheimers-disease-mouse-model-brain-
coronal-sections-from-one-hemisphere-over-a-time-course-1-
standard. A Source Data file is provided and contains statistics of
differential expression reported in Fig. 5b and Supplementary
Fig. 29, including p-values and log fold changes. Source data are
provided with this paper.

Code availability
Our code and a list of required open-source software packages are
available at https://github.com/uhlerlab/STACI and on Zenodo:
https://zenodo.org/record/7300119#.Y2k0VS-B35g78.
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