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Hypergraph geometry reflects 
higher‑order dynamics in protein 
interaction networks
Kevin A. Murgas 1*, Emil Saucan 2 & Romeil Sandhu 1,3

Protein interactions form a complex dynamic molecular system that shapes cell phenotype and 
function; in this regard, network analysis is a powerful tool for studying the dynamics of cellular 
processes. Current models of protein interaction networks are limited in that the standard graph 
model can only represent pairwise relationships. Higher-order interactions are well-characterized 
in biology, including protein complex formation and feedback or feedforward loops. These higher-
order relationships are better represented by a hypergraph as a generalized network model. Here, 
we present an approach to analyzing dynamic gene expression data using a hypergraph model and 
quantify network heterogeneity via Forman-Ricci curvature. We observe, on a global level, increased 
network curvature in pluripotent stem cells and cancer cells. Further, we use local curvature to conduct 
pathway analysis in a melanoma dataset, finding increased curvature in several oncogenic pathways 
and decreased curvature in tumor suppressor pathways. We compare this approach to a graph-based 
model and a differential gene expression approach.

Cells are complex biological systems formed of thousands of interacting components, namely proteins and 
chemical molecules1,2. The dynamic regulation of gene expression into specific protein levels and the numerous 
molecular interactions resulting among these proteins (i.e. the interactome) shape the phenotype of a cell, which 
manifests as a distinct cell type with specific functions. To study the factors that influence cellular phenotype, 
transcriptomic profiles can be experimentally measured via high-dimensional gene expression assays such as 
single-cell RNA-sequencing (scRNA-seq), allowing researchers to ask incisive biological questions of how cel-
lular dynamics relate to physiological and pathological processes3,4. For example, differential gene expression 
can help to identify driver genes or tumor suppressors in cancer5. Further, gene expression measurements can 
indicate activation or inactivation of molecular pathways that influence differentiation and cell type, as in stem 
cell differentiation or tumorigenesis. Modeling these cellular dynamics could ultimately inform therapeutic 
strategies (wound-healing, targeted cancer therapy, etc.) by predicting genes or pathways to target and manipu-
late the cell phenotype.

Classic differential gene expression typically considers genes independently, overlooking the relationships 
between genes or proteins within the cell6–8. In this regard, protein-protein interaction (PPI) network modeling 
provides an approach to investigate how the pattern of interactions between proteins contribute to cellular 
dynamics9. Protein interactions are determined by a number of experimental methods, including yeast-two-
hybrid and co-precipitation protocols, and are compiled in curated databases such as KEGG and Reactome and 
integrative databases such as PathwayCommons and STRINGdb, ultimately providing researchers with compre-
hensive protein interaction datasets to construct PPI network models10–15. By formalizing the system of protein 
interactions as a network, one can begin to model how the pattern of interactions influence cellular phenotype 
and function, to then elucidate molecular mechanisms of healthy physiology and disease15–17. For example, one 
can examine the presence of redundancy in the network which may protect from failure in the case of individual 
component failure (i.e. gene mutation), or positive feedback loops which might lead to unstable behavior such 
as uncontrolled growth observed in cancers18–21.

Interaction network models can be valuable to study dynamic equilibrium and heterogeneity in cellular 
molecular pathways, such as signaling pathways that drive cancer and other dynamic processes22,23. When a 
cancer expresses a certain pathway of proteins that functionally drives growth and survival, an important ques-
tion to consider is: how stable is the pathway to perturbation, i.e. targeted therapy? This question is critical to 
developing therapeutic approaches that take advantage of cancer susceptibilities and identifying mechanisms 
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of adaptive drug resistance24,25. For example, a heterogeneous interaction network with redundant or parallel 
communication might allow for a cancer to utilize alternative pathways to circumvent therapeutic targets26,27. 
Furthermore, plasticity in gene expression and thus heterogeneity in interaction dynamics are fundamental in 
the process of cellular differentiation. A pluripotent cell, with the capacity to differentiate into several lineages, 
eventually reaches points of bifurcation and commitment to express a unique set of proteins and molecular 
pathways that give the cell a specific functional phenotype28,29. Understanding how these dynamics unfold is 
relevant to developing optimal therapeutic strategy, for example how to treat a cancer effectively by targeting its 
instability while also preventing drug resistance from developing24,25.

Most current analyses of PPI networks, however, are limited in that the standard graph model considers only 
pairwise interactions (i.e. edges between two proteins at most) and not higher-order interactions9,30. In biology, 
multiple proteins often work together with shared function; in fact, cells naturally exhibit protein complexes 
composed of several associated proteins1,31,32 (Fig. 1A). Additionally, molecular pathways in cells can include 
signaling cascades involving multi-protein interactions, feedback or feedforward loops as well as cross-talk and 
overlap between pathways, but pairwise interactions in the graph model alone would only represent small seg-
ments of any given pathway of interest11,18,19,33–35. For these reasons, a generalized network model is necessary 
to effectively model higher-order relationships in biological interaction networks.

The higher-order organization observed in protein interactions is better modeled with a hypergraph, a 
generalized network representation that considers higher-order relationships among multiple elements36–38. 
A hypergraph model extends the standard graph model by considering relationships with any number of ele-
ments, generalizing the strictly pairwise edges of a graph. In the context of protein interactions, a “hyperedge” 
in a hypergraph model can represent any number of proteins involved a single higher-order interaction. Further, 
there is a need not only to construct a higher-order model but, critically, to develop approaches which can use 
these models along with measured data (i.e. gene expression) to assess network dynamics and provide biological 
insight into cellular function and phenotype, with especial emphasis on identifying disease mechanisms and 
therapeutic targets.

Recent studies have explored weighted PPI network models that incorporate gene-expression measurements 
as estimates of protein levels to calculate stochastic rates of interaction, allowing quantitative examination of 
how PPI network dynamics vary with gene expression in different biological settings39–41. Statistical measures 
of heterogeneity, such as entropy and Ricci curvature, are closely related to the dynamic property of robust-
ness, or stability under perturbation40,42. These measures have been demonstrated to quantitatively indicate 
cellular pluripotency, or “stem-ness” of a cell, as well as cancer status and the increased robustness observed in 
cancer23,40,43,44. While these previous studies utilized pairwise graph models, higher-order network models such 
as the hypergraph described in this study have yet to be explored. Fortunately, higher-order networks can be 
readily examined in terms of similar statistical and geometric properties to quantify heterogeneity and dynamic 
robustness of higher-order interactions45.

In this study, we develop a hypergraph model of the protein interaction network based on a 2-dimensional 
simplicial complex, in which we extend the graph model to include 2-dimensional “faces” among subsets of ver-
tices with shared edges (Fig. 1B)45–47. By considering a higher-dimensional network structure, we aim to account 
for higher-order interactions in the PPI network, including feedforward and feedback loops. We then construct 
a weighted network model by overlaying stochastic weights based on gene expression measurements of various 
scRNA-seq datasets in the context of cellular differentiation and cancer. We subsequently assess global and local 
heterogeneity of the weighted network, namely through Forman-Ricci curvature48–51. Further, we utilize local 
curvature measurements in the hypergraph model to perform pathway enrichment analysis, comparing to the 
graph model and a classic differential expression approach assuming gene independence. Our results indicate 

Figure 1.   Hypergraph model of higher-order protein interactions. (A) Illustration of two types of protein 
interactions: pairwise interaction between 2 proteins, and higher-order interaction between > 2 proteins. (B) 
Hypergraph model of higher-order interactions (shaded bubbles) among multiple proteins (black vertices).
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this approach provides a biologically meaningful measure of higher-order network heterogeneity descriptive of 
“stem-ness” and cancer state (globally) as well as pathway functionality (locally) in the context of cancer.

Results
Using the STRINGdb PPI database, we constructed a network model of the human interactome as a set of vertices 
representing unique proteins in the human proteome and a set of edges representing experimentally-determined 
interactions between pairs of proteins, initially resulting in a 1D graph model of the PPI network topology14. 
We then defined a higher-order PPI network model as a hypergraph based on the concept of a 2-dimensional 
simplicial complex45,47. Using the vertices and edges of the simple graph as a starting skeleton, we built the net-
work “up” by defining faces within the network to represent higher-order interactions between multiple proteins. 
Specifically, faces were identified as triplets of vertices with shared edges oriented in directions of feedback or 
feedforward connectivity. This 2D network model can be viewed as highly similar to the standard 1D graph 
model, with the same pairwise information from the graph embedded in the edges but additionally considering 
higher-order relationships as 2D faces (see Methods for further detail on network construction).

Topology of hypergraph PPI network model is distinct from graph model and exhibits 
higher‑order organization.  In examining a network model, it is reasonable to first assess the topology of 
the network. Topology refers to the structure of connectivity in a network; in protein-protein interaction (PPI) 
networks this relates to the pattern of interactions among proteins in a cell. Accordingly, we sought to examine 
topological properties of the two PPI network models to understand the fundamental topology that is repre-
sented by each model. We also considered an Erdős-Rényi random network of the same size to compare what 
would be observed in a randomly organized network52. Table 1 summarizes various topological parameters of 
the proposed 2D network model and the standard 1D graph model. The numbers of vertices |V| and edges |E| 
were identical in both the 1D and 2D models, due to the fact that these are defined the same in the 2D simplicial 
complex as in the graph. With the 2D model, the consideration of number of faces |F| produces a difference 
in the topological invariant Euler characteristic χ = |V | − |E| + |F| , indicating the two models have distinct 
fundamental invariant properties when considered abstractly as topological spaces. Significantly fewer 2D faces 
were identified in the randomly organized ER network, suggesting the PPI network exhibits increased higher-
order structure compared to a random network.

We then examined degree distributions in the PPI network models. Degree of connectivity was defined by 
a few measures: edge degree ke was determined as the number of edges incident to a vertex; similarly, in the 2D 
model, face degree kf  was defined as the number of faces incident to a given vertex. Degree distributions were 
approximated using histogram binning. For each k, degree distribution P(k) was fit with a power law, P(k) ≃ akb , 
using a linear fit on log-log transformed data, logP(k) ≃ log a+ b ∗ log k , equivalent to the signature of a power 
law fit on the untransformed distribution. We report the slope coefficient b corresponding to the exponent of 
the power law and r2 of the linear fit. Both the edge-degree distribution, which was identical in the two models, 
along with the face-degree distribution of the 2D model revealed rough power-law behavior, which appears 
linear on log-log scales (Fig. 2A,B). The power law or “scale-free” property indicates a degree distribution with 
a high proportion of low-degree vertices and relatively few high-degree vertices53,54. This property has been 
described in the edge degree of PPI graph models, and the scale-free property of higher-order interactions has 
been previously reported with regard to protein complex organization, but has yet to be explored in the context 
of a higher-order PPI network model55. Here, we also observe this property in the face-degree distribution, sug-
gesting PPI networks organize higher-order interactions in a scale-free manner as well.

Global measures of higher‑order network curvature distinguish pluripotent states in differenti‑
ating stem cells.  We first examine a scRNA-seq dataset (GSE75748) of stem cell differentiation, where gene 
expression was measured in cell types of varying degree of differentiation including pluripotent stem cells, multi-
potent progenitors, and differentiated cells committed to certain lineages56. In the gene-expression-weighted 
PPI network model, Forman-Ricci curvature was computed as a geometric measure of local non-uniformity in 
the network, allowing geometric characterization of the gene expression profile in terms of interaction network 
heterogeneity and convergence or divergence43,45,48. We also use the interaction probabilities to compute graph 
entropy, a statistical measure of randomness and another measure of heterogeneity in the network39.

In the weighted PPI network of each cell, we examined global averages of Forman-Ricci curvature in the 
1D graph model and 2D hypergraph model as well as network entropy. First, we observe a previously reported 

Table 1.   Topological characteristics of 1D and 2D PPI network models. 1D and 2D network models were 
compared in the STRINGdb PPI network (PPI) and a random Erdős-Rényi (ER) network with the same 
number of vertices and edges.

Topological Measure 1D PPI 2D PPI 1D ER 2D ER

Vertices (proteins) 11,888 11,888 11,888 11,888

Edges (interactions) 315,130 315,130 315,130 315,130

Faces (triplets) 0 10,451,604 0 24,948

Euler Characteristic ( χ) − 303,242 10,148,362 − 393,242 − 278,294
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trend in global network entropy, wherein stem cells exhibit higher entropy that decreases with differentiation23. 
In addition, we observe a similar trend in global average Forman-Ricci curvature but in the opposite direction, 
wherein stem cells exhibited highly negative curvature which tended to become less negative along differentiation 
(Fig. 3A). In both the 1D and 2D PPI models, global average curvature was largely negative suggesting these PPI 
networks exhibit a generally divergent geometric structure.

In terms of correlation between entropy and curvature, we observed global average Forman-Ricci curvature 
in both models were strongly correlated with global entropy in the negative direction (1D curvature-entropy: 
R 2 = − 0.984; 2D curvature-entropy: R 2 = − 0.966); between the 1D and 2D model, global average Forman-Ricci 
curvature were highly correlated (1D curvature-2D curvature: R 2 = 0.980), although 2D curvature was generally 
shifted towards more positive values (Fig. 3B). Notably, our previous work examining curvature in the 1D graph 
model also found a strong correlation of Forman-Ricci curvature and entropy, but in the positive direction43; 
however, the weights of the weighted network model were defined there using the interaction probability directly, 
and in this study we select a “resistance quasimetric” definition of geometric edge weights based on the inverse 
of interaction probability (i.e. lower probability interactions are “longer” edges, high probability interactions 
are “closer”). These inverted weights are likely the reason for the discrepancy in direction in the previous study, 
although in either case global measures of curvature and entropy were strongly correlated.

We also examined a related time-course experiment from the same stem cell dataset (GSE75748), where gene 
expression was measured as induced stem cell differentiation proceeded over time points up to 96 hours56. In 
the weighted PPI networks, global average Forman-Ricci curvature was again observed to be highly correlated 
in both the 1D graph and 2D hypergraph models, again with a positive shift in the 2D model (Fig. 3C). Over the 
time-course, curvature initially increased in magnitude (in the negative direction) up to the 24 hour time-point, 
and then decreased in magnitude (became more positive) at later time points. This suggests perhaps that PPI 
network curvature may transiently become more negative as differentiation begins but later less negative as the 
cell commits to a lineage.

Global measures of higher‑order network curvature are increased in several cancer types.  We 
examined Forman-Ricci curvature in a scRNA-seq dataset (GSE72056) of melanoma patients including cancer 
cells and matching normal cells from the same patients57. After constructing a weighted PPI network for each 
cell using both the 1D graph and 2D hypergraph models, we observe on average more negative curvature glob-
ally in cancer cells relative to normal cells in both models (Wilcoxon rank-sum test—all tumor cells vs normal 
cells: p < 0.001 in both models; Fig. 4A). Further, a separation was observed between normal and cancer cells 
across all individual patients (12/12) in the 2D model (Fig. 4B) and most individual patients (10/12) in the 1D 
model for both the curvature and the graph entropy measures (Supplementary Fig. S1). Again in the 2D model, 
curvature was generally shifted towards less negative values compared to the 1D model curvature.

The separation of cancer and normal cells suggests the magnitude of (negative) global PPI network curvature 
is increased in cancer cells and could be used as a basis for classifying cancer and normal cells, for example. This 
distinction in network curvature globally is similar to what was observed in stem cells above, suggesting cancer 
cells may exhibit “stem-like” characteristics contributing to the unchecked growth and lack of differentiation 
observed in many cancers including melanoma. To explore the utility of these global network measures as cancer 
“stem-ness” classification scores, we examined the area under the curve of the receiver operating characteristic 
function (AUC) as a means to quantify the classification accuracy in distinguishing melanoma cells from normal 
cells (Supplementary Fig. S2). The AUC was highest overall for global average Forman-Ricci curvature of the 
2D hypergraph model (FR_2D: AUC = 0.777), lowest for global curvature of the 1D graph model (FR_1D: AUC 

Figure 2.   Degree distributions in PPI network. (A) Log-log plot of edge-degree distribution with linear fit of 
power law signature. The edge-degree distribution is identical for the 1D graph and 2D simplicial complex. (B) 
Log-log plot of face-degree distribution with linear fit of power law signature. Faces are only present in the 2D 
simplicial complex model.
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= 0.597), and intermediate for graph entropy (SR: AUC = 0.6960), and the AUCs were statistically significant 
between each measure (DeLong test—all pairwise comparisons: p < 0.001 ). Together these results indicate that, 
of the global network measures, 2D hypergraph curvature provided the highest classification accuracy overall.

We next examined a scRNA-seq dataset (GSE81861) of colorectal cancer cells and matching normal cells 
derived from patients58. Examining global average Forman-Ricci curvature of the weighted PPI network models, a 
significant effect of tumor status and cell type on curvature were detected in both models (two-way ANOVA—1D 
graph: tumor-status p < 0.001 , cell-type p < 0.01 , interaction p < 0.001 ; 2D hypergraph: tumor-status p < 0.001 , 
cell-type p < 0.001 , interaction p < 0.05 ). We again observed more strongly negative curvature in cancer cells 
compared to normal cells, as well as in epithelial cells (from which cancers arise) compared to non-epithelial 
stromal cells in tumors (Wilcoxon rank-sum test—normal-epithelial vs tumor-epithelial p < 0.001 , tumor-
epithelial vs tumor-nonepithelial p < 0.001 in both models, all other comparisons n.s.; Fig. 4C). These findings 
suggest the increase in negative curvature observed in cancer cells may be specific to the cancer cells themselves 
and is absent in the non-cancerous stromal cells present in tumors.

The third cancer dataset (GSE130019) analyzed consisted of a time-course experiment in which a Ewing sar-
coma cell line was induced to express EWSR1-FLI1, a tumor-driving fusion oncogene unique to Ewing sarcoma; 
single cells were collected at time points after induction to measure gene expression59. Upon induction of the 
fusion gene, global average Forman-Ricci curvature was observed to initially decrease by day 2, followed by a 

Figure 3.   Global PPI network geometry in stem cell differentiation. (A) Violin plots of PPI network global 
average graph entropy (SR) and Forman-Ricci curvature in the 1D graph model (1D F-Ric) and 2D simplicial 
complex model (2D F-Ric) across 6 increasingly differentiated cell types. (B) Correlation plots of SR, 1D F-Ric 
and 2D F-Ric, colored by cell type. (C) Violin plots of SR, 1D F-Ric, 2D F-Ric across time points after induced 
stem cell differentiation. Dotted lines are means at each time point.
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transient increase until later time points when curvature is significantly more negative from day 0 (Fig. 4D). This 
trend was observed in both PPI network models. The increasingly negative curvature over time may indicate the 
interaction network overall becomes more divergent and thus more cancerous or “stem-like” upon expression 
of the EWSR1-FLI1 oncogene.

Overall, these findings demonstrate global average Forman-Ricci curvature can indicate trends of cellular 
pluripotency and cancer state in gene-expression-weighted PPI networks. While the 1D and 2D network models 
both exhibit this effect, we contend the 2D model is advantageous for its consideration of higher-order interac-
tions not represented in the graph model and is more sensitive to biologically meaningful changes in PPI network 
geometry. However, these global average values are merely summary statistics for the network as a whole, which 
can be useful for sample-level inference but, importantly, local geometric properties contain more information 
for richer analysis of how individual proteins and molecular pathways contribute to the observed cell phenotype.

Local PPI network curvature indicates pathway functionality in cancer.  We examined local cur-
vature values in the weighted PPI networks of the melanoma dataset (GSE72056)57. In order to examine changes 
in curvature of individual proteins, we focus on a contraction of Forman-Ricci curvature defined on vertices 
(Eq. 4). Vertices of the network with significantly changing curvature between the normal and cancer cells were 
identified. A classical differential expression approach was also used to identify up- or down-regulated genes 
based solely on expression, assuming gene independence. The 1D and 2D network models identified 1461/11630 

Figure 4.   Global PPI network geometry in cancer. (A) Violin plots of PPI network global average Forman-Ricci 
curvature in the 1D graph model (1D F-Ric) and 2D simplicial complex model (2D F-Ric) of all normal (blue) 
or tumor (red) cells from melanoma patients. (B) Box plots of 1D F-Ric and 2D F-Ric separated by individual 
patients. (C) Box plots of 1D F-Ric and 2D F-Ric in epithelial (epi) and non-epithelial (non-epi) cells of normal 
(blue) and tumor (red) samples from colorectal cancer patients. (D) Violin plots of 1D F-Ric and 2D F-Ric 
across time points after induction of EWSR1-FLI1 oncogene in A576 cells. Dotted lines are means at each time 
point. *** indicates p < 0.001.
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(12.7%) and 1728/11630 (14.9%) genes, respectively, with significantly changing curvature in either the positive 
or negative direction, whereas differential expression identified only 276/11630 (2.4%) genes. We examined the 
number of significant genes from each method and overlap between methods and observed a high degree of 
overlap between the network curvature approach in the two PPI network models (Fig. 5). Of the differentially 
expressed genes, over half (160/276, 58.0%) of identified genes were also identified by one of the two network 
curvature methods, with 96 genes being determined significant by all three methods.

We then applied a pathway analysis approach to explore molecular pathways with significantly increasing or 
decreasing curvature by considering genes with significantly changing vertex curvature in the 2D PPI network 
between normal and tumor cells. Applying Reactome pathway overrepresentation analysis on these genes12, we 
found 110 pathways enriched in genes with significantly increasing curvature, along with 193 pathways with 
significantly decreasing curvature genes; we summarize the top 10 pathways with up or down shifts in curvature 
in Tables 2 and 3, respectively, with complete pathway results in Supplementary Tables S1 and S2. Because of 
overlapping gene sets, some pathways were redundant, such as the APC/C degradation pathway which appeared 4 
times in the top 10 decreased curvature pathways. Interestingly, several of the increased curvature pathways have 
been previously implicated with pro-tumor involvement in melanoma, such as L1-CAM pathways and extracel-
lular matrix organization which are involved in tumor invasiveness commonly observed in melanoma60. On the 
other end of the spectrum, several decreased curvature pathways have been implicated with tumor-suppressor 
involvement in melanoma and, such as PAK degradation, where PAK is a known driver of drug resistance in 
melanoma, and several other tumor-suppressive pathways including p53 and DNA damage response pathways 
(which were also significantly enriched but not shown in top 10, see Supplementary Table S2)61,62. Because of the 
relationship of curvature and robustness, these findings suggest oncogenic pathways with increasing curvature 
also increase in robustness in the cancer cells, while tumor suppressive pathways correspondingly decrease in 
robustness, thereby contributing to the cancer phenotype. Therefore, estimating robustness through PPI net-
work curvature may be useful to indicate gene and pathway functionality in cellular processes such as cancer 
development.

Figure 5.   Significant gene overlaps in network curvature and differential expression. Venn diagram of the 
number of statistically significant genes identified by PPI network Forman-Ricci curvature in the 1D graph 
model (FR_1D) and 2D complex model (FR_2D) along with classic differential gene expression (DE).

Table 2.   Increased PPI curvature pathways in melanoma. Using vertex curvature of the 2D PPI network 
model, genes with significantly increasing curvature values compared between normal and tumor cells were 
fed into Reactome Pathway Analysis. Top 10 enriched pathways are summarized by pathway name, number of 
significant genes, false-determination rate (FDR), and average shift in curvature ( �Ric2D).

Pathway name #gene FDR �Ric2D
Regulation of HSF1-mediated heat shock response 22 1.36e−4 + 51.70

Interaction between L1 and Ankyrins 12 1.36e−4 + 47.27

Post-translational protein phosphorylation 20 3.52e−4 + 125.63

Attenuation phase 13 3.52e−4 + 63.82

Processing of DNA double-strand break ends 18 3.52e−4 + 169.67

Cellular response to heat stress 22 3.59e−4 + 51.69

L1CAM interactions 21 6.13e−4 + 56.87

Elastic fibre formation 12 6.28e−4 + 42.76

G2/M DNA damage checkpoint 16 6.28e−4 + 183.55

Extracellular matrix organization 37 7.67e−4 + 58.11
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Discussion
Because cells are inherently dynamic systems formed of molecular interactions, effective models of the interac-
tion dynamics within cells can reveal how the “interactome” varies in cells of differing phenotypes, including 
pathological (i.e. cancer) and healthy physiological states. In this study, we modeled interactome dynamics 
by incorporating gene expression information into a weighted protein-protein interaction (PPI) network and 
measured network heterogeneity by Forman-Ricci curvature. Heterogeneity in interaction dynamics can lend 
to increased robustness44. For example, a given cancer cell may be difficult to treat if multiple, diverse growth-
stimulating pathways drive the cancer’s growth; alternatively, a cancer that depends on a single oncogenic pathway 
may be easy to treat with targeted therapy.

Critically, the most common model of PPI networks, the graph, is arguably limited insofar that a graph only 
considers pairwise relationships between two proteins at most. Protein interactions are not strictly pairwise and 
can involve multiple proteins that coordinate in interactions and molecular processes. We sought to develop 
a model of higher-order structure in the interactome to address the limitation of the graph model to pairwise 
information. Here, we introduce a hypergraph model of the PPI network based on a 2-dimensional (2D) sim-
plicial complex that represents feedforward and feedback structures in the network as 2D triangular faces. We 
consider the standard graph model as essentially a “skeleton” of pairwise interactions in the interactome, and we 
consider higher-order relationships in the structure of the network to approach a more comprehensive model 
of the system of diverse protein interactions within cells. The 2D faces of our model then serve as important 
representations of higher-order organization among interacting proteins that contribute to molecular pathways 
and dynamic cellular processes.

We first examined topological properties of this 2D model and drew comparisons between the standard 
1-dimensional (1D) graph model, as the two models represent much of the same protein interaction informa-
tion but are fundamentally distinct. Compared to a randomly generated network, the PPI network appeared to 
exhibit much greater higher-order organization in terms of the number of triangles. Importantly, we limited our 
examination to triangles, which correspond to feedback or feedforward loops involving three proteins, but the 
approach outlined can easily be extended to consider higher-order interactions of more than three proteins in 
cycles (which may represent longer feedback loops, i.e. quadrangles, etc) or cliques (tetrahedra, simplices of arbi-
trary dimension), which can be identified as motifs and might represent different, stronger types of interactions35. 
An important consideration is the increasing scale of higher-order structures which may be potentially prohibi-
tive to examining cycles or cliques beyond 4 or 5 vertices, especially for applications on the scale of biological 
datasets or without prior biological knowledge of higher-order interactions that is comprehensively accurate.

We applied a weighted network model to analyze publicly available gene expression (RNA-sequencing) data-
sets in the context of cellular differentiation and cancer experiments. We constructed the weighted interaction 
network model by assigning geometric weights reflecting stochastic interaction rates to each of the vertices, 
edges, and faces in the case of the 2D simplicial complex model. We then measured geometric properties of the 
weighted network, namely Forman-Ricci curvature, as a means to quantify heterogeneity in the network. This 
heterogeneity serves as a measure of network dynamics, especially robustness, and can thereby describe the stabil-
ity or fragility of the network on a global (sample-level) and local (protein- or pathway-level) scale. Importantly, 
the 2D network model is suitable for geometric analysis by incorporating higher-dimensional information in 
line with the complete definition of Forman-Ricci curvature45,48.

We examined Forman-Ricci curvature of the 2D weighted PPI network on a global scale and compared with 
results of the 1D graph model, finding network curvature in both models was highly correlated and negative on 
average, although with a shift towards less negative curvature overall in the 2D model. The global average curva-
ture in either model distinguished undifferentiated stem cells from differentiated cell types, as well as cancer cells 
from normal cells; curvature in the 2D model, however, was assessed to provide a more consistent separation by 
the highest AUC, suggesting the higher-order model may be a more accurate representation of the PPI network. 

Table 3.   Decreased PPI curvature pathways in melanoma. Using vertex curvature of the 2D PPI network 
model, genes with significantly decreasing curvature values compared between normal and tumor cells were 
fed into Reactome Pathway Analysis. Top 10 enriched pathways are summarized by pathway name, number of 
significant genes, false-determination rate (FDR), and average shift in curvature ( �Ric2D).

Pathway Name #gene FDR �Ric2D
APC/C:Cdc20 mediated degradation of Securin 34 7.65e−13 − 340.13

The role of GTSE1 in G2/M progression after G2 checkpoint 36 2.58e−12 − 284.47

APC/C:Cdh1 mediated degradation of Cdc20 and other APC/C:Cdh1 targeted proteins in late mitosis/
early G1 34 2.58e−12 − 340.13

NIK–> noncanonical NF-kB signaling 31 2.58e−12 − 293.12

APC/C:Cdc20 mediated degradation of mitotic proteins 34 2.98e−12 − 340.13

Regulation of activated PAK-2p34 by proteasome mediated degradation 28 2.98e−12 − 305.36

Activation of APC/C and APC/C:Cdc20 mediated degradation of mitotic proteins 34 2.98e−12 − 340.13

FBXL7 down-regulates AURKA during mitotic entry and in early mitosis 29 2.98e−12 − 304.05

SCF-beta-TrCP mediated degradation of Emi1 29 2.98e−12 − 304.05

Regulation of ornithine decarboxylase (ODC) 28 2.98e−12 − 305.36
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These findings highlight the capacity of global network measures as “stem-ness” or cancer score statistics, with 
the 2D hypergraph curvature of the PPI network model presenting the strongest classification. Of course, this 
is one example from a melanoma dataset thus further investigation is warranted to determine if the distinction 
holds in general across different cancer types.

To further demonstrate the biological relevance of the proposed higher-order model and network geometric 
approach, we applied pathway analysis using local curvature to identify proteins with changes in curvature 
between patient-matched cancer and normal cells. Despite the overall shift towards negative curvature in cancer, 
we found that proteins with increased curvature appeared to enrich for several pro-cancer pathways, along with 
decreased curvature in tumor-suppressive pathways, suggesting a relationship of the measured local curvature 
with the robustness of these pathways which may be related to their functionality in the cancer cells. We conclude 
this model provides a feasible approach to analyzing how higher-order relationships in the interactome influence 
cellular phenotype and function, especially in terms of quantifying stability and fragility in the network which 
may be a valuable tool to identify potential therapeutic strategies in cancer, for example.

Future directions of this research include further exploration of higher-order models of PPI networks and 
applying the model to investigate biological questions about how the interactome governs cellular phenotype and 
behavior. The geometric framework that we apply to analyze PPI networks allows for application of additional 
geometric tools, such as geometric flows (i.e. discrete Ricci flow) that can be used for change detection and pre-
diction of network dynamics50,63,64. Fortunately, many of the same statistical and geometric network properties 
measured in graphs can be considered in generalized network models through extensions of definitions includ-
ing entropy and Forman-Ricci curvature45,65–67. Our characterization of the proposed model, while intended to 
be thorough, is by no means an exhaustive analysis and is meant to illustrate a higher-order PPI network model 
and a network geometric approach to studying interaction dynamics.

Methods
Higher‑order protein interaction network model.  A graph G = (V ,E) was defined as the sets of ver-
tices V and edges E corresponding to proteins and pairwise interactions, respectively. Interactions were defined 
based on the STRINGdb PPI database, including an experimental confidence score cutoff. To represent higher-
order relationships involving more than 2 proteins, we defined a hypergraph based on the concept of a 2-dimen-
sional simplicial complex, where simplicial complex indicates that all faces are 2-simplices, or triangles. Similar 
to the definition of the graph, we defined a 2-dimensional complex C as a set of vertices V, edges E and faces F, 
notated as C = (V ,E, F) . Faces were identified as all triplets of vertices with edges among all vertices arranged in 
feedforward (+) or feedback (−) orientation (Fig. 6). The higher-dimensional structure therein serves to repre-
sent higher-order relationships among interacting proteins while still incorporating pairwise interactions from 
the (1-dimensional) graph (see Supplementary Methods for additional details on network construction).

Weighted protein interaction network model.  We consider the PPI network as an underlying topo-
logical structure and incorporate measured data (i.e. gene expression) to construct a weighted network to model 
stochastic interaction dynamics. Network weights were defined for each sample (i.e. single-cell) using gene 
expression values (normalized RNA-seq reads) as estimates of protein levels and principles of chemical interac-
tion kinetics, namely the mass action law, to define interaction probabilities68–71. This weighted PPI network can 
then be an effective model of cellular dynamics, allowing assessment of how gene levels and interaction rates 
vary over a time-course or across differing cell types. To analyze the geometry of the weighted network, we apply 
a resistance quasimetric to transform interaction probability into geometric edge weights proportional to the 
inverse of interaction probability, thus making high probability interactions correspond to small distances and 
low probability interactions correspond to large distances (see Supplementary Methods for additional details of 
weighting scheme).

Discretization of Ricci curvature.  Ricci curvature, a geometric measure of deviation from “flatness”, can 
be used to quantify local non-uniformity. We compute network Ricci curvature as a means to quantify hetero-
geneity in the weighted PPI network model. Importantly, network models are inherently discrete, therefore a 

Figure 6.   Directed network face orientation. Face orientation with respect to a given edge is determined by the 
direction of the corresponding edges in the face. In the same direction is positive (+) oriented, or feedforward; 
in the opposite direction is negative (−) oriented, or feedback.
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discretization of Ricci curvature is required to consider this geometric property in a network model. A few dis-
crete definitions exist for Ricci curvature on networks51,72,73; here we focus on Forman-Ricci curvature because 
of its unique amenability to extension to the higher-dimensional network model45,48. Forman-Ricci curvature is 
derived through a combinatorial approach which applies to the general class of CW-complexes including graphs 
and simplicial complexes. In this sense, a graph is considered a complex of vertices (0-cells) and edges (1-cells) 
glued together at their boundaries, i.e. their vertices. This notion can be extended to hypergraphs through the 
2-dimensional simplicial complex model, by considering also faces (2-cells) glued together at boundary edges 
and vertices. Then, Forman’s approach derives a combinatorial formula for discrete Ricci curvature which 
depends only on the weights of the edge, adjacent vertices and faces, and parallel edges.

In brief, the derivation of Forman-Ricci curvature is based on a combinatorial analog of Bochner-Weitzen-
böck decomposition of the Riemannian Laplacian operator:

Essentially, the Hodge Laplacian �p can be decomposed into a “rough” Laplacian Bp and a curvature term Fp 
capturing how the two Laplacians differ. Because the Laplacian relates to diffusion on a manifold, curvature on 
a weighted PPI network can then quantify how diffusion (i.e. information flow through protein interactions) 
differs from expected in an un-curved (flat) network.

Forman’s approach yields the following explicit formula for discrete Ricci curvature on a weighted complex 
with edges e, vertices v and faces f:

where f > e implies f is a face of e and v < e implies v is a vertex of e, and ei||e implies ei is a parallel edge of e 
meaning it shares a face or a vertex but not both.

The proposed 2-dimensional complex model of PPI networks can be analyzed geometrically by properly 
defining face weights (see Supplementary Methods for weighting scheme) and applying formulae which account 
for the 2D faces. Because Forman-Ricci curvature is defined for complexes of any dimension, the definition 
Eq. (2) is readily applicable to the proposed model. In fact, the original derivation of Forman-Ricci curvature 
directly considers 2-dimensional faces; applications on 1-dimensional graphs consider a simplified definition 
that disregards all face-related terms48,49,51:

While Forman-Ricci curvature is defined on edges, it can be contracted to a vertex curvature F(v) and then 
a global average of curvature FGA can be computed using the stationary distribution π of the network, where πi 
designates the equilibrium probability of a Markov random walk at each vertex:

Data availability
All data in this study was obtained from publicly available datasets at NCBI GEO database (URL: https://​www.​
ncbi.​nlm.​nih.​gov/​geo), accession numbers: GSE75748, GSE72056, GSE81861, GSE130019.
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