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Background
Malignant tumors require prompt and accurate diagnosis due to the severity of the 
disease. If a malignant tumor is suspected on morphological imaging using X-ray, US, 
CT, and MRI, but these examinations do not provide a definitive diagnosis, functional 

Abstract 

Background:  The goal of the study was to evaluate the diagnostic ability of 18F-FBPA 
PET/CT for malignant tumors. Findings from 18F-FBPA and 18F-FDG PET/CT were 
compared with pathological diagnoses in patients with malignant tumors or benign 
lesions.

Methods:  A total of 82 patients (45 males, 37 females; median age, 63 years; age 
range, 20–89 years) with various types of malignant tumors or benign lesions, such as 
inflammation and granulomas, were examined by 18F-FDG and 18F-FBPA PET/CT. Tumor 
uptake of FDG or FBPA was quantified using the maximum standardized uptake value 
(SUVmax). The final diagnosis was confirmed by cytopathology or histopathological 
findings of the specimen after biopsy or surgery. A ROC curve was constructed from 
the SUVmax values of each PET image, and the area under the curve (AUC) and cutoff 
values were calculated.

Results:  The SUVmax for 18F-FDG PET/CT did not differ significantly for malignant 
tumors and benign lesions (10.9 ± 6.3 vs. 9.1 ± 2.7 P = 0.62), whereas SUVmax for 
18F-FBPA PET/CT was significantly higher for malignant tumors (5.1 ± 3.0 vs. 2.9 ± 0.6, 
P < 0.001). The best SUVmax cutoffs for distinguishing malignant tumors from benign 
lesions were 11.16 for 18F-FDG PET/CT (sensitivity 0.909, specificity 0.390) and 3.24 for 
18F-FBPA PET/CT (sensitivity 0.818, specificity 0.753). ROC analysis showed significantly 
different AUC values for 18F-FDG and 18F-FBPA PET/CT (0.547 vs. 0.834, p < 0.001).

Conclusion:  18F-FBPA PET/CT showed superior diagnostic ability over 18F-FDG PET/
CT in differential diagnosis of malignant tumors and benign lesions. The results of this 
study suggest that 18F-FBPA PET/CT diagnosis may reduce false-positive 18F-FDG PET/
CT diagnoses.
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imaging with PET/CT is performed. In particular, 18F-fluorodeoxyglucose (FDG) PET/
CT is used to examine the stage, therapeutic effect, and recurrence of malignant tumors 
by utilizing the property that malignant tumor cells take up 3–8 times more glucose 
than normal cells (Yamada et al. 1995). However, inflammatory cells also take up glucose 
strongly, and thus, 18F-FDG PET/CT can also detect inflammatory activity (Kubota et al. 
1992). In fact, in cardiac sarcoidosis and large vasculitis such as aortitis syndrome and 
giant cell arteritis, 18F-FDG PET/CT is performed in cases in which it is difficult to eval-
uate the lesion activity (Tang et al. 2016; Geest et al. 2021). Due to these properties, it is 
often difficult to distinguish malignant tumors from inflammatory lesions on 18F-FDG 
PET/CT. In such cases, invasive techniques such as biopsy and surgery are required for 
definitive diagnosis.

18F-FBPA PET/CT uses 18F-labeled 2-borono-4-fluoro-L-phenylalanine (18F-FBPA), 
rather than 18F-FDG, as a marker. 18F-FBPA is a boronate compound of phenylalanine 
that has behavior similar to that of natural phenylalanine in cells, and thus, its uptake 
reflects amino acid metabolism (Ishiwata 2019). This metabolism is increased in malig-
nant tumor cells, and 18F-FBPA selectively accumulates in malignant tumors (Watabe 
et al. 2017; Hanaoka et al. 2014), whereas physiological accumulation of 18F-FBPA is low 
in normal organs, except for the urinary system (Shimosegawa et al. 2016; Romanov et al. 
2020). 18F-FBPA-PET has been used in clinical studies for assessment of tumor uptake of 
boron (10B) during boron neutron capture therapy (BNCT) for refractory and recurrent 
head and neck cancer and brain tumors (Imahori et al. 1998; Kato et al. 2009). In Japan, 
BNCT for refractory and recurrent head and neck cancer has been covered by health 
insurance since June 2020, and the number of diseases insured for treatment with BNCT 
is likely to increase in the future.18F-FBPA PET/CT has also been reported to be useful 
for differentiating brain tumor recurrence from post-treatment changes such as radia-
tion necrosis and pseudoprogression, but there are no definitive reports on use of this 
method for tumors and inflammatory lesions in the trunk (Beshr et al. 2018). Therefore, 
in this study, the diagnostic abilities of 18F-FBPA and 18F-FDG PET/CT were examined 
in cases with malignancy or inflammation throughout the body, based on comparison 
with pathological diagnoses.

Methods
Selection of patients

All patients were referred for experimental diagnostics by treating oncologists facing 
an unmet diagnostic challenge that could not be solved with standard approaches. This 
prospective study was approved by the Clinical Research Ethics Committee of the Osaka 
Medical and Pharmaceutical University (CRB 19-01) and conducted in accordance with 
the 1964 Declaration of Helsinki and its later amendments or comparable ethical stand-
ards. Patients were recruited for the study from March 2020 through March 2022 with 
agreement from oncologists and after determination of eligibility.

The inclusion criteria were: (i) 18F-FDG PET/CT findings suspicious for primary and/
or metastatic lesions and/or benign lesions such as inflammation or granuloma with 
abnormal 18F-FDG uptake; (ii) suspected or newly diagnosed or previously treated 
malignancies and/or benign lesions; (iii) age ≥ 20 years old; (iv) agreement to undergo 
biopsy; (v) provision of informed consent according to the guidelines of the Clinical 
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Research Ethics Committee. The exclusion criteria were: (i) pregnant women or those 
who wish to become pregnant; and (ii) treatment started before PET/CT was performed.

A total of 82 patients (45 males, 37 females; median age, 63  years; age range, 
20–89 years) with various types of malignant tumors and benign lesions were examined 
in 87 18F-FBPA PET/CT and 18F-FDG PET/CT studies from March 2020 through March 
2022. These patients included five with recurrence after treatment who underwent 
repeated PET examinations. The final definitive diagnosis was confirmed by cytopatho-
logical or histopathological findings of the specimen after biopsy or resection.

Preparation of 18F‑FDG and 18F‑FBPA
18F-FDG was produced using the standard method in our laboratory. 18F-FBPA was 
synthesized as previously described (Ishiwata et al. 1991; Isohashi et al. 2016). A MSP-
200 synthesizer (Sumitomo Heavy Industries, Tokyo, Japan) was used, with 4-borono 
L-phenylalanine (Sigma-Aldrich, St. Louis, USA or STELLA PHARMA CORPORA-
TION, Osaka, Japan) as the precursor. Purification of 18F-FBPA was performed by 
high-performance liquid chromatography (HPLC) using a YMC-Pack ODS-A column 
(250 × 150 mm; YMC, Kyoto, Japan) eluted with 0.1% acetic acid at a flow rate of 10 mL/
min. The radiochemical purity was > 95% for 18F-FDG and 18F-FBPA, and the final prod-
uct was sterile and pyrogen-free.

PET/CT imaging

The median interval between 18F-FDG and 18F-FBPA PET/CT scans was 5 days (range, 
1–72 days). The 18F-FDG PET/CT scan was performed first. Patients fasted for at least 
4  h before 18F-FDG PET/CT scans to ensure a normal glucose level in the peripheral 
blood. 18F-FBPA PET/CT was also performed in patients who had fasted for at least 4 h 
to align the conditions with 18F-FDG PET/CT. The dose of intravenously injected 18F-
FDG or 18F-FBPA was calculated based on body weight (3.7–5.0 MBq/kg for 18F-FDG 
and 18F-FBPA) (Beshr et al. 2018). Patients were asked to void their bladders before each 
scan. Data were acquired using a hybrid PET/CT scanner (Discovery PET/CT 710, GE 
Healthcare, Milwaukee, WI, USA) after intravenous administration for 60 ± 10 min. The 
imaging range was from the top of the head to the thigh or to the toe for lesions in the 
lower extremities.

CT was performed with tube voltage 120  kV, current 100  mA and slice thickness 
3.75 mm. A PET scan was immediately performed after the CT scan in 3D acquisition 
mode with 6–8 bed positions and 2.0 min/position. Data were transferred to an Advan-
tage Workstation (AW 2.0, GE Healthcare) and reconstructed using the ordered sub-
set expectation maximization algorithm (two iterations and 18 subsets) using CT data 
for attenuation correction. The reconstructed images were then co-registered and dis-
played. PET images were analyzed qualitatively (presence or absence of tracer uptake 
outside sites of physiological accumulation or excretion) and semi-quantitatively using 
a volumetric volume of interest (VOI) placed over the target lesion and tailored to the 
extent of each lesion. The maximum tumor standardized uptake value (SUVmax) for 
each VOI was automatically generated by the tomography software. Standard vital signs 
(blood pressure, heart rate and body temperature) were checked between 18F-FDG 
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and 18F-FBPA injections and up to 120 min after completion of the PET/CT scan, and 
patients were asked to report any abnormalities.

Target lesion uptake of 18F‑FDG and 18F‑FBPA

Lesion uptake of 18F-FDG and 18F-FBPA on PET images and quantification of the SUV 
were performed using AW Volume Share software (GE Healthcare). VOIs were delin-
eated on axial 3-D images. The SUV was defined as regional radioactivity divided by 
injected radioactivity normalized to body weight. 18F-FDG and 18F-FBPA uptake were 
evaluated using SUVmax at 1 h after injection (Igaki et al. 2020).

Statistical analysis

Statistical analyses were performed using R software (ver. 4.0.3) and Excel. Results for 
18F-FDG and 18F-FBPA PET/CT were compared with histopathological findings. The 
difference between the mean SUVmax for malignant tumors and benign lesions for each 
PET method was evaluated by Mann–Whitney U test. The sensitivity, specificity, posi-
tive predictive value (PPV), negative predictive value (NPV) and accuracy of 18F-FDG 
and 18F-FBPA PET/CT were calculated and compared to evaluate the diagnostic efficacy.

Receiver-operating characteristic (ROC) curves were generated from the SUVmax of 
the target lesion for each PET method, and the area under the curve (AUC) and the best 
SUVmax cutoff for differentiating malignant tumors and benign lesions were obtained 
to give optimal sensitivity and specificity. The AUCs of the two markers for malignant 
tumors and benign lesions were compared statistically to evaluate the diagnostic perfor-
mance of each PET method. Two-tailed P values < 0.05 were considered significant in all 
analyses.

Results
Adverse events

All patients tolerated 18F-FDG and 18F-FBPA PET/CT well. There were no signs of any 
drug-related pharmacologic effects or physiological responses. All observed vital signs 
(including blood pressure, heart rate, and body temperature) remained within normal 
limits during and after 18F-FBPA PET/CT. None of the patients reported any abnormal 
symptoms.

18F‑FDG and 18F‑FBPA uptake in tumors and benign lesions

Patient numbers were insufficient to compare the SUVs of primary tumors vs. recur-
rent or metastatic tumors for individual cancers. The details are summarized in 
Table  1. The overall mean SUVmax for primary tumors (n = 22) and recurrent/meta-
static tumors (n = 55) did not differ significantly for 18F-FDG (12.3 ± 7.3 vs. 10.3 ± 5.7, 
p = 0.32) or 18F-FBPA (5.3 ± 2.6 vs. 5.0 ± 3.1, p = 0.24) (Fig.  1). Subsequently, primary 
and recurrent/metastatic tumors were analyzed in a pooled fashion. Most malignant 
tumors were highly sensitive to 18F-FDG uptake, with a mean SUVmax ≥ 5 (Fig.  2A). 
The mean SUVmax of benign lesions was > 9, also indicating strong 18F-FDG uptake. 
The highest mean SUVmax (> 9) on 18F-FBPA PET/CT occurred for external auditory 
canal cancer (Fig. 2B), whereas low 18F-FBPA uptake (mean SUVmax < 3) was found in 
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Table 1  Patient characteristics

SCC squamous cell carcinoma

Total no. of patients 82

Male/Female 45/37

Median age (range) 63 (range 20–89 years)

Total no. of each PET study with 18F-FDG and 18F-FBPA 87

Total no. of target lesions with pathological diagnosis 88

Malignant tumor (primary/recurrent or metastatic) 77 (22/55)

Oral cavity cancer 13

 Soft tissue sarcoma 12

Pharyngeal cancer 10

 Salivary gland cancer 6

 External auditory canal cancer 4

 Cancer of the larynx 3

 Skin cancer (mucinous/SCC) 3 (2/1)

 Diffuse large B-cell lymphoma 3

 Uterine cancer (endometrial cancer) 3

 Cervical cancer of Uterus (SCC) 3

 Lung cancer (adenocarcinoma) 2

 Mantle cell lymphoma 2

 Esophageal cancer 2

 Olfactory neuroblastoma 1

 Ovarian cancer 1

 Chronic lymphocytic leukemia 1

 Pancreatic cancer 1

 Gallbladder cancer 1

 Bile duct cancer 1

 Maxillary cancer 1

 Breast cancer 1

 Acute myeloid leukemia 1

 Cancer of unknown primary, Cervical lymph node metastasis 1

 Extramammary Paget’s disease 1

Benign lesion 11

Inflammatory granulation 2

Radiation　osteomyelitis 2

Abscess 2

Inflammatory lymphadenopathy 1

Tonsillitis 1

Post-treatment change after chemoradiotherapy 1

Cholecystitis 1

Graft versus host disease 1

Fig. 1  SUVmax of 18F-FDG and 18F-FBPA PET/CT for primary tumors vs. recurrent or metastatic tumors
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well-differentiated lung cancer, mantle cell lymphoma, olfactory neuroblastoma, ovarian 
cancer, chronic lymphocytic leukemia, pancreatic cancer, gallbladder cancer and benign 
lesions.

Detection of target lesions

The final histopathologic results showed 77 lesions with 24 types of malignant tumors 
and 11 benign lesions. SUVmax on 18F-FDG PET/CT did not differ significantly for 
malignant tumors and benign lesions (10.9 ± 6.3 vs. 9.1 ± 2.7, P = 0.62). In contrast, 
SUVmax on 18F-FBPA PET/CT was significantly higher for malignant tumors compared 
to benign lesions (5.1 ± 3.0 vs. 2.9 ± 0.6, P < 0.001) (Fig. 3).

In a lesion-based analysis, the sensitivity, specificity, PPV, NPV and accuracy of the 
diagnosis were 98.7, 22.2, 87.4, 66.7 and 86.4% for 18F-FDG PET/CT and 94.8, 72.7, 
96.0, 66.7 and 92% for 18F-FBPA PET/CT, respectively (Table  2). Thus, 18F-FDG PET/
CT gave higher sensitivity, but lower specificity, PPV and accuracy compared to those 
of 18F-FBPA PET/CT. In ROC analysis (Fig. 4) of differential diagnosis of malignant and 

Fig. 2  Mean SUVmax for (A) 18F-FDG and (B) 18F-FBPA PET/CT. Means and standard deviation for all lesions 
(n = 88) are shown by disease. SCC squamous cell carcinoma
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benign lesions, AUCs differed significantly for 18F-FDG and 18F-FBPA PET/CT (0.55 
vs. 0.83, P < 0.001). The respective SUVmax cutoffs were 11.16 and 3.24. Representative 
cases are shown in Figs. 5 and 6.

Discussion
Uptake of amino acids and glucose in cancer cells is elevated to maintain rapid cell pro-
liferation and intracellular metabolism (Oda 2014). Increased amino acid metabolism is 
mediated by elevated activity and expression of transporters, which are responsible for 
cellular uptake of nutrients (Kanai 2022), while glucose is transported into normal cells 
and cancer cells via the glucose transporter (GLUT) 1 (Kozal et al. 2021). Glucose metab-
olism is accelerated in malignant tumors, and PET uses a radioactive agent to visualize 

Fig. 3  SUVmax of 18F-FDG and 18F-FBPA PET/CT for malignant tumors vs. benign lesions

Table 2  Diagnostic performance of 18F-FDG and 18F-FBPA PET/CT in target lesions

Modality Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

18F-FDG PET/CT 98.7 22.2 87.4 66.7 86.4
18F-FBPA PET/CT 94.8 72.7 96 66.7 92

Fig. 4  ROC curves for SUVmax on 18F-FDG (broken line) and 18F-FBPA (solid line) PET/CT
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the status of metabolism (Hatazawa et al. 2003). 18F-FDG is a substrate for GLUT1 and is 
taken up by normal tissues such as the brain, resulting in high background values. There-
fore, 18F-FDG PET has limited utility in diagnosis of malignant brain tumors (Kinoshita 
et  al. 2012; Furuse et  al. 2019). Granulation tissue, macrophages, and neutrophils also 
have elevated glucose metabolism, so high uptake of 18F-FDG occurs in inflammatory 
lesions in which these cells are proliferating. Kubota et al. found higher uptake of 18F-
FDG in macrophages around necrotic tissue and in juvenile granulation tissue around 
tumors, rather than in the tumor cells themselves (Kubota et al. 1994). Thus, 18F-FDG 
PET/CT is limited for differential diagnosis of tumors and other lesions, especially in 
cases with active inflammation. The present results showed no significant difference in 
SUVmax of 18F-FDG PET/CT for malignant tumors and benign lesions (10.9 ± 6.3 vs. 
9.1 ± 2.7, P = 0.62), indicating that differentiation is difficult, as also found in previous 
reports (Kratochwil et al. 2019; Bertagna et al. 2015; Plaxton et al. 2015).

Fig. 5  An 80-year-old woman underwent contrast-enhanced CT (CECT) for a recently diagnosed 
breast tumor before surgery. CECT revealed gallbladder wall thickening with gallstones and a contrast 
enhancement effect, in addition to a left mammary mass, which may indicate gallbladder cancer. 18F-FDG 
PET/CT showed a local increase in accumulation in the gallbladder wall (SUVmax: 8.1), making it difficult to 
differentiate gallbladder cancer from cholecystitis. 18F-FBPA PET/CT showed accumulation in the left breast 
mass (SUVmax: 4.5), but no significant accumulation in the gallbladder wall (SUVmax: 2.8). Cholecystectomy 
was performed and the pathological diagnosis was inflammatory granulation tissue

Fig. 6  A 75-year-old man underwent contrast-enhanced CT to confirm local recurrence of hypopharyngeal 
cancer after radiotherapy. Clinically, post-treatment changes (granulation tissue, radiation necrosis) 
were suspected, but both 18F-FDG (SUVmax: 13.0) and 18F-FBPA (SUVmax: 5.8) PET/CT showed increased 
accumulation. Local recurrence was confirmed pathologically by puncture cytology



Page 9 of 13Isohashi et al. European Journal of Hybrid Imaging            (2022) 6:35 	

The amino acid transport system includes consists of various amino acid transporters.
Recently, LAT1 of the L-type family of amino acid transporters has been shown to 

be present in tumor cells, while LAT2 is found in normal cells (Khunweeraphong et al. 
2012). LAT1 is upregulated in many cancer cells and is highly correlated with the cell 
proliferation index, disease stage and poor prognosis (Lu et al. 2020; Kaira et al. 2009, 
2012, 2013; Isoda et al. 2014; Shimizu et al. 2015; Yoshimoto et al. 2013). However, LAT1 
is also expressed, although to a lesser extent, in cells and tissues with high proliferative 
and differentiation potential, such as the normal blood–brain barrier, blood-retina-brain 
barrier, placental barrier, endocrine glands and activated T cells (Wiriyasermkul et  al. 
2021). LAT2 is a neutral amino acid transporter that is mainly responsible for amino 
acid transport in the small intestine, where nutrients are absorbed, and in mucosal epi-
thelial cells of the kidney, where amino acids are reabsorbed from urine (Khunweer-
aphong et al. 2012).

There are several amino acid PET tracers in clinical use, including 11C-MET (methio-
nine), 18F-FAMT (methyltyrosine) and 18F-FBPA. 11C-MET is taken up by multiple 
amino acid transporters in normal cells since it is a natural amino acid used for pro-
tein synthesis in the cell, which leads to high background values in the liver, pancreas, 
and salivary gland tissue on PET (Wei et  al. 2016; Isohashi et  al. 2013). In contrast, 
18F-FAMT is specific for LAT1 and is not transported by LAT2 (Wei et al. 2016). Results 
from 18F-FAMT PET in patients with lung cancer showed accumulation of 18F- FAMT in 
cancer foci that correlated with the LAT1 expression level, while normal tissue, inflam-
matory sites and benign lesions showed little accumulation of 18F-FAMT (Kaira et  al. 
2007). 18F-FAMT PET is superior to 18F-FDG PET for detection of malignant tumors 
in some cancer types (Inoue et al. 2001; Achmad et al. 2017). Kim et al. found that the 
SUV of 18F-FAMT is smaller than that of 18F-FDG (Kim et al. 2015) because 18F-FDG is 
also taken up by tumor-associated inflammation, whereas 18F-FAMT is not. Although 
18F-FAMT is a promising tracer with higher specificity for cancer diagnosis than 18F-
FDG, the limited amount of synthesis made it difficult to use in the clinical setting. 
Development of a simple and efficient method for 18F-FAMT is needed for clinical appli-
cation (Inoue et al. 2001; Achmad et al. 2017).

BPA used in boron neutron capture therapy (BNCT) is transported by LAT1, LAT2 
and another transporter of neutral amino acids, amino acid transporter B0 (ATB0). BPA 
is not specific for LAT1, but is mainly transported into cancer cells via LAT1 (Wongthai 
et al. 2015). In contrast, 18F-FBPA used in PET has been reported to be highly specific 
for LAT1 (Wongthai et al. 2015) and has been found to be useful in differential diagnosis 
of tumors and inflammation in animal models (Watabe et al. 2017). In the current study, 
18F-FBPA uptake was visualized in many tumors, although 18F-FBPA tended not to show 
as high an uptake as 18F-FDG. A few tumors showed stronger accumulation of 18F-FBPA 
than 18F-FDG (SUVmax: external auditory canal cancer 13.3 vs. 11.6, breast cancer 4.5 
vs. 3.7), but others showed low 18F-FBPA accumulation (SUVmax: mantle lymphoma 
1.5–2.4, olfactory neuroblastoma 2.4) and could not be visualized (false-negative on 
PET). Conversely, a small number of cases of granulomatous inflammatory disease in 
the brainstem and cervical lymph node areas gave false-positive results. In such cases, 
it is important to evaluate the results in conjunction with other examinations and the 
clinical course. The expression level of LATI was not examined in this study, but is likely 
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to vary among types of tumor, and this may also have caused differences in accumula-
tion of 18F-FBPA. Well-differentiated lung cancers with frosted appearances on CT and 
18F-FDG PET have low accumulation and cannot be visualized. This suggests that tumor 
size, cell density, and the limited spatial resolution of PET can also affect the diagnostic 
performance.

18F-FDG PET/CT has the advantage of capturing metabolic changes that precede 
morphological changes caused by therapeutic interventions, allowing early assessment 
of the effect of treatment. In malignant lymphoma, 18F-FDG PET/CT has been used to 
determine the response to treatment and to diagnose residual active disease (Isohashi 
et al. 2008). However, since 18F-FDG is also taken up by inflammatory lesions, it is lim-
ited for differentiating tumor and inflammatory responses to treatment, especially in 
patients with persistent inflammation (Miyashita et al. 2008). The present study suggests 
that this distinction may be possible under certain conditions, especially in the presence 
of inflammation after radiotherapy (Fig. 6).

Fibroblast activation protein (FAP) is a type II membrane-bound glycoprotein belong-
ing to the dipeptidylpeptidase 4 family and is highly expressed in many epithelial can-
cer-associated fibroblasts. It is characterized by a strong desmoplastic response, and the 
association between FAP overexpression and a poor cancer prognosis has led to develop-
ment of FAP-specific inhibitors (FAPIs) (Kratochwil et al. 2019). In recent years, FAPIs 
labeled with 67Ga- or 18F and detected by PET have been used to provide information 
on tumor diagnosis and radiotherapy planning (Chen et al. 2020; Fu et al. 2022). How-
ever, this technique (which is referred to as tumor stromal imaging) is intended to detect 
pathological conditions associated with tumors and does not directly depict the tumor 
cells themselves. In contrast, 18F-FBPA PET directly depicts tumor cells and has a dif-
ferent target dimension. In the context of treatment, 18F-FBPA PET allows for appropri-
ate selection of patients for BNCT and accurate treatment planning (Aihara et al. 2020). 
In particular, prediction of boron concentrations in tumors is needed for accurate dose 
prediction and efficacy assessment in BNCT. Therefore, use of 18F- FBPA PET is impor-
tant for further development of BNCT (Ono et al. 2019), and in this sense, the value of 
18F-FBPA PET is extremely high. In this study, we mainly examined tumors and inflam-
mation in the trunk region. There were some false-negative and false-positive cases, but 
SUVmax for 18F-FBPA PET differed significantly in tumors and inflammatory lesions, 
indicating sufficient discriminatory ability for clinical use. PET with amino acid tracers 
such as 11C-MET and 18F-FAMT can also help in differential diagnosis of tumors and 
inflammatory lesions, but 18F-FBPA PET has the added advantage of providing infor-
mation relevant to BNCT treatment (Kim et al. 2015; Wedman et al. 2019). Currently, 
BNCT is performed for recurrent/refractory malignancies, but the threshold SUV of 
18F-FBPA PET/CT diagnosis provides clues to differentiate malignancy from inflamma-
tory lesions, including changes after radiotherapy, and may reduce the need for invasive 
biopsy and/or resection for pathological definitive diagnosis.

Conclusion
The results of this study showed that 18F-FBPA PET/CT was superior to 18F-FDG PET/
CT for differential diagnosis of malignant tumors and benign lesions. There are some 
limitations due to low 18F-FBPA accumulation in certain tumors, but the additional 
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information obtained from 18F-FBPA PET/CT can reduce false positives from 18F-FDG 
PET/CT in tumor diagnosis.
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