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Abstract
Plasmids are extra-chromosomal genetic elements that encode a wide variety of phe-
notypes and can be maintained in bacterial populations through vertical and horizontal 
transmission, thus increasing bacterial adaptation to hostile environmental conditions 
like those imposed by antimicrobial substances. To circumvent the segregational in-
stability resulting from randomly distributing plasmids between daughter cells upon 
division, nontransmissible plasmids tend to be carried in multiple copies per cell, with 
the added benefit of exhibiting increased gene dosage and resistance levels. But car-
rying multiple copies also results in a high metabolic burden to the bacterial host, 
therefore reducing the overall fitness of the population. This trade-off poses an exis-
tential question for plasmids: What is the optimal plasmid copy number? In this manu-
script, we address this question by postulating and analyzing a population genetics 
model to evaluate the interaction between selective pressure, the number of plasmid 
copies carried by each cell, and the metabolic burden associated with plasmid bear-
ing in the absence of selection for plasmid-encoded traits. Parameter values of the 
model were estimated experimentally using Escherichia coli K12 carrying a multicopy 
plasmid encoding for a fluorescent protein and blaTEM-1, a gene conferring resistance 
to β-lactam antibiotics. By numerically determining the optimal plasmid copy number 
for constant and fluctuating selection regimes, we show that plasmid copy number is a 
highly optimized evolutionary trait that depends on the rate of environmental fluctua-
tion and balances the benefit between increased stability in the absence of selection 
with the burden associated with carrying multiple copies of the plasmid.
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1  |  INTRODUC TION

Prokaryotes transfer DNA at high rates within microbial commu-
nities through mobile genetic elements such as bacteriophages 
(Chen et al., 2018), transposons (Chen & Dubnau, 2004), or extra-
chromosomal DNA molecules known as plasmids (Funnell & 
Phillips, 2004). Crucially, plasmids have core genes that allow them to 
replicate independently of the chromosome but also encode for ac-
cessory genes that provide their bacterial hosts with new functions 
and increased fitness in novel or stressful environmental conditions 
(Groisman & Ochman, 1996). Plasmids have been widely studied due 
to their biotechnological potential (Alonso & Tolmasky, 2020) and 
their relevance in agricultural processes (Pemberton & Don, 1981), 
but also because of their importance in clinical practice since they 
have been identified as significant factors contributing to the cur-
rent global health crisis generated by drug-resistant bacterial patho-
gens (San Millan, 2018).

Although the distribution of plasmid fitness effects is variable 
and context dependant (Alonso-del Valle et al.,  2021), it is gener-
ally assumed that in the absence of selection for plasmid-encoded 
genes, plasmids impose a fitness burden on their bacterial hosts 
(Baltrus, 2013; San Millan & Maclean, 2017). As a result, plasmid-
bearing populations can have a competitive disadvantage com-
pared with plasmid-free cells, thus threatening plasmids to be 
cleared from the population through purifying selection (Vogwill 
& MacLean, 2015). To avoid extinction, some plasmids can transfer 
horizontally to lineages with increased fitness, with previous the-
oretical results establishing sufficient conditions for plasmid main-
tenance, namely that the rate of horizontal transmission has to be 
larger than the combined effect of segregational loss and fitness 
cost (Bergstrom et al.,  2000; Stewart & Levin,  1977). Also, some 
plasmids encode molecular mechanisms that increase their stabil-
ity in the population, for instance, toxin-antitoxin systems that kill 
plasmid-free cells (Mochizuki et al.,  2006), or active partitioning 
mechanisms that ensure the symmetric segregation of plasmids 
upon division (Salje, 2010).

To avoid segregational loss, nonconjugative plasmids lacking 
active partitioning and postsegregational killing mechanisms tend 
to be present in many copies per cell, therefore decreasing the 
probability of producing a plasmid-free cell when randomly seg-
regating plasmids during cell division. But this reduced rate of seg-
regational loss is not sufficient to explain the stable persistence of 
costly plasmids in the population, suggesting that a necessary con-
dition for plasmids to persist in the population is to carry beneficial 
genes for their hosts that are selected for in the current environ-
ment. However, regimes that positively select for plasmid-encoded 
genes can be sporadic and highly specific, so plasmid persistence 
is not guaranteed in the long term. Moreover, even if a plasmid 
carries useful genes for the host, these can be captured by the 
chromosome, thus making plasmids redundant and rendering them 
susceptible to be cleared from the population (Hall et al.,  2016). 
This evolutionary dilemma has been termed the “plasmid paradox” 
(Harrison et al., 2012).

In this paper, we use a population genetics modeling approach 
to evaluate the interaction between the number of plasmid copies 
contained in each cell and the energetic cost associated with carry-
ing each plasmid copy. We consider a nontransmissible, multicopy 
plasmid (it can only be transmitted vertically) that lacks active parti-
tioning or postsegregational killing mechanisms (plasmids segregate 
randomly upon division). We will also consider that plasmids encode 
a gene that increases the probability of survival to an otherwise le-
thal concentration of an antimicrobial substance, albeit imposing a 
burden to plasmid-bearing cells in drug-free environments. To es-
timate parameters of our population genetics model, we used an 
experimental model system consisting on Escherichia coli bearing 
a multicopy plasmid pBGT (~19 copies per cell) carrying blaTEM-1, a 
drug resistance gene that produces a β-lactamase that degrades 
ampicillin and other β-lactam antibiotics (Salverda et al., 2010; San 
Millan, 2018).

We used computer simulations to evaluate the stability of a mul-
ticopy plasmid in terms of the duration and strength of selection in 
favor of plasmid-encoded genes. This allowed us to numerically es-
timate the number of copies that maximized plasmid stability under 
different environmental regimes: drug-free environments, constant 
exposure to a lethal drug concentration, and intermittent periods of 
selection. Altogether, our results confirm the existence of two op-
posing evolutionary forces acting on the number of copies carried by 
each cell: selection against high-copy plasmids consequence of the 
fitness cost associated with bearing multiple copies of a costly plas-
mid and purifying selection resulting from the increased probability 
of plasmid loss observed in low-copy plasmids.

2  |  METHODS

2.1  |  Serial dilution protocol

We consider a serial dilution experiment with two types of bacteria: 
plasmid-bearing (PB) and plasmid-free (PF). Let us denote by n the 
plasmid copy number (PCN) and argue that this is an important pa-
rameter: in the one hand, the selective disadvantage of PB individu-
als due to the cost of carrying plasmids is assumed to be proportional 
to n; on the other hand, the PCN determines the heritability of the 
plasmid.

In our schema, each day starts with a population of N cells that 
grow exponentially until saturation is reached (i.e., until there are γN 
cells). At the beginning of the next day, N cells are sampled (at ran-
dom) and transferred to new media and exponential growth starts 
again (Figure 1a).

2.2  |  Interday dynamics

To model the interday dynamics, we consider a discrete-time 
model in which the population size is fixed to N. Day i starts with 
a fraction Xi of PB cells (and 1 − Xi of PF cells). We consider that 
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the fitness cost associated with plasmid maintenance; κn is propor-
tional to the PCN, that is, κn = κn. This means that, at the end of day 
i, the number of PF cells is proportional to their initial frequency 
1 − Xi, while the number of PB cells is proportional to their initial 
frequency Xi multiplied by (1 − κn) < 1. So, at the end of day i, the 
fraction of PB cells would be

In addition, PB cells can lose their plasmids and become PF and 
with probability μn, so, at the end of day i, the fraction of PB cells 
needs to be multiplied by (1 − μn).

At the beginning of day i + 1, we sample N individuals at random 
from the previous generation. Since N is very large, we can neglect 
stochasticity and assume that the fraction of PB cells at the begin-
ning of day i + 1 is equal to their fraction at the end of day i, that is,

Additionally, we aim to modeling selection for plasmid-encoded 
genes. For plasmids carrying antibiotic resistance genes, this is 
achieved by exposing the population to antibiotic pulses. Individuals 
with no plasmids suffer more from this treatment, so, at each pulse, 
we observe an increment in the relative frequency of the PB sub-
population. To model this phenomenon, we assume that, in the pres-
ence of antibiotic, PF individuals exhibit a selective disadvantage 
represented by parameter α ∈ [0,1].

For instance, if an antibiotic pulse occurs at day i, all PB cells sur-
vive, (there are NXi), but the PF cells die with probability α, so only 
N(1 − α)(1 − Xi) survive. So, the fraction of PB individuals, right after 
the antibiotic pulse becomes

Then, cells grow exponentially again, as in a normal day, so that, 
at the end of the day, the fraction of PB cells is f(g[Xi]).

If we consider that the pulses occur at generations T, 2T,…, the 
frequency process becomes

2.3  |  Intraday dynamics

For the intraday dynamics, day i starts with a population of N cells 
(N∼ 105 in the experiment) that grow exponentially until saturation 
is reached (i.e., until there are γN cells). The initial fraction of PB 
cells is Xi. We assume that, in the absence of antibiotic, the popu-
lation evolves as a continuous time multitype branching process 
Zt =

(
Z0
t
,Z1

t

)
, where Z0

t
 (resp Z1

t
) is the number of PB cells (resp. 

PF cells). The reproduction rate (or Malthusian fitness) of PB (resp. 
PF) individuals is r (resp. r + ρn), with ρn > 0 (since PB individuals 
have some disadvantage due to the cost of plasmid maintenance). 
Following (González Casanova et al.,  2016), we assume that 
�n

∼N−b for some b ∈ (0,1∕2) (this regime is known as moderate-
strong selection).

We consider plasmids that lack active partitioning systems 
(Salje, 2010), so, at the moment of cell division, each plasmid ran-
domly segregates into one of the two new cells. Once in the new 
host, the plasmids replicate until reaching n copies. If, however, 
one of the two new cells has all the n copies, the other one will 
not carry any plasmid copy and becomes PF. Thus, we make the 
simplifying assumption that the daughter of a PB cell becomes 
PF with probability 2−n (segregational loss rate), as illustrated in 
Figure 1b. Therefore, at every branching event, an individual splits 
in two. Plasmid-free individuals only split in two PF individuals. 
Plasmid-bearing individuals can split in one PF individual and one 
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F I G U R E  1 Schematic diagram of the model. (a) Serial dilution protocol. PB cells are represented in green, while PF cells are represented 
in gray. We show 3 days of the experiments. An antibiotic pulse is added during day 3. (b) Segregational loss. Upon cell division, plasmids are 
segregated at random between the two daughter cells. Then, the plasmids are replicated until the PCN is 4. When a cell inherits no plasmid, 
it becomes plasmid-free.
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PB individual with probability 2−n (if all the plasmids go to one of 
them) or they can split in two plasmid-bearing individuals with 
probability 1–2−n.

Let M(t)  =  {Mi,j(t): i,j  =  0,1} be the mean matrix given by 
Mi,j(t) = �ei

(
Z
j

t

)
, the average size of the type j population at time 

t if we start with a type i individual. According to (Athreya & 
Ney, 2004; section V.7.2), M(t) can be calculated as an exponential 
matrix

More precisely,

Let σ be the duration of the growth phase. Since N is very 
large, one can assume that reproduction is stopped when the ex-
pectation of the number of descendants reaches γN, that is, that 
σ satisfies

Since �n ∼ N
−b, we have for large enough N that

Since γN >> 1, we can assume that the number of PB (resp. PF) 
cells at the end of the day is equal to its expected value. Therefore, 
the fraction of PB cells at the end of day i is equal to

This corresponds to Equation (2) with parameters

The importance of these formulas is that they connect measur-
able quantities with theoretical parameters, leading to a method to 
estimate the parameters of the model from experiments, which is 
the spirit of the experiment described in the following section.

2.4  |  Model parametrization

Our goal is to use the interday model to evaluate the long-term dy-
namics of plasmid-bearing populations in terms of the cost associ-
ated with carrying plasmids and the fitness advantage conferred by 
the plasmid in the presence of positive selection. To quantify these 
parameters experimentally, our approach consisted in two phases: 
(1) from growth kinetic experiments, we estimate parameters ρ, r, 
and σ of the interday model, and (2) we perform competition ex-
periments in a range of drug concentrations to obtain μn and κn using 
Equation (4) of the intraday model.

Our experimental model system consisted in E. coli K12 carrying 
pBGT, a nontransmissible multicopy plasmid used previously to study 
plasmid dynamics and drug resistance evolution (Hernandez-Beltran 
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F I G U R E  2 Growth kinetic experiment. (a) Schematic diagram illustrating a bacterial growth experiment performed in drug-free media 
separately for PB and PF populations. We used an absorbance microplate reader to measure the optical density (OD630) at different time-
points during the 24-h experiment. (b) Growth curves of PB (green) and PF (black) strains, with replicate experiments represented as shaded 
curves. The duration of the exponential phase, σ, was estimated by identifying the start of exponential phase and the time elapsed before 
reaching carrying capacity. Parameter ρ refers to the maximum growth rate of the PB population, while the selective advantage of the PF 
strain is represented with r.
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et al.,  2020, 2022; Rodriguez-Beltran et al.,  2018; San Millan 
et al., 2016). Briefly, pBGT is a ColE1-like plasmid with ~19 plasmid 
copies per cell, lacking the necessary machinery to perform conjuga-
tion or to ensure symmetric segregation of plasmids upon division. 
This plasmid carries a GFP reporter under an arabinose-inducible 
promoter and the blaTEM-1 gene that encodes for a β-lactamase that 
efficiently degrades β-lactam antibiotics, particularly ampicillin 
(AMP). The minimum inhibitory concentration (MIC) of PB cells to 
AMP is 8192 mg/L, while the PF strain has a MIC of 4 mg/L (see 
Appendix A).

Growth experiments were performed in 96-well plates with lysog-
eny broth (LB) rich media and under controlled environmental con-
ditions. Using a plate absorbance spectrophotometer, we obtained 
bacterial growth curves that enabled us to estimate the maximal growth 

rate of the PB and PF strains, corresponding to r and ρn in the intraday 
model (Hall et al., 2014; Figure 2a and Appendix C). As expected, we 
observed a reduction in bacterial fitness of the PB subpopulation, ex-
pressed in terms of a decrease in its maximum growth rate when grown 
in isolation. The metabolic burden associated with carrying the pBGT 
plasmid (n = 19) was estimated at 0.108 ± 0.067 (Figure 2b).

We then performed a 1-day competition experiment consist-
ing of mixing PB and PF subpopulations with a range of relative 
abundances and exposing the mixed populations to environments 
with increasing drug concentrations (see Figure 3a for a schematic 
of the experimental protocol). Previous studies have used a similar 
approach to determine a selection coefficient (Dykhuizen, 1990), a 
quantity that was used to show that selection of resistance can occur 
even at sublethal antibiotic concentrations (Gullberg et al.,  2011). 

F I G U R E  3 Competition experiment under a range of drug concentrations. (a) Schematic diagram illustrating an experiment where PB and 
PF are mixed at different relative abundances and submitted to a range of ampicillin concentrations (0, 1, 2, 2.5, 3, 3.5, 4, and 6 μg/ml). We 
use a fluorescence spectrophotometer to estimate the relative abundance of plasmid-bearing cells in the population after 24 h of growth. (b) 
Final PF frequency (illustrated in a gradient of green) for different initial fraction of PB cells and selection coefficients (top: Data; bottom: 
Model). (c) Control experiment illustrating that normalized fluorescence intensity is correlated with the fraction of the population carrying 
plasmids. Each dot presents a replica and the dotted line a linear regression (R2 = .995). (d) Experimental iterative map showing the existence 
of a minimum drug concentration that rescues the PB population (red lines). At low drug concentrations (blue lines), the PB population 
decreases in frequency. (e) Theoretical iterative map obtained by numerically solving Equation (2) for a range of strength of selections and 
initial PB frequencies. By fixing κn (previously estimated by growing each strain in monoculture), we fitted parameter α in Equation (2) to the 
experimental data. Colors indicate the strength of selection (in blue), values of α where the cost of carrying plasmids is stronger than the 
benefit resulting from positive selection, yielding curves below the identity line. Red curves represent simulations obtained with values of α 
strong enough to kill PF cells, thus increasing PB frequency in the population.
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Figure 3b shows the final PF frequency obtained for different initial 
population structures and strengths of selection.

The fitness cost associated with carrying plasmids in our inter-
day model was estimated from the proportion of PB cells at the 
end of a competition experiment. This quantity can be obtained 
from the normalized fluorescent intensity of the bacterial culture, 
measured with a fluorescent spectrophotometer or with flow cy-
tometry (Figure 3c shows a linear relationship between both quan-
tities). Figure  3d shows the end-point bacterial density resulting 
from competition experiments with different initial fractions of PB 
cells exposed to a range of AMP concentrations. Note that, at low 
AMP concentrations (blue lines), the frequency of plasmid bearing 
is below the identity, consistent with plasmids imposing a fitness 
cost to PB cells. By contrast, at high AMP concentrations (red lines), 
plasmid-free cells are killed and the population is almost exclusively 
conformed by PB cells.

In the model, since PCN is a fixed parameter, the PB fraction re-
sulting from a competition experiment in the absence of selection 
only depends on the cost associated with plasmid bearing. Therefore, 
by fitting Equation  (1), we estimated that the cost associated with 
carrying n  =  19 copies of pBGT was κn  =  0.272. Furthermore, by 
fixing this parameter and incorporating antibiotics, we estimated the 
selective pressure α for different antibiotic concentrations by fitting 
Equation  (2) to the experimental data. Figure 3e illustrates that at 
low antibiotic concentrations (small values of α) the frequency of the 
population is low, while higher values of α result in an increased PB 
frequency. Table 1 summarizes parameter values estimated for each 
strain in our model, and Table 2 shows the correspondence between 
antibiotic concentrations and α.

3  |  RESULTS

3.1  |  Segregational instability in the absence of 
selection

Our first aim was to evaluate the stability of a costly multicopy 
plasmid in the absence of selection for plasmid-encoded genes (i.e., 
without antibiotics). By numerically solving Equation (1), we evalu-
ated the stability of the PB subpopulation in terms of the mean PCN 
and the fitness cost associated with carrying each plasmid copy (see 
Appendix C). As expected, in the absence of selection, plasmids are 
always cleared from the population with a decay rate that depends 
on PCN. We define the time-to-extinction as the time when the frac-
tion of PB cells goes below an arbitrary threshold.

For cost-free plasmids (i.e., when κ = 0), the time-to-extinction 
appears to be correlated to PCN (Figure 4a). By contrast, if we con-
sider a costly plasmid (κ > 0) and that the total fitness cost is pro-
portional to the PCN (i.e., if PCN = n, the total cost is κn = κn), then 
extinction occurs in a much faster timescale (Figure 4b—notice the 
difference of timescales with Figure  4a). As shown in Figure  4b, 
small PCN values are associated with a high probability of segrega-
tional loss, and therefore the time-to-extinction increases with PCN. 
However, large values of PCN are associated with higher levels of in-
stability due to the detrimental effect on host fitness resulting from 
carrying multiple copies of a costly plasmid.

This observation indicates the existence of a nonlinear rela-
tionship between the stability of plasmids and the mean PCN of 
the population. To further explore this association, we computa-
tionally estimated the time-to-extinction in a long-term setting 
(simulations running up to 500 days) for different values of PCN 
and fitness cost. As expected, Figure 4c shows an accelerated rate 
of plasmid loss in costly plasmids. Crucially, there appears to be a 
critical PCN that maximizes the time-to-extinction, which depends 
on the per-cell plasmid cost. The time-to-extinction gives a notion 
of the stability of plasmids, but this measure may not apply if we 
introduce antibiotics and therefore avoid plasmid extinction. For 
this reason, we also quantified plasmid stability by measuring the 
area under the curve (AUC) of simulation trajectories similar to 
those in Figure  4b. The heatmap illustrated in Figure  4d shows 
this measure highlighting the existence of a region in the cost-
PCN plane, at intermediary PCN values, where plasmid stability 
is maximized.

TA B L E  1 Model parameters estimated using growth curves experiments in the absence of antibiotics

Parameter Measured value Formula Estimated value Description

r 0.435435 NA NA Plasmid strain growth rate

ρ 0.052334 NA NA WT growth rate advantage

σ 6.074089 NA NA Exponential phase duration

μn NA �n = 1 −
r2−n + �

r2−ne(r2
−n+�)� + �

5.938e−06 1-day fraction of segregants

κn NA
�n =

�

(
1− e

−(r2−n+�)�
)

r2−n + �

0.272313 Fitness cost

n 19 NA NA Plasmid copy number

TA B L E  2 Model parameter estimated by fitting Equation (4) to 
experimental data obtained for a range of ampicillin concentrations

Amp κn α

0.0 0.272276 0.0

1.0 0.272276 −0.37781

2.0 0.272276 −0.332662

2.5 0.272276 −0.058457

3.0 0.272276 0.992911

3.5 0.272276 0.9801

4.0 0.272276 0.992075

6.0 0.272276 0.99373
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3.2  |  Evaluating the role of selection in the 
stability of plasmids

To study the interaction between plasmid stability and the 
strength of selection in favor of PB cells, we assumed that the 
plasmid carries a gene that confers a selective advantage to the 
host in specific environments (e.g., resistance to heavy metals 
or antibiotics). For the purpose of this study, we will consider a 
bactericidal antibiotic (e.g., ampicillin) that kills PF cells with a 
probability that depends on the antibiotic dose. This results in a 
competitive advantage of the PB cells with respect to the PF sub-
population in this environment. We denote the intensity of this 
selective pressure by α.

Figure 5a–g illustrates plasmid dynamics over time for different 
values of α, obtained numerically by solving Equation (2) with a fixed 
PCN (n = 19) and drug always present in the environment (T = 1). In 
our model, then we found a critical dose that stabilizes plasmids in 
the population, that is, the minimum selective α, MSα = κn + μn(1 − κn; 
see Appendix B). The existence of a minimum selective concentra-
tion (MSC) that maintains plasmids in the population is a feature 
used routinely by bioengineers to stabilize plasmid vectors through 
selective media (Kumar et al.,  1991). Recall that in our model the 
PF MIC is α = 1; therefore, the MSα can be directly compared with 
the MSC/MIC ratio previously proposed (Greenfield et al.,  2018; 
Gullberg et al., 2011) as a concern factor on the selection of resistant 
strains in the environment.

As illustrated in Figure  5h, both low-copy and high-copy plas-
mids are inherently unstable and therefore the selective pressure 
necessary to stabilize them is relatively high, particularly for costly 
plasmids. Interestingly, at intermediate PCN values, the selective 
conditions necessary to stabilize plasmids are considerably less 
stringent than for low- and high-copy plasmids. This is the result of 
the nonlinear relationship between MSα and n; since μn decreases 
exponentially with n, κn increases only linearly with n.

Figure 5i shows the time elapsed before converging to a steady 
state (either extinction or persistence) for different values of α and 
PCN. As α increases, the cost of plasmid bearing is compensated by 
the benefit of carrying the plasmid and therefore plasmids are main-
tained in the population for longer. Note that at large values of α, 
plasmid-free cells are killed immediately independently of the mean 
PCN of the population, resulting very fast in a population composed 
almost exclusively of plasmid-bearing cells. Note that, in the case, 
the steady state x∗ = 1 − �n

1− �n

� − �n

 is achieved independently of the 
initial fraction of PB cells (see Appendix B), which is consistent with 
previous results (Yurtsev et al., 2013).

3.3  |  Plasmid stability in periodic environments

The purpose of this section is to understand the ecological dynamics 
of the plasmid-bearing population in fluctuating environments, that 
is, when periodic antibiotic pulses are administered. We started by 

F I G U R E  4 Numerical results for the model without selection for plasmid-encoded genes. (a) Plasmid frequency as a function of time for 
a cost-free plasmid (κ = 0). Note how, as the PCN increases, the stability of plasmids also increases, although eventually all plasmids will be 
cleared from the system. (b) Dynamics of plasmid loss for strains bearing a costly plasmid (κ = 0.0143). In this case, low-copy plasmids (light 
blue lines) are highly unstable, but so are high-copy plasmids (dark blue lines). (c) Time elapsed before plasmid extinction for a range of PCNs. 
A very costly plasmid (κ = 5%) is represented in dark purple, while the light purple line denotes a less costly plasmid (κ = 0.5%). (d) Plasmid 
stability for a range of fitness costs and PCNs (discrete colormap indicates level of stability, yellow denotes higher stability, while dark purple 
denotes rapid extinction). Stability is measured as the area under the curve (AUC) of trajectories similar to those in (b), expressed in log10 
scale. Notice that, for intermediate fitness costs, the PCN that maximizes plasmid stability can be found at intermediate values.
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exploring the time duration a PB population can survive without an-
tibiotics before being rescued by a strong antibiotic pulse (Figure 6a). 
Consistently with the results from the first section, lower plasmid 
costs result in increased rescue times, suggesting that a lesser rate 
of antibiotic exposure is required for their maintenance. In Figure 6b, 
we quantified this minimal period as a function of PCN and α. Note 
that higher values of α correspond to longer periods, which follows 
from the fact that a higher selective pressure increases the PB fre-
quency. Figure 6d illustrates this critical period for PCN = 19.

In periodic environments, the relative abundance of the PB 
population is driven to zero (extinction) or reaches a steady state 
in which the plasmid fraction oscillates around an equilibrium fre-
quency (persistence). In Figure  6c, times to stabilization were es-
timated for the strong selection regime (α = 0.99), using the same 
PCNs as in Figure 5i. Notice that the time-to-extinction is larger than 
the time to reach the periodic attractor. In both cases, the maximal 
time to rescue and the minimum period to avoid loss, we observe 
a nonmonotone effect of PCN and, therefore, a range of PCNs 
whereby plasmid stability is maximized. This is consistent with what 
we observed without antibiotics (Figure 4c) and with constant envi-
ronments (Figure 5h).

3.4  |  Optimal PCN depends on the rate of 
environmental fluctuation

In this section, we aim at exploring the concept of optimal PCN and 
how it depends on the environment. To do so, we define the optimal 
PCN (hereafter denoted PCN*) as the PCN that maximizes the area 
under the curve (AUC) of the PB frequency over time. This notion of 
stability was already introduced in Figure 4d and has the advantage 
that it can be used when the PB fraction goes to 0, to a fixed equilib-
rium, or when it oscillates.

First, we calculated PCN* for a range of plasmid fitness costs 
in the absence of selection (black solid line of Figure 7a) and found 
that PCN* is inversely correlated with the plasmid fitness cost. In 
order to compare the optimal PCN predicted by the model with PCN 
values found in other experimental plasmid-host associations, we 
searched the literature for studies that measure both PCN and fit-
ness cost. These values are summarized in Table 3 and illustrated in 
Figure 7a. The values of PCN found in the literature were below the 
predicted PCN* in an antibiotic-free regime (black solid line), sug-
gesting that plasmids would be unstable in the absence of selection. 
But, crucially, PCN values obtained from the literature are within the 

F I G U R E  5 Numerical results illustrating the effect of a constant selective pressure in the stability of nontransmissible multicopy plasmids. 
(a–g) Each box illustrates the temporal dynamics of the plasmid-bearing subpopulation in a pairwise competition experiment inoculated 
with equal initial fractions of PF and PB. From left to right, α = 0, 0.2, 0.26, 0.28, 0.6, and 1. The dotted line denotes MSα = κn + μn(1 − κn) for 
n = 19 and κn = 0.27. Note that for values of α < MSα, plasmids are unstable and eventually cleared from the population, while for α > MSα 
the plasmid-bearing subpopulation increases in frequency until reaching fixation. For α = MSα, the selective pressure in favor of the plasmid 
compensates its fitness cost and therefore the plasmid fraction remains constant throughout the experiment. (h) Minimum selective 
pressure required to avoid plasmid loss for a range of PCNs. Different curves represent plasmids with different fitness costs (light purple 
denotes cost-free plasmids and dark purple a very costly plasmid). Note that, for costly plasmids, there exists a nonmonotone relationship 
between MSα and PCN. (i) Time elapsed before plasmid fraction in the population is stabilized, for different copy numbers (5 in magenta, 
19 in black, and 30 in cyan). Dotted lines represent plasmid fixation, while dashed lines denote stable coexistence between plasmid-free 
and plasmid-bearing subpopulations, and solid lines plasmid extinction. The vertical line indicates MSα, the minimum selective pressure that 
stably maintains plasmids in the population. Black letters indicate the parameter values used in the examples shown in (a–g).
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blue-shaded area that represents the PCN* estimated for different 
environments (observe the nonlinear relationship between α, PCN*, 
and cost, in line with our previous findings).

These observations would be consistent with the constant use 
of antibiotics at low doses that reduces the optimal PCN. However, 
similar PCN* values can be achieved by administering higher doses 
of antibiotics periodically, as illustrated in Figure 7b for the case of 
pBGT. Notice again the nonlinear relationship between PCN* and 
the frequency of antibiotic exposure. At very low frequencies, the 
PB population goes extinct before the first antibiotic pulse and inter-
mediate PCNs maximize the AUC as in Figure 4d. At high antibiotic 
frequencies, the PB population persists and oscillates around some 
value that increases with PCN. This is consistent with a previous 
experimental study that evaluated the stability of costly plasmids 
in terms of the frequency of environmental fluctuation (Stevenson 
et al., 2018).

Periodic environments provided us with insights into how se-
lection acts on the mean PCN of the population, but natural envi-
ronments are not periodic but randomly alternate between intervals 
of positive and negative selection. The role of environmental sto-
chasticity in the stability of multicopy plasmids (Münch et al., 2019; 
Rodriguez-Beltran et al.,  2018) and, in general, in the population 
dynamics of asexual populations has been widely studied (Kussell 
& Leibler, 2005; Raj & van Oudenaarden, 2008). In our model, we 
generated stochastic environments that randomly switch from 
antibiotic-free to antibiotic for a period of 1000 days. Each random 

environment is represented by a sequence of 1s and 0s, correspond-
ing to days with and without antibiotics, respectively. Therefore, 
stochastic environments can be characterized by their Shannon's en-
tropy (environmental entropy, H) and the fraction of days with drug 
exposure (antibiotic rate, AR) (see Appendix C). Environments were 
classified into “High” and “Low” depending on whether the AR was 
greater or lower than 0.5. Mind that each value of H corresponds to 
two AR values AR and 1 − AR.

Panels on Figure 7d,e show the PCN* found by applying the 
stochastic environments ordered by entropy (or by AR), for dif-
ferent values of α. For low values of α, only high antibiotic rates 
lead to plasmid persistence. Notice the nonlinear relationship 
between PCN* and AR, similar to the observed for the period in 
the deterministic setting; PCN* decreases with AR at low values 
(corresponding to extinction) but increases with AR at high val-
ues (corresponding to persistence). For higher values of α, we 
observed that high AR always leads to persistence, while low AR 
can lead to extinction if entropy is low. In fact, these low values 
of the entropy corresponded to long periods without antibiotics 
that drove the PB population to extinction. Another interesting 
remark is that the distribution of obtained PCN*s is multimodal; 
at fixed entropy, plasmid persistence is achieved by high values 
of AR that correspond to high PCN* or by low values of AR that 
correspond to a small value of PCN*. Similarly, a fixed value of α 
corresponds to two values of PCN* depending on the antibiotic 
rate (Figure 7c).

F I G U R E  6 Numerical results of the model in periodic environments. (a) Maximum time a plasmid population can grow without antibiotics 
to avoid plasmid loss when applying a strong antibiotic pulse. Curves represent how this time is affected by PCN. Blue intensity represents 
plasmid cost, and black line indicates results using the pBGT parameters. (b) Minimal period required to avoid plasmid extinction. Simulations 
were performed using the pBGT measured cost (κ = 0.014). Red intensity represents different values of α. Note that higher values of α 
increase the minimal period. (c) Time required for trajectories to stabilize for copy numbers 5, 19, and 30 using α = 0.99 and the measured 
cost per plasmid. Note that there is a critical period that defines fixation or coexistence marked by red and blue circles on the PCN = 19 
(black) curve. (d) Trajectories for the critical periods of PCN = 19 starting from 0.5 PB-PF frequency. Note that 1-day period difference leads 
to opposite outcomes.
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4  |  DISCUSSION

In this work, we used a population genetics modeling approach to 
study how nontransmissible plasmids are maintained in bacterial 
populations exposed to different selection regimes. In particular, 
we considered a small multicopy plasmid that lacks an active parti-
tioning mechanism and therefore segregates randomly upon cell 
division. Multicopy plasmids are prevalent in clinical bacteria and 
usually carry antimicrobial resistance genes that can be transferred 
between neighboring bacterial cells (Ares-Arroyo et al., 2022), as well 
as other evolutionary benefits that go well beyond horizontal trans-
fer (Rodríguez-Beltrán et al., 2021). For instance, as multicopy plas-
mids are present in numerous copies per cell, the mutational supply 
increases proportionately and, once a beneficial mutation appears, 
its frequency can be amplified during plasmid replication. This results 
in an accelerated rate of adaptation to adverse environmental condi-
tions (San Millan,  2018) and enables evolutionary rescue (Santer & 
Uecker, 2020). Also, multicopy plasmids increase the genetic diversity 
of the population, thus enhancing survival in fluctuating environments 
(Hernandez-Beltran et al., 2022) and allowing bacterial populations to 
circumvent evolutionary trade-offs (Rodriguez-Beltran et al., 2018).

While the benefits of carrying plasmids may be clear under certain 
circumstances, their maintenance can be associated with a consider-
able energetic cost in the absence of selection for plasmid-encoded 
genes. This trade-off between segregational stability and fitness 
cost has been shown to drive ecological and evolutionary dynamics 
in plasmid-bearing populations (Paulsson & Ehrenberg, 1998), result-
ing from multilevel selection acting on extra-chromosomal genetic 
elements (Garoña et al., 2021; Paulsson, 2002). Plasmid population 
dynamics resulting from random segregation and replication result in 
a complex interaction between plasmid copy number, genetic dom-
inance, and segregational drift, with important consequences in the 
fixation probability of beneficial mutations (Ilhan et al., 2019) and the 
repertoire of genes that can be carried in mobile genetic elements 
(Rodriguez-Beltran et al., 2019). Besides a reduction in segregational 
instability, increasing the number of plasmids each cell carries also 
results in an increase in gene dosage (Dimitriu et al., 2021; Million-
Weaver et al., 2012) and expression variability of plasmid-encoded 
genes (Hernandez-Beltran et al.,  2022; Jahn et al.,  2016). For this 
reason, plasmid control in wild-type bacteria is a tightly regulated 
process (Del Solar & Espinosa, 2000) that depends on the environ-
ment and the host's genetics (Alonso-del Valle et al., 2021). Precise 

F I G U R E  7 Optimal PCNs in fluctuating environments. (a) Optimal plasmid copy number (PCN*) as the number of copies that maximizes 
the area under the curve of Figure 4b. PCN* decreases exponentially as we increase the fitness cost associated with carrying plasmids, as 
indicated in black solid line. Black dots show some PCN-costs data obtained from the literature. Red dots indicate the values of pBGT. Blue-
scale lines indicate optimal PCN curves for many values of α. Light-blues indicate higher values of α whereas dark-blues indicate lower values 
of α. Gray line shows the max PCN for the corresponding plasmid cost. (b) Optimal PCN in periodic environments. Each curve corresponds 
to a value of α. Black line shows α = 0. Observe that for very short periods optimal PCNs are high, then for certain period the optimal PCN 
reaches a minimum then as period increases, the optimal PCN tends to the optimal of α = 0. (c–e) Optimal PCNs using random environments. 
(c) Environments are classified by their rate of days with antibiotics, the rate differences produce a multimodal outcome, where higher 
rates increase the optimal PCN and vice versa. Simulations using the same environments were made for different αs. Note that α intensity 
increases the separation of the modes. Modes are also classified by their stability, persistence marked with a solid border line and extinction 
with a dashed border line. (d) Panel of optimal PCNs plotted by the environment entropy for sample α. Environments are classified by 
their antibiotic rate. (e) Panel of optimal PCNs plotted by the environment antibiotic rate for sample α. Environments are classified by their 
entropy.
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PCN control is also an important feature of synthetic genetic circuits 
that use plasmids as vectors for the production of recombinant sub-
stances (Rouches et al., 2022).

To explore the interaction between the strength of selection 
and PCN, in this manuscript we postulated discrete-time and 
Wright–Fisher diffusion models with the following biological as-
sumptions: (1) Plasmids encode for accessory genes that confer 
an advantage in harsh environments, for instance, antibiotic resis-
tance genes; (2) bearing plasmids is associated with a fitness cost 
in the absence of selection for plasmid-encoded genes; (3)  each 
plasmid segregates randomly to a daughter cell upon division; thus, 
plasmid-bearing bacteria can produce plasmid-free cells with a 
probability of 1∕2 n, where n is the PCN; (4) the cost associated with 
plasmid bearing is constant in time (no compensatory adaptation). 
We parameterized the model using a well-characterized multi-
copy plasmid, pBGT (Hernandez-Beltran et al., 2020; Rodriguez-
Beltran et al.,  2018; San Millan et al.,  2016), and estimated the 
maximal growth rates of plasmid-bearing and plasmid-free cells by 
analyzing growth kinetics of each strain grown in isolation. From 
the growth curves, we obtained estimates for the fitness cost as-
sociated with plasmid bearing and the fitness advantage of the 
plasmid-bearing cells for a range of antibiotic concentrations. We 
also performed 1-day competition experiments between different 
subpopulations of PB and PF cells and evaluated how this frac-
tion changed after a day of growth in media supplemented with 
antibiotics. Using this approach, we obtained theoretical and ex-
perimental iterative maps that we used to predict the long-term 
dynamics of the system.

Altogether, our results suggest that plasmid population dynamics 
in bacterial populations is predominantly driven by the existence of 
a trade-off between segregational loss and plasmid cost. We found 
that selection is necessary for the persistence of costly plasmids 
in the long term and that the strength of selection is highly cor-
related with the final fraction of plasmids in the entire population. 

As a result, whether plasmids are maintained or lost in the long term 
results from the complex interplay between PCN and its fitness 
cost, as well as the intensity and frequency of positive selection. 
As shown in the exhaustive exploration of parameters performed 
in this study, these relationships are highly nonlinear, thus resulting 
in the existence of an optimal PCN that depends on the rate of en-
vironmental fluctuation, the number of plasmids carried in each cell, 
and the fitness burden conferred by each plasmid-encoded gene in 
the absence of selection. In random environments, we observed a 
bimodal PCN* distribution, similar to the plasmid size distribution 
described for nontransmissible plasmids (Smillie et al., 2010) and for 
conjugative plasmids (Ledda & Ferretti, 2014).

Although both our theoretical and experimental models consider 
a multicopy plasmid with random segregation, the existence of an 
optimal PCN should also hold for nonrandom segregation (e.g., ac-
tive partitioning), as this would decrease the probability of segrega-
tional loss (which corresponds to having a smaller value of μn in our 
model) so its optimal copy number will likely be lower than a plasmid 
that relies on random segregation (Lopez et al., 2021). By contrast, 
compensatory adaptation that reduces the fitness cost associated 
with plasmid bearing (in our model, a lower value of κn), would result 
in an increase in PCN*. We conclude by arguing that, as the existence 
of plasmids in natural environments requires intermittent periods of 
positive selection, the presence of plasmids contains information 
on the environment in which a population has evolved. Indeed, the 
plasmid copy number associates the frequency of selection with the 
energetic costs of plasmid maintenance. That is, there is a minimum 
frequency of drug exposure that allows multiple copies to persist 
in the population, and, for each environmental regime, there is an 
optimal number of plasmid copies.
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APPENDIX A

Experimental methods

BAC TERIAL S TR AINS AND MEDIA
The plasmid-free strain we used was E.  coli K12 MG1655 and the 
plasmid-bearing strain was MG/pBGT carrying the multicopy plas-
mid pBGT with the β-lactamase blaTEM-1, which confers resistance 
to ampicillin and the fluorescent protein GFP under an arabinose-
inducible promoter. Mean plasmid copy number in the population is 
PCN = 19.1 ± 3.8 (San Millan et al., 2016). Overnight cultures were 
grown in flasks with 20 ml of lysogeny broth (LB; Sigma L3022) with 
0.5% w/v L-(+)-Arabinose (Sigma A91906) for fluorescence induc-
tion, in a shaker-incubator at 220 RPM at 37°C. For the plasmid-
bearing strain, 25 mg/L of ampicillin (Sigma A0166) was added to 
eliminate segregant cells. Ampicillin stock solutions were prepared 
at 100 mg/ml directly in LB and sterilized by 0.22 μm (Millex-GS 
SLGS033SB) filtering. Arabinose stock solutions were prepared at 
20% w/v in DD water and sterilized by filtration.

BAC TERIAL G ROW TH E XPERIMENTS
Growth kinetics measurements of each strain were performed in 
96-well plates with 200 μl of LB with 0.5% w/v arabinose without 
antibiotics, plates were sealed using X-Pierce film (Sigma Z722529), 
and each well seal film was pierced in the middle with a sterile needle 
to avoid condensation. Plates were grown at 37°C, and readings for 
OD and fluorescence were made every 20 min in a fluorescence mi-
croplate reader (BioTek Synergy H1), after 30-s linear shaking.

COMPE TITION E XPERIMENTS
Competition experiments were performed using 96-well plates 
with 200 μl of LB with 0.5% w/v arabinose, and respective ampicillin 
concentrations: 0, 1, 2, 2.5, 3, 3.5, 4, and 6 mg/L were implemented 
by plate rows. To construct our inoculation plate, overnight cul-
tures of the plasmid-free strain and the plasmid-bearing strain were 
adjusted to an OD of 1 (630 nm) using a BioTek ELx808 Absorbance 
Microplate Reader diluted with fresh ice-cooled LB. Appropriate 
volumes were mixed to make co-cultures at fractions 0, 0.1, 0.2,…, 
1 and set column-wise on a 96-well plate (Corning CLS3370). We 
then used a 96-pin microplate replicator (Boekel 140500) with 
flame sterilization before each inoculation. Four replicates plates 
were grown in static incubator at 37°C. After 24-h growth, plates 
were read in a fluorescence microplate reader (BioTek Synergy H1) 
using OD (630 nm) and eGFP (479,520 nm) after 1  min of linear 
shaking.

PL A SMID FR AC TION DE TERMINATION
To calculate the fluorescence intensity, we first subtracted the back-
ground signal of LB for fluorescence and OD, respectively, and then 
the debackgrounded the fluorescence signal was scaled by dividing 
by the debackgrounded OD. The measurements for our inocula-
tion plate showed a strong linear correlation (R2  =  .995) between 
co-cultures fractions and fluorescence intensity (Figure  3b). This 

allowed to directly approximate the population's plasmid fractions 
from the readings of our competition experiments. We normalized 
the data independently for each antibiotic concentration taking the 
average measurements of the four replicates. Plasmid fractions, 
PF, were inferred by normalizing the mean fluorescence intensity 
for each well, fi, to the interval [0,1] using the following formula: 
PFi  =  (fi − fmin)∕(fmax − fmin) were fmax and fmin are the mean fluores-
cence intensities at fractions 1 and 0, respectively.

APPENDIX B

Mathematical model

FIXED POINTS OF EQUATION (2)
Let f = f ◦g. We want to study the fixed points of f  and their domains 
of attraction. It is not hard to see that 0 is always fixed point, and 
once the frequency reaches 0, it stays at 0. In addition, if x ≠ 0,

Denote x∗ ≔ 1 − �n

(
1 − �n

)
∕
(
� − �n

)
. Since the frequencies are 

in [0,1], this fixed point only exists if α > κn + μn(1 − κn). As n increases, 
μn decreases exponentially, while κn increases only linearly, so there 
is a nonlinear relationship between n and the minimum α required for 
the existence of a second fixed point x*.

Let us analyze the stability of x*. Let us assume that α > κn + μn(1 − κn).

So, the frequency increases if it is below x* and decreases oth-
erwise, meaning that it is a stable fixed point. In addition, the do-
main of attraction is (0,1], meaning that this equilibrium fraction is 
reached for any initial state.
To sum up, 0 is always a fixed point. If α > κn + μn(1 − κn), then there 

is an additional stable fixed points x*.

CHOICE OF THE MODEL
In this section, we compare two types of mathematical models 
for the evolution of plasmid-bearing frequencies, the discrete-
time model used in this paper (Equation (2)) and the Wright–Fisher 
diffusion.

There had been several attempts to adapt the classical theory of 
Wright–Fisher models to this experimental setting (see for example 
(Chevin, 2011)). A mathematical rigorous way to do this was devel-
oped in González Casanova et al. (2016). In Gerrish & Lenski (1998) 
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a heuristic and applicable to data framework was introduced. 
Recently, in Baake et al.  (2019), the two methodologies had been 
paired in order to have a rigorous and applicable way to use classic 
population genetics to study evolutionary experiments. In this work, 
days take the role of generations, and as the number of individuals 
after each sampling is more or less constant, the assumption of con-
stant population size becomes reasonable.

Let us assume that the mutation rate �N,n = 2−n and the cost κN,n 
are parameterized by N. To see the accumulated effects of plasmid 
costs, segregational loss, and genetic drift, we need κN,n and μN,n to 
be of order 1∕N (see, e.g., Chapter 5 in Etheridge, 2011). The first 
condition is fulfilled if the cost per plasmid is very low, for example, 
when κN,n  =  κn∕N. The second one stands if n is of order log2(N), 
which is the case, for example, if n = 20 and N = 10 (Pemberton & 
Don, 1981), or if n = 15 and N = 10 (Alonso & Tolmasky, 2020). In 
that case, we set μ = N2−n. Under this setting, when time is acceler-
ated by N, the frequency process of individuals with plasmids can be 
approximated by the solution of the stochastic differential equation 
(SDE).

where B is a standard Brownian motion. This is known as the Wright–
Fisher diffusion with mutation and selection. When antibiotic is added, 
at times {T,2T,…}, then (5) modifies to

However, in our experimental setting, the cost that we measure 
(�n ≃ 0.27) is much higher than the inverse population size, so we are 
in the regime of strong selection. In other words, for plasmids that 
have a very small cost, of the order of 1∕N, genetic drift would play 
an important role, and the above Wright–Fisher diffusion with muta-
tion, selection and antibiotic peaks (6) would be the most suitable 
model. But in our setting, selection (plasmid costs) is so high that 
genetic drift becomes negligible. Recall that Equation  (2) does not 
need any time rescaling, whereas in the diffusion (6) time is meas-
ured in units of N generations. Under strong selection, the frequen-
cies evolve much faster.

APPENDIX C

Numerical simulations

COMPUTER IMPLEMENTATION
The model was implemented in Python, using standard scientific com-
puting libraries (Numpy, MatplotLib, and the Decimal library were re-
quired to resolve small numbers conflicts). In general, all simulations 
started at PB frequency 1 (unless stated otherwise). Numeric simula-
tions were defined to reach a steady state when values first repeat. 
In the case of periodic environments, the repetition must happen at 
antibiotic peak days. We considered extinction if the end point of the 
realization dropped below a threshold adjusted to the simulations 
times, the highest being 1 × 10−7 and the lowest 1 × 10−100.

R ANDOM ENVIRONMENTS
Environmental sequences of size 1000 (days) using a binomial dis-
tribution varying the probability of success. For each environment 
created, we also bit-flipped (so 101… turns into 010…) and two 
measures were applied to each resulting environment. First, we 
used Shannon entropy, H(Env) = −

∑n

i
pilogn

�
pi
�
, with two states, 

n = 2 (antibiotic or no-antibiotic) and pi equal to the probability of 
finding a state day, that is, the fractions of days with antibiotics and 
without antibiotics. We classified environments by their H and by 
the fraction of antibiotic days, as being this an important feature. 
These two measures are in the [0,1] interval, so we binned the inter-
vals into 20 bins and 1000 environments were created for each bin.

MODEL PAR AME TRIZ ATION
Growth kinetics parameters were estimated using the R (R Core 
Team,  2020) package growth rates (Petzoldt,  2019). Exponential 
phase duration, σ, was calculated by finding lag phase duration 
and the time to reach carrying capacity using the nonlinear growth 
model Baranyi. Maximum growth rates, r and r + ρn, were estimated 
using the nonparametric smoothing splines method. κn value was es-
timated using Equation (1) and the data from the antibiotic-free com-
petition experiment using a curve fitting algorithm from the SciPy 
library in a custom Python script. Respective values of α were found 
in the same manner using Equation (2) and fixing κn. κn was also calcu-
lated using the formula in Equation (4) with a very similar result. The 
parameters are summarized in Tables 1 and 2.

(5)dXt = − �Xtdt − �Xt
(
1 − Xt

)
dt +

√
Xt
(
1 − Xt

)
dBt ,

(6)

dXt =
∑
j≥ 1

�XjT−
(
1 − XjT−

)

1 − �

(
1 − XjT−

)1jT≤t − �Xtdt − �Xt
(
1 − Xt

)
dt +

√
Xt
(
1 − Xt
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dBt .
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