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A B S T R A C T   

Along with the destructive effects of catastrophes throughout the world, the COVID-19 outbreak has intensified 
the severity of disasters. Although the global aid organizations and philanthropists aim to alleviate the adverse 
impacts, many employed actions are not impactful in dealing with the epidemic outbreak in disasters. However, 
there is a gap in controlling the epidemic outbreak in the aftermath of disasters. Therefore, this paper proposes a 
novel humanitarian location-allocation-inventory model by focusing on preventing COVID-19 outbreaks with 
IoT-based technology in the response phase of disasters. In this study, IoT-based systems enable aid and health- 
related organizations to monitor people remotely, suspect detection, surveillance, disinfection, and trans-
portation of relief items. The presented model consists of two stages; the first is defining infected cases, trans-
ferring patients to temporary hospitals promptly, and accommodating people in evacuation centers. Next, 
distribution centers are located in the second stage, and relief items are transferred to temporary hospitals and 
evacuation centers equally regarding shortage minimization. The model is solved by the LP-metric method and 
applied in a real case study in Salas-e-Babajani city, Kermanshah province. Then, sensitivity analysis on sig-
nificant model parameters pertaining to the virus, relief items, and capacity has been conducted. Using an IoT- 
based system in affected areas and evacuation centers reduces the number of infected cases and relief item’s 
shortages. Finally, several managerial insights are obtained from sensitivity analyses provided for healthcare 
managers.   

1. Introduction 

Annually, cataclysms, e.g., earthquakes, hurricanes, volcanic erup-
tions, and floods, claim people’s lives worldwide. Based on information 
released from the international disaster database (https://www.emdat. 
be/emdat_atlas), Japan’s deadliest earthquake had more than 20,033 
fatalities. The last decade has experienced significant earthquakes trig-
gering more than 400,000 deaths and 500,000 injuries. Two of the most 
destructive earthquakes, the Sichuan earthquake in China and earth-
quakes in Haiti, affected more than 56 million people in both countries 
(Ahmadi et al., 2020). Regarding the statistics published recently, Iran is 
seventh of the world’s top ten countries with the most dangerous 
earthquake (Zolfaghari & Peyghaleh, 2016; Heydari et al, 2021). There 
is evidence that the most frequent natural catastrophe in Iran is the 

earthquake. Managing the disaster in the situation of occurrence of an 
earthquake is one of the most critical issues. Aside from a massive 
proportion of casualties, the economy of Affected Areas (AAs) may 
deteriorate after disasters, along with the healthcare system (Bakhshi 
et al., 2022). 

While an unprecedented SARS-CoV-2 outbreak emerged in Wuhan 
on 31st December 2019, World Health Organization (WHO) dissemi-
nated information about the fatal disease to ensure people’s safety 
(Sohrabi et al., 2020). Until now, many patients who are infected have 
mild symptoms, e.g., a dry cough, a sore throat, and a mild fever, which 
improve over a few days. However, others are faced with more severe 
symptoms such as organ failure, septic shock, and severe pneumonia 
(Chen et al., 2020). As noted by the online statistics platform 
(https://www.worldometers.info/coronavirus), the number of 
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confirmed cases worldwide is now more than 145 million, with 3.1 
million deaths. As far as COVID-19 is concerned, the global economy has 
declined due to preventative measures such as social distancing and 
lockdowns to eradicate coronavirus (Heydari & Bakhshi, 2022). To 
summarize, industries, international trade, and the global supply chain 
all suffer during the given timeframe (Ibn-Mohammed et al., 2021). 
Along with the crippling effect of COVID-19 on the supply chain 
network, relief logistics, encompassing vaccine, medicine, and ventila-
tors distribution, have been experiencing some disruptions throughout 
the period (Sharma et al., 2020). 

Regarding the destructive impacts of COVID-19, the spread of 
epidemic outbreaks amid the disaster can pose a potential menace to 
people’s lives and increase the number of casualties noticeably. The 
outbreak of acute gastroenteritis in Hurricane Katrina in August 2005 
and cholera followed by the Haiti Earthquake in January 2010 are the 
cases in point (Barzilay et al., 2013). Unambiguously, the lack of 
alcohol-based disinfectants, masks, paper towels, medical supplies, and 
drinkable water brings about unhygienic circumstances within the 
disaster-affected zones (Sakamoto et al., 2020). Therefore, planning the 
evacuation procedure that will apply during the COVID-19 pandemic 
has the utmost importance. 

Prevention, preparedness, response, and recovery constitute the four 
phases of managing a disaster (Goretti et al., 2017). Disaster prevention 
has become a global problem to lessen the impact of disasters. One 
strategic aspect of the pre-disaster phase is the facilities’ location and the 
quantity of relief items (RIs) to be processed, as they are closely linked to 
timely service and cost of response within the Humanitarian Relief Lo-
gistics (HRL) (Duhamel et al., 2016). Aim in HRL is the reducing the 
response time and the rate of casualty (Momeni et al., 2020). The 
response phase involves the evacuation measures and transferring of 
affected people from AAs. During the epidemic outbreak, the response 
phase should be combined with continuous surveillance and assessment. 
Additionally, in the preparedness stage, locating facilities and Evacua-
tion Centers (ECs) and distributing RIs should be based on virus features. 

To tackle the COVID-19 outbreak in AAs, Sakamoto et al. (2020) 
suggested a recommendation obtained from previous experiences 
mentioned in the following: (1) The total area required per person is six 
square meters. (2) Thermometers and sensors can be deployed to find 
symptomatic patients. (3) Public places, i.e., schools, can be utilized to 
accommodate unoccupied people along with ECs. (4) About one-third of 
ECs’ capacity should be accepted to occupy. (5) Tankers replete with 
drinkable water should be allocated to ECs. (6) The mask and alcohol- 
based disinfectants should be distributed to evacuees immediately. (7) 
A system is necessary to ensure that information and guidelines reach 
evacuees. (8) Continuous surveillance and tests would be implemented 
in ECs to find infected people. (9) The isolation space is crucial for 
symptomatic patients. 

As noted above, mitigating the shambolic situation amid the disaster 
outbreak is one of the main challenges severely impacted by the COVID- 
19 outbreak (Dehghan-Bonari et al., 2021). Planning and executing 
guidelines, accommodating symptomatic and asymptomatic patients 
simultaneously, utilizing the IoT-based technology, using cargo drones 
for distribution, and distributing RIs fairly and quickly can control the 
epidemic outbreak. The proposed IoT framework in this study collects 
the data of the symptoms from individuals and patients to define the 
infected cases and calculate the infection rate. A decision support system 
is incorporated into the IoT framework to make critical decisions based 
on the infection rate in the aftermath of a disaster. Also, the framework 
is utilized for virtual communication between patients and physicians 
and for informing people of the latest guidelines. 

The discrepancies between the management of disasters simulta-
neous with a pandemic and without it are as follows: (1) Relief items 
should contain sanitization and personal protective equipment, along 
with excess hygienic water; (2) allocation of patients and symptomatic 
people should be based on guidelines; (3) the medical IoT framework, 
along with the PCR test, should be used to detect suspects in a timely 

manner; (4) quarantine places should be considered to separate infected 
cases from the crowds; (5) novel vehicles and transportation methods (i. 
e., autonomous drones) should be hired to distribute RIs without human 
intervention. Therefore, these differences make management 
complicated. 

Questions that need to be answered in this study are as follows:  

• Where and how many Temporary Hospitals (THs) and Distribution 
Centers (DCs) should be instituted to cope with COVID-19 in the 
aftermath of disasters?  

• Are IoT-based technologies impactful for controlling COVID-19 in 
disasters?  

• What is the optimum inventory level for DCs?  
• How many drones and trucks are needed?  
• How many RIs are required? 

Therefore, the multi-objective, multi-period, multi-fleet location- 
allocation-inventory mixed-integer IoT-based mathematical program-
ming model with uncertain parameters is developed for the response 
phase based on Japan’s experiences proposed by Sakamoto et al. (2020) 
to answer the questions mentioned above. Additionally, an IoT frame-
work for finding suspected and infected cases, enriched with a novel 
decision support system for logistics management, is proposed in our 
study. Due to the paramount importance of disaster management amid 
the COVID-19 outbreak, affected people are allocated to ECs and THs 
regarding the allocation policy and time consideration. Then, RIs are 
distributed from DCs to ECs and THs swiftly. The main goals of our RI 
logistics problem are to minimize the delivery time of RIs, the shortage 
and surplus of RIs in demand zones, and total cost. As a main result of 
this study, reducing the infection rate can be impactful on cost reduc-
tion. Also, the infection rate in AAs has more impact on cost, shortage, 
and the number of the infected cases in THs than the rate in ECs. In terms 
of item distribution, drones have more impact on the shortage reduction 
than trucks. Furthermore, increasing the capacity of distribution centers 
has less effect on a shortage than increasing the fleet capacity or the 
number of fleets. 

This paper is composed of six main sections. The introduction is 
considered the first one. The literature of previous studies is analysed in 
Section 2. In Section 3, the problem description and suggested mathe-
matical model are presented, along with tackling uncertainty. Section 4 
points out the solution methodology. Next, in Section 5, the proposed 
model is evaluated by the actual case study, and comprehensive sensi-
tivity analyses are conducted concerning model parameters. Finally, the 
managerial insight, as well as the conclusion, are reported in Section 6. 

2. Literature review 

2.1. The location-allocation problems in humanitarian relief logistics 
(HRL) 

The location problem has numerous supply chain network applica-
tions, capturing the scholar’s attention in recent years. Some studies in 
humanitarian logistics are highlighted below. 

In the aftermath of floods, the telecommunication network may be 
disrupted as well as accommodation may be demolished. Mohammadi 
et al. (2016) presented the stochastic mathematical model to locate DCs, 
shelters, and telecommunication towers to enhance service efficiency 
and communication in disasters. Paul and Hariharan (2012) conducted 
the research to mitigate disaster-impacted zones, taking into account the 
reduction of delays in allocating stockpiles and evacuation. Survivability 
time and severity of injuries have a significant role in the mentioned 
study. While AAs encounter severe devastations, donations from non- 
governmental organizations (NGOs) and international contributions 
are requisite to evacuate people. Sarma et al. (2019) introduced the 
mathematical model, including minimizing total costs and operational 
time for inventory and allocation of daily consumed RIs, and supplying 
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machinery equipment delivered by NGOs. In the recovery phase of di-
sasters, Ahmadi et al. (2020) presented a two-stage mathematical model 
to allocate Save and Response (SAR) teams to AAs as soon as possible. 
The model aims to maximize demand coverage and minimize opera-
tional time to identify the casualties in the shortest time. 

Tofighi et al. (2016) proposed the two-stage inventory-location- 
allocation model to define the location of warehouses and DCs in the 
first phase and distribute the RIs to DCs in the second phase. Considering 
demands and items’ priority, the model aims to minimize total cost and 
transportation time. Furthermore, Aslan and Çelik (2019) designed the 
location-routing-inventory model consisting of two stages; the first aims 
to locate DCs and warehouses during the preparedness phase, and the 
latter tries to find the indefectible roads at the post-disaster time. The 
road’s vulnerability amid the disaster and restoration time of affected 
roads is incorporated in the mentioned model. Since RIs have various 
lifetimes, ordering policy plays a crucial role in HRL. Rezaei-Malek et al. 
(2016) proposed the model considering selling surplus perishable items 
and buying them periodically to decrease the surplus amount of 
perishable RI. Amid the catastrophe, Road disruptions and people’s 
foreboding will bring about massive traffic congestion in the aftermath 
of disasters. To cope with the rampant problem, Wang and Nie (2019) 
proposed the location-allocation single-objective model involving traffic 
function incorporated into transportation costs. The model aims to find 
the road with the lowest traffic congestion. Vahdani et al. (2018) 
developed the comprehensive two-stage multi-period multi-commodity 
multi-vehicle mathematical model that encompasses locating DCs and 
warehouses in the first stage and routing and distributing RIs in the 
second one. To fulfil people’s demand and deliver RIs promptly, the 
priority of damage AAs, split delivery, and hard time window are 
incorporated into the model. A novel transportation method has 
emerged regarding the road disruptions during calamities, which name 
is aeromedical logistics. Abazari et al. (2021) tackled the problem of 
distribution of perishable and imperishable RIs by minimizing total 
traveling time and distance and considering the time window. Jenkins 
et al. (2020) addressed mobile aeromedical facility location and allo-
cation of helicopters to stages. The model aims to maximize the demand 
coverage in AAs and facilitate distributions. Bozorgi-Amiri and Khorsi 
(2016) considered people’s satisfaction in AAs by minimizing the 
maximum amount of shortage, total travel time, and total cost. The 
proposed model regards multi-modal transportation encompassing a 
heterogeneous fleet of vehicles. 

In the response phase, patient hospitalization and provision of 
medical supplies decrease the disaster’s fatality rate. Habibi-Kouchak-
saraei et al. (2018) considered the problem of temporary blood facility 
location and blood distribution to the temporary and existing hospitals. 
The bi-objective multi-echelon model aims to minimize the total costs 
and blood deficiency. Additionally, Salehi et al. (2017) developed the 
previous work and presented the multi-objective multi-period, multi- 
product model considering all types of blood types, their derivations, 
and the possible blood substitution. Moreover, to transfer casualty 
aftermath earthquakes, Haghi et al. (2017) considered THs in HRL. The 
mathematical model entails minimizing costs and maximum demand 
shortage, and neglected casualties. Ghasemi et al. (2019) proposed the 
bi-objective model regarding the distribution of RIs and injured people’s 
hospitalization simultaneously. Due to the severity of injuries, the pa-
tients are divided into two groups; the first is outpatients transferred to 
temporary medical centers, and the latter is seriously injured patients 
transferred to hospitals. 

2.2. Uncertainty in humanitarian logistics 

Due to the unpredictable nature of disasters, embracing the uncer-
tain environment can make the model more real-world and efficacious. 
Based on the literature review conducted by Peidro et al. (2009), in most 
logistics models, the inventory parameters (i.e., inventory cost and ca-
pacity of the storage), supplier-side parameters (i.e., establishment cost, 

production cost, and quality parameters), distribution parameters (i.e., 
transportation cost and the capacity of vehicles), and demand parame-
ters (i.e., demand quantity) were taken as uncertain parameters. As 
shown in numerous studies in HRL, uncertainty stems from supply, de-
mand, inventory, and network connectivity. 

Specifically, for the demand side, Mohamadi et al. (2016) used Fuzzy 
Mathematical Programming (FMP) for demand uncertainties. The un-
certain population in each region (demand level) for maximizing de-
mand coverage in the problem of selecting telecommunication towers 
Also, the hired possibilistic method does not control the level of un-
certainty. Additionally, Jenkins et al. (2020) considered volatile de-
mands in the aeromedical location-allocation problem. 

To predict disasters’ unspecified behaviours, some researchers have 
considered uncertain demand and supply simultaneously whether many 
scholars have presented all the facets of uncertainty sources. It is worth 
noticing that disaster time walks hand in hand with demand levels at 
specific locations. For instance, in working hours, the total population 
can increase in the business district. Simultaneously, considering loca-
tion and demand level are found in Rezaei-Malek et al. (2016), Salehi 
et al. (2017), and Habibi-Kouchaksaraei et al. (2018). 

Aside from fluctuating demand, Abazari et al. (2021) focused on 
uncertainty corresponding to distribution parameters, including travel, 
loading, unloading time, transportation, and inventory cost. This work 
did not consider the uncertainty in either demand or supply. However, 
the study developed by Tofighi et al. (2016) considered demand sides 
with the accompaniment of parameters mentioned in the previous work. 
Note that in this study, the uncertain capacity of distribution centers is 
added into model to concentrate more on the uncertainty for the dis-
tribution side. Similarly, Sarma et al. (2019) embraced the FMP method 
to convert transportation and inventory costs and demand levels into the 
crisp model. However, this study did not consider time and capacity as 
fuzzy numbers. In addition, in the problem of pre-positioning and pro-
curement planning, Torabi et al. (2018) utilized both FMP and scenario- 
based methods for uncertain parameters in all fields, involving uncertain 
capacity, production and procurement costs, transportation costs, and 
demand level. This study focused on the supplier side and prepositioning 
planning, which model is not appropriate for the disaster response 
phase. Similar to Mohamadi et al. (2016), the utilized fuzzy method 
cannot control the degree of uncertainty. Danesh Alagheh Band et al. 
(2020) presented a multi-objective problem to maximize the gain from 
the assessment of roads and areas with uncertain parameters. 

2.3. Impact of COVID-19 on supply chain management 

Regarding the business closure, lack of workforce, and massive 
lockdowns, the logistics network’s efficiency decreases considerably 
amid the coronavirus (Wu et al., 2021; Spieske and Birkel, 2021). Some 
studies are conducted pertaining to the COVID-19 outbreak to tackle the 
lack of products and emergency items mentioned below. 

Regarding the distribution of critical items to tackle the COVID-19 
outbreak, Tirkolaee et al. (2022) proposed the location-allocation 
closed-loop green network for distributing and collecting face masks, 
considering all components wrestling with COVID-19 (i.e., quarantine, 
distribution, and recycling centers). In order to eradicate the Hazardous 
Medical Wastes (HMW), including masks, among the COVID-19, Kargar 
et al. (2020) designed the network enriched by Temporary Treatment 
Centers (TTCs) and all potential waste generators (hospitals, treatment 
centers, and quarantine places). The multi-period model aims to locate 
the TTCs and allocate the influx volume of HMW to TTCs in terms of 
minimizing the maximum quantity of uncollected waste, which is 
similar to minimizing the unmet demand in Goodarzian et al. (2022). 
Similarly, in Goodarzian et al. (2021), the sustainable pro-
duction–distribution–inventory–allocation–location model was devel-
oped for perishable medicine amid the coronavirus, taking into 
consideration of minimizing maximum shortage. Aside from masks and 
their waste management, Mondal and Roy (2021) designed a 
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production–distribution model to distribute required items for COVID- 
19 to hospitals concerning the minimizing time and backlogged works 
to increase people’s satisfaction. In the HRL network, distributing foods, 
along with relief items, plays a pivotal role, which is considered in Azani 
et al. (2022). In this study, food is allocated to reduce the virus trans-
mission and people’s communication. 

In order to utilize the state-of-the-art technologies for eradicating 
COVID-19, Zahedi et al. (2021) proposed the application of the medical 
internet of things (m-IoT) for ambulance allocation for COVID-19 pa-
tients with consideration of their priorities that are efficacious in 
reducing COVID-19 patients noticeably. The role of IoT in this paper is to 
define suspected cases and allocate the ambulance to them. In addition, 
Goodarzian et al. (2022) designed the COVID-19 vaccine supply chain 
network with the goal of minimizing the maximum unmet demand, total 
cost, and delivery time. Similar to Zahedi et al. (2021), the IoT frame-
work plays a critical role in gathering people’s information and priori-
tizing sensitive tiers. Hence, the impact of IoT on supply chain 
management became stark after the emerging of the virus that the 
proposed Methods and IoT equipment are discussed in Yousif et al. 
(2021). 

2.4. Research gaps 

To sum up the literature, a meticulous analysis of Table 1 provides 
research gaps of the HRL. Some specifications of research gaps are 
mentioned below.  

• None of the research considers the management of epidemic and 
disease outbreaks among the disasters (i.e., earthquake, tsunami, 
flood, storm). There are several guidelines in essays, but this problem 
lacks mathematical modelling. Also, none of the aforementioned 
essays consider time, cost, distance, and demand coverage as 
objective functions simultaneously. 

• In a few recent articles, fleet management and multi-modal trans-
portation play a crucial role in distribution and delivery. It should be 
mentioned that none of the previous research does not consider 
various types of transportation, including road, air, rail, and sea 
methods, along with the heterogeneous types of fleets.  

• Practically speaking, evacuating people and distributing RIs happen 
concurrently, which is considered in numerous essays separately. 
There is an stark gap to make a mathematical model that involves 
both of them.  

• In the aftermath of a disaster, the level of uncertainty surges in all 
aspects. Most papers concentrated on demand fluctuations at the 
time of the disaster. Based on the systematic review conducted in 
Section 2.2, none of the research considered all types of uncertainty 
for the response phase of a disaster.  

• Based on two recent articles (Zahedi et al., 2021; Goodarzian et al., 
2022), they combined IoT-based technology into supply chain 
management to tackle the impact of COVID-19 on the logistics 
network. However, there is a gap in incorporating the medical IoT 
into the humanitarian logistics network. 

After a meticulous analysis of research gaps, the novelties of our 
paper are listed below:  

• The study herein seeks to cope with natural cataclysms amid the 
epidemic outbreak. In this study, the mathematical model is pre-
sented to address the location of THs and DCs, determination of 
required RI’s quantity, e.g., sanitizers, water, Personal Protective 
Equipment (PPE), transferring people and patients, and allocation of 
them to THs and ECs. The proposed IoT-based multi-echelon multi- 
commodity multi-period model aims to make a trade-off between 
unmet demand, costs, distances, and travel time simultaneously to 
increase people’s satisfaction and fairness in distribution. Also, some 
practical experiments, proposed by Sakamoto et al. (2020), were 
added to our model; these can be seen in model assumptions.  

• The heterogeneous fleet is utilized in the study to deliver RIs swiftly. 
In our article, two models of transportation are deployed, including 
air and road. Drones are utilized for air transportation, and trucks are 
considered for road distribution. 

• The transferring of people along with the distribution of RIs to in-
dividuals is considered concurrently in our model. 

• The novel IoT framework is incorporated into our humanitarian lo-
gistics network for calculating and reducing the infection rate of 
COVID-19. Note that this framework is based on Otoom et al. (2020), 

Table 1 
A comparison of relevant literature on the topic of HRL network design.  

Author Objective function Type of problem Period Commodity Uncertainty Fleet IoT Solution method 

H D DC T C L A R I S M S M SB F S R N 

Paul and Hariharan. 
(2012)    

* * * *   *  *  *       commercial solver 

Bozorgi-Amiri and Khorsi 
(2016)   

* * * * *  *  *  * *       ε-constraint method 

Mohamadi et al. (2016) * * *   * *   *  *  * *      commercial solver 
Rezaei-Malek et al. (2016)    * * * *    *  * *   *    tchebycheff method 
Tofighi et al. (2016)    * * * *  * *   * * *       metaheuristic 

Vahdani et al. (2018)    * * * * * *  *  * *   *  *  metaheuristic 
Haghi et al. (2017) *    * * *   *   * *   *    metaheuristic +

ε-constraint method 
Habibi-Kouchaksaraei 

et al. (2018)   
*  * * *    * *  *   *    commercial solver 

Aslan and Çelik (2019)    * * *  * * *   *   *     heuristic 
Salehi et al. (2017)     * * *  *  *  * *  * *    branch and cut method 
Sarma et al. (2019)    * * * *   *   *  *      commercial solver 
Ghasemi et al. (2019) *    * * *  *  *  * *     *  metaheuristic 
Wang and Nie (2019)     * * *   *  *  *       general benders 

decomposition 
Ahmadi et al. (2020)   * *   * *   * *     *    commercial solver 
Abazari et al. (2021)  *  * * * *  * *   *  *    *  metaheuristic 
Jenkins et al. (2020) *  *   * *   *    *       ε-constraint method 
This Study * *  * * * *  *  *  * * *    * * commercial solver 

Cue: [Objective function: H = humanitarian, D = distance, DC = demand coverage, T = time, C = cost], [Type of problem: L = location, A = allocation, R = routing, I =
inventory], [Period and Commodity: S = single, M = multi], [Uncertainty: SB = scenario-based, F = fuzzy, S = stochastic, R = robust, N = none]. 
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that we make it specific for the disaster situation by adding some 
components (e.g., quarantine centers).  

• To cope with uncertainty, all types of uncertainty, involving supply 
(institutional cost), demand (number of people living in city zones), 
inventory (capacity of storage and inventory cost), and distribution 
(capacity of fleet and distribution cost), are covered in our study. 
Aside from parameters, fuzzy mathematical programming and 
scenario-based optimization cope with uncertainty in all aspects of 
this study. Finally, the proposed model is evaluated in three different 
scenarios by a real-world case study in Salas-e-Babajani city, located 
in Iran. 

3. Problem description 

Our problem is composed of two interconnected sections, including a 
proposed IoT framework and a decision support system. Note that this 
IoT framework is the developed version of the study proposed by Otoom 
et al. (2020), specifically for monitoring and detecting infected cases in 
disasters. Regarding the review article written by Asadzadeh et al. 
(2020), one of the DSS applications that was made to deal with the 
COVID-19 epidemic is supply chain management. As a significant nov-
elty of this work, a novel decision support system as a part of an IoT 
system is proposed to make critical decisions in the aftermath of 
disasters. 

3.1. The proposed IoT framework 

The Internet of Things (IoT) is a system of interconnected computer, 
electronic, and mechanical equipment capable of transmitting data 
across a specified network without human intervention. What makes IoT 
capable of the COVID-19 Pandemic is its significant benefits, including a 
lower probability of error, lower costs, superior treatment, improved 
diagnosis, proper monitoring system during the quarantine, reduction in 
medical staff’s workload, and effective control (Singh et al., 2020). The 
lack of this framework can increase the infection rate noticeably because 
doing a COVID-19 PCR test on all individuals and then allocating people 
based on the test result takes a great deal of time and also, a huge 
number of tests are not available at that time. 

Practically speaking, the medical IoT system is utilized in numerous 

countries to cope with the COVID-19 issue. Some practical examples of 
IoT are presented in the following. For the first time, China hired the IoT 
to build the questionnaire-based application used for COVID-19 treat-
ment and diagnosis (Bai et al., 2020). The Health Beats application was 
developed along with the phone application for monitoring vital signs 
and diagnosing suspected COVID-19 cases (https://www.healthbeats. 
co/covid-19/). Also, the Mhero application is utilized for physician- 
patient communications by using text messages and SMS (htt 
ps://www.mhero.org/). Aside from a mobile phone-bed infected de-
tector, Shanghai Public Health Clinical Center (SPHCC) deployed a 
continuous body temperature monitoring system with wearable sensors, 
which are based on Bluetooth (https://www.mobihealthnews.com/ 
news/asia/sphcc-employs-iot-tech-and-wearable-sensors-monitor-co 
vid-19-patients). Additionally, to illustrate the accuracy of the ML- 
driven infected detector models, the study proposed by Otoom et al. 
(2020) showed that five out of eight supervised classification models 
have more than 90 % accuracy in detecting COVID-19 suspects. This 
section illustrates our planned IoT-based infrastructure for monitoring 
coronavirus infections in real-time and making critical decisions auto-
matically. The framework of our suggested IoT is depicted in Fig. 1, 
comprising eight major components specifically for disaster manage-
ment amid the outbreak.  

1. Data collection section in THs and ECs: 

This section seeks to collect real-time symptom data from in-
dividuals’ bodies using a set of sensors. Based on the study proposed by 
Alzubaidi et al. (2021), these symptoms were recognized as Fever, 
Cough, Fatigue, Sore Throat, and Breathlessness. 

In our study, biosensors, involving thermal and infrared sensors for 
monitoring people’s body temperature and detecting fever, heart-rate 
sensors located on wearable rings for measuring oxygen level and 
detecting breathlessness, and a web-based application for assessing the 
general wellbeing of patients based on the daily questionnaire, notifying 
people to comply with the regulations, and sending symptoms data to 
the cloud, are utilized in ECs and THs. Noteworthy, in AAs, body tem-
perature data is based on thermal sensors located on the drones and 
medical infrared thermometer guns, and then other symptoms are 
measured after allocating people to ECs and THs. 

Fig. 1. The proposed IoT-driven framework.  
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2. Cloud and data center: 

With cloud infrastructure, it is possible to gather real-time symptom 
data from each person in AAs, THs, and DCs and store personal health 
records. It should be mentioned that the data collection is based on the 
internet, Bluetooth, and Wi-Fi systems. The use of each way is regarded 
as the destruction of network connection in AAs. In our study, the data of 
the symptoms from THs, ECs, and AAs, the data of RIs inventory level 
from DCs, and data from the PCR team are transferred to the data center.  

3. Data analysis and decision support system: 

The most significant part of the IoT infrastructure is data analysis. 
The symptom data stored in the data centers is analyzed by Machine 
Learning (ML) algorithms to detect suspected COVID-19 cases based on 
the ML approaches proposed by Otoom et al. (2020). Note that the 
utilization of IoT for the detection of suspected cases is not enough in the 
aftermath of a disaster because suspected cases should take the PCR test. 
After analyzing the result of PCR test team, infection rate in AAs and ECs 
by dividing the total number of individuals in AAs and ECs by the 
number of infected cases in these centers, respectively. The related pa-
rameters used in our mathematical model were P1 and P2. Moreover, our 
study proposes a novel decision-making system based on the infection 
rate determined by the mentioned ML approaches and data analysis. 
This decision system aims to (1) allocate individuals from AAs to THs 
and ECs in a timely manner; (2) define the best location for DCs; (3) 
define the number of required vehicles and drones for DCs; and (4) 
calculate the demand for RIs and distribute them to demand points 
regarding time and satisfaction. The decision-making system is based on 
mathematical modeling, which is solved by optimization software, e.g., 
GAMS and LINDO.  

4. Testing team 

Using a machine learning-based identification algorithm, the testing 
team performs a PCR test on suspected cases with abnormal symptom 
data, which is defined by the data analysis section. After defining the 
results, those results are transmitted to the cloud, and then the data 
analysis section determines the exact number of infected cases and the 
infection rate of COVID-19 in ECs and AAs.  

5. Temporary Hospitals or Quarantine places 

This section shoulders the responsibility of gathering vital signs, e.g., 
body temperature, pulse rate, respiration rate, and blood pressure, from 
patients who are isolated in THs. Additionally, other data, including 
gender, age, and incurable diseases, is transmitted with vital signs with 
tablets allocated to each patient to the cloud and data analysis section. 
Aside from data transmission, the tablets provide mutually virtual 
physician-patient communication.  

6. Medical center 

After allocating the infected cases to THs, physicians will monitor the 
real-time symptom data in THs. Therefore, this integrated system allows 
physicians to communicate with patients remotely.  

7. Distribution section 

The indispensable decision after transferring people is to distribute 
the RIs to the used THs and ECs. The proposed decision-making system 
calculates the exact quantity of required RIs for each demand point in 
each period. Additionally, DCs will monitor the inventory level of RIs 
based on scanning the barcode of RIs with the barcode reader and 
sending the real-time inventory data to the cloud and decision system.  

8. Operational team 

Operational teams will receive the final decision pertaining to the 
location of DCs, THs, and ECs from the decision support system, and they 
will institute and equip these points properly with regards to the number 
of individuals allocated to each center. Note that data transfer is based 
on the team’s phone and internet. 

3.2. The proposed decision support system 

In the aftermath of a disaster, the casualties must be allocated to 
hospitals, RIs should be distributed to ECs, and affected people should be 
transferred to ECs as soon as possible. However, the COVID-19 outbreak 
affects the distribution of RIs and the evacuation of people. Detecting 
infected people in crowds is complicated, and disasters worsen the sit-
uation. Until now, no effective medications have been discovered for 
COVID-19. Thus, isolation and reducing the infection rate of COVID-19 
is the only solution in this period. This rate, playing a critical role in our 
decision system, will be calculated by dividing the total number of in-
dividuals by the number of infects cases determined by the proposed IoT 
framework. 

Similar to the situation before the COVID-19 pandemic, the severely 
wounded patients are transferred to hospitals. Due to the transmission of 
the virus, people, along with mildly wounded patients, are allocated to 
ECs and THs according to the allocation guideline shown in Fig. 2. 
Unambiguously, testing all people sensitively with a PCR diagnostic kit 
in the aftermath of a disaster is robustly impossible because it is time- 
consuming. PCR tests with IoT-based infected detector systems can be 
taken as a viable solution throughout the period. Among rapid tests, 
symptomatic individuals should take the PCR test to transfer COVID-19 
patients to THs. In contrast, asymptomatic people are transferred to ECs 
with the accompaniment of symptomatic people who have negative PCR 
tests. The TH is a place where symptomatic patients are quarantined to 
prevent the spread of the COVID-19 pandemic amid the earthquake. 
After transferring people to ECs, they will undergo continuous moni-
toring based on the proposed IoT-driven system. Aside from patients’ 
allocation, RIs encompassing face masks, sanitizers, hygienic products, 
and drinkable water should be provided in Relief Collection Warehouses 
(RCW). Governmental Organizations (GO) and NGOs contribute to-
wards RCWs (Bakhshi et al., 2022). RIs are distributed to DCs, and then 
they are allocated to ECs and THs according to their needs. Therefore, it 
is necessary to locate temporary DCs and THs based on cost, distance, 
time minimization, the increase in people’s satisfaction, and fair distri-
bution. Moreover, a heterogeneous fleet of trucks and IoT-based cargo 
drones are hired to deliver RIs expeditiously. Note that drones and 
trucks can simultaneously operate in all distributional sections. There-
fore, the location-allocation-inventory multi-period, multi-commodity, 
multi-fleet, and multi-objective IoT-based models are presented in this 
study. The structure of this network has been depicted in Fig. 3. The 
proposed model is the two-phase model illustrated in Fig. 4. In the first 
phase, the critical decisions correspond to COVID-19 patients and peo-
ple transferring, defining their numbers, and determining which ECs are 
used and which THs are instituted are made. In the second phase, the 
strategic decisions on the location of DCs and the distribution of RIs 
equally between selected THs and ECs are made. 

3.3. Assumption 

The principal assumptions are made for the HRL model:  

• Each period is considered 24 h in this study.  
• The model involves three periods after an earthquake occurred.  
• The capacity and potential location of temporary DCs are defined.  
• The heterogeneous fleets, including cargo drones and trucks, are 

considered for RIs transportation.  
• RIs are provided by NGOs and GOs, which are collected in RCWs. 
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• The number and location of RCWs, AAs, and ECs are known.  
• The heterogeneous fleet can work simultaneously at each period.  
• The distances between RCWs, DCs, ECs, THs, and AAs are known.  
• DCs and THs may be instituted in potential locations. 
• Uncertainties of the model encompass capacities, demands, trans-

portation cost, and inventory holding costs.  
• Six square meters are provided for each individual in ECs  
• The RIs, including drinkable water, sanitizers, and essential items, 

are delivered to ECs and THs.  
• THs are taken as the quarantine place for COVID-19 patients.  
• The allocation of people in AAs is based on the mentioned guideline.  
• The model is only designed for non-severely wounded patients and 

impeccable people. 

3.4. Proposed mathematical model 

The mathematical model is formulated on two levels, and the 
necessary notations are explained in this regard. The first stage specifies 
the number of individuals in ECs and THs. Then the demand for RIs in 
each center is calculated by Eqs (14) and (15). Afterward, the second 

level locates the suitable DCs and distributes RIs.  
Set of indices 
j Index of DCj j = 1, ⋯ , J 
i Index of RCWsi = 1,⋯, I 
p Index of relief items p = 1,⋯,P 
h Index of THsh = 1,⋯,H 
k Index of ECsk = 1,⋯,K 
m Index of AAsm = 1,⋯,M 
t Index of periods t = 1,⋯,T 
x Index of periods x = 1,⋯,X 
s Index of scenarios s = 1,⋯,S 
f Index of fleet types f = 1,⋯,F 
Parameters 
IHCpj Inventory holding cost at DCj for product p 
ICDj Institution cost of DCj 

ICHh Institution cost of THh 

TCts
pf Transportation cost for product p using fleet type f at period t(tomans/ 

(km. kg))in scenario s 
PCSpk Penalty cost of shortage of product p in ECk 

PCSupk Penalty cost of surplus of product p in ECk 

dijfs Distance between RCWi and DCj with fleet type f in scenario s 
djkfs Distance between DCj and ECk with fleet type f in scenario s 
djhfs Distance between DCj and THh with fleet type f in scenario s 

PCS
Ấ

ph 
Penalty cost of shortage of product p in THh 

(continued on next page) 

Fig. 2. People allocation guidelines amid the COVID-19 outbreak in AAs and DCs.  

Fig. 3. The considered HRL network.  
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(continued ) 

PCSuph Penalty cost of surplus of product p in THh 

imppk Importance of product p at ECk 

imp
Ấ

ph 
Importance of product p at THh 

CapFf Capacity of fleet type f 

CapH
Ấ

hs 
Capacity of THh in scenario s 

CapDjs Capacity DCj in scenario s 
CapECks Capacity of ECk in scenario s 
M Big M 
Volp Volume of product p 
Asf Average speed of fleet type f 
αp Consumption coefficient of product p 
PSs Probability of occurrence of scenario s 

t
Ấ

mhs 
Transferring time of patients from AAm to THh in scenario s 

tmks Transferring time of patients from AAm to ECk in scenario s 
MDCs Maximum number of distribution centers that can be instituted under 

scenario s 
MNFf Maximum number of fleet type f that can be used 
P1 infection rate of COVID-19 in AAs 
P2 infection rate of COVID-19 in ECs 
Opts

m Total population in AAm that should be transferred to EC s at period t in 
scenario s 

PCOts
m Total population in AAm that should be transferred to THh at period t in 

scenario s 
PAts

m Population should be evacuated in AAm at period t in scenario s 
Decision variables 
Qts

pjhf Quantity of delivered product p from DCj to THh using fleet f at period t in 
scenario s 

Qts
pijf Quantity of delivered product p from RCLi to DCj using fleet f at period t in 

scenario s 
Qts

pjkf Quantity of delivered product p from DCj to ECk using fleet f at period t in 
scenario s 

numFts
fij Number of fleet type f from RCLi to DCj at period t in scenario s 

numF
Ấts

fij 

Number of fleet type f from DCj to ECk at period t in scenario s 

numF
Ấ
Ấts

fij 

Number of fleet type f from DCj to THh at period t in scenario s 

Itspj Inventory level of product p in DCj at period t in scenario s 
THhs (Binary variable) = 1, if THh is opened in scenario s; ow = 0 
ECks (Binary variable) = 1, if ECk is used in scenario s; ow = 0 
TDCjs (Binary variable) = 1, if DCj is opened in scenario s;ow = 0 
Z2

phts Surplus amount of product p in THh at period t in scenario s 

Z3
phts Shortage amount of product p in THh at period t in scenario s 

Z
Ấ2

pkts 

Surplus amount of product p in ECk at period t in scenario s 

Z
Ấ3

pkts 

Shortage amount of product p in ECk at period t in scenario s 

P
Ấts

mh 

Number of symptomatic patients transferred from AAm to THh at period t 
in scenario s 

Pts
mk Number of affected people transferred from AAm to ECk at period t in 

scenario s 

p
Ấ
Ấts

kh 

Number of infected cases in ECk detected by IoT system and transferred to 
THh at period t in scenario s 

Pk
Ấ
Ấ xs

k 

Number of people entering in ECk at period x in scenario s from AA s 

PCxs
h Number of people entering in THh at period x in scenario s from AA s 

RQCpkts Required demand of product p by ECk at period t in scenario s 
RQHphts Required demand of product p by THh at period t in scenario s  

3.4.1. The first level 

minZ1 =
∑

h,s
PSs ×

(
ICHh × THh,s

)
(1)  

minZ2 =
∑

s
PSs ×

(
∑

m,h
t
Ấ

mhs × THhs +
∑

m,k
tmks × ECks

)

(2) 

St. 

∑

m,t

pẤts

mh +
∑

k,t

pẤts

kh ≤ ̃CapHhs × THhs∀h, s (3)  

∑

m,t
Pts

mk −
∑

t,h

pẤts

kh ≤ ̃CapECks × ECks∀k, s (4)  

pẤts

mh + pẤts

kh ≤ M × THhs∀m, h, t, k, s (5)  

pts
mk ≤ M × ECks∀m, k, t, s (6)  

̃PCOts
m = P̃A

ts
m × P1 ∀t,m, s (7)  

Õpts
m = P̃A

ts
m × (1 − P1) ∀t,m, s (8)  

Õpts
m =

∑

k
pts

mk∀t,m, s (9)  

̃PCOts
m =

∑

h

pẤts

mh∀t,m, s (10)  

(
∑

x≤t
Pk
Ấ
Ấ xs

k −
∑

h

pẤt− 1,s

kh

)

× P2 =
∑

h

pẤ
Ấts

kh∀t, k, s (11)  

Pk
Ấ
Ấ xs

k =
∑

m,t≤x
pts

mk −
∑

m,t≤x
pt− 1,s

mk ∀x, k, s (12)  

PCxs
h =

∑

m,t≤x

(

pẤts

mh − pẤt− 1,s

mh

)

∀x, h (13)  

(
∑

x≤t
Pk
Ấ
Ấ xs

k −
∑

h
pts

kh

)

× αp = RQHpht∀p, h, t (14)  

(
∑

x≤t
PCxs

h +
∑

k

pẤts

kh

)

× αp = RQCpkt∀p, h, t (15)  

pẤts

mh, pts
mk,RQHpht,RQCpkt,Pk

Ấ
Ấ xs

k ,PCxs
h , pẤts

mh, p
Ấ
Ấts

kh ≥ 0∀m, k, x, t, h, s (16)  

THhs,ECks ∈ {0, 1}∀k, h, s (17) 

The first objective function aims to minimize the institutional cost of 
temporary hospitals. The second objective function concentrates on the 
transferring time of patients and people to THs and ECs, respectively. 
Constraints (3) – (4) imply that the number of patients and people 
allocated to THs and DCs, respectively, must be less than their capac-
ities. Constraint (5) represents that patients in an AA and EC can be 
transferred to a TH if the TH is instituted. Likewise, people in an AA are 
allocated to an EC if used in the constraint (6). Eq (8) calculates the 
number of infected cases in AAs, and other people in AA are assigned to 
ECs, which is calculated in Eq (7) based on the infection rate defined by 
the IoT framework. Constraints (9) – (10) illustrate the total number of 
individuals, including patients and people, transferred to each TH and 
EC. Eqs (11) – (12) calculate the number of positive cases detected by 
IoT and PCR tests in an EC. The number of patients transferred from AAs 
and DCs to a TH is multiplied by the RI consumption coefficient to 
calculate the patient’s demand in a TH for each RI. Likewise, the peo-
ple’s demand in an EC is computed by multiplying the number of people 
accommodated in an EC by the consumption coefficient. Eqs. (13) – (15) 
imply the amount of demand in each demand zone. Note that the de-
mand for each TH and EC accumulates by period t. Eventually, con-
straints (16) – (17) are related to the problem’s decision variables. 
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3.4.2. The second level 

minZ1
Ấ
=
∑

s
PSs ×

((
∑

j,p,t

̃IHCpj × Its
pj

)

+

(
∑

f ,t,p
T̃Cts

fp ×

(
∑

i,j
dijfs × Qts

pijf

+
∑

j,k
djkfs × Qts

pjkf +
∑

j,h
djhfs × Qts

pjhf

))

+

(
∑

j
ICDj

× TDCjs

)

+

(
∑

p,k
imppk × PCSpk ×

∑

t
Z3

pkts +
∑

p,h
imp

Ấ
ph × PCS

Ấ
ph

×
∑

t
Z
Ấ3

phts

)

+

(
∑

p,k
PCSupk ×

∑

t
Z2

pkts +
∑

p,h
PCSu

Ấ
ph ×

∑

t
Z
Ấ2

phts

))

(18)  

minZ2
Ấ
= maxp,k,t,s

{

imppk × (RQCts
pk −

∑

j,f
Qts

pjkf )

}

+maxp,h,t,s

{

impph

× (RQHts
ph −

∑

j,f
Qts

pjhf )

}

(19)  

minZ3
Ấ
=
∑

s
PSs ×

(
∑

i,j,f ,t

(
dijfs

Asf

)

× numFts
fij +

∑

j,k,f ,t

(
djkfs

Asf

)

× numF
Ấ ts

fjk +
∑

j,hf ,t

(
djhfs

Asf

)

× numF
Ấ
Ấ ts

fjh

)

(20) 

(27)(26)(29)St. 
∑

p
Its

pj × volp ≤ ̃CapDjs × TDCjs∀j, t, s (21)  

∑

p
Qts

pijf × volp ≤ ̃CapFf × numFts
fij∀f , i, j, t, s (22)  

∑

p
Qts

pjkf × volp ≤ ̃CapFf × numF
Ấ ts

fjk∀f , j, k, t, s (23)  

∑

p
Qts

pjhf × volp ≤ ̃CapFf × numF
Ấ
Ấ ts

fjh∀f , j, h, t, s (24)  

It− 1,s
pj +

∑

i,f
Qts

pijf −
∑

h,f
Qts

pjhf −
∑

h,f
Qts

pjkf = Its
pj∀p, t, j, s (25)  

∑

f ,p
Qts

pjhf ≤ M × THhs∀j, h, t, s (26)  

∑

f ,p
Qts

pijf ≤ M × TDCjs∀i, j, t, s (27)  

∑

p,f
Qts

pjkf ≤ M × TDCjs∀k, j, t, s (28)  

∑

f ,j
Qts

pjkf − RQCpkts = Z2
pkts − Z3

pkts∀p, k, t, s (29)  

∑

f ,j
Qts

pjhf − RQHphts = Z
Ấ2

phts − Z
Ấ3

phts∀p, h, t, s (30)  

Z3
pkts ≤ RQCpkts −

∑

f ,j
Qts

pjkf∀p, k, t, s (31)  

Fig. 4. The relevance between two phases of the mathematical model in each period.  
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Z
Ấ3

phts ≤ RQHphts −
∑

f ,j
Qts

pjhf∀p, h, t, s (32)  

Z2
pkts ≥

∑

f ,j
Qts

pjkf − RQCpkts∀p, k, t, s (33)  

Z
Ấ2

phts ≥
∑

f ,j
Qts

pjhf − RQHphts∀p, h, t, s (34)  

∑

i,j
numFts

fij +
∑

j,k
numF

Ấ ts

fjk +
∑

j,h
numF

Ấ
Ấ ts

fjh ≤ MNFf∀t, s, f (35)  

∑

j
TDCj,s ≤ MDCs∀s (36)  

Qts
pijf ,Qts

pjkf ,Q
ts
pjhf , numFts

fij, numF
Ấ ts

fjh, numF
Ấ
Ấ ts

fjh, Its
pj,Z

2
phts,Z

3
phts,Z

Ấ2

pkts,Z
Ấ3

pkts

≥ 0∀p, k, t, i, h, j, f , s (37)  

TDCj,s ∈ {0, 1}∀j, s (38) 

The objective function (18) consists of five main sections. The first 
term aims to minimize the inventory holding cost of RIs stored in tem-
porary DCs. The transportation costs of RIs between RCWs, DCs, ECs, 
and THs are considered in the second term, taking into account distances 
and RIs quantities. The third part of this objective function is related to 
institution costs of THs and temporary DCs. The fourth and fifth terms 
aim to penalize the shortage and surplus RIs in THs and ECs, respec-
tively. To increase the affected people’s satisfaction and equality in RI 
distribution, the first term of the objective function (19) reduces the 
maximum difference between people’s demand in each ECs and the 
amount of RIs shipped from DCs to ECs. Likewise, the other term does a 
similar way for patients in THs. It is worth noticing that the importance 
level of RIs is incorporated to distribute RIs being in dire need. The 
objective function (20) minimizes the delivery time of RIs carried by 
fleet type f. Time is obtained by dividing distances by the average speed 
of vehicle type f. That is to say, Eq (20) aims to minimize the number of 
fleets with higher delivery times. 

Constraint (21) guarantees that the volume of RIs stored in the DC is 
less than the DC’s capacity. Constraints (22) – (24) state the capacity of 
RIs transportation from RCW to DC, DC to TH, and DC to EC using fleet 
type f, respectively. Constraint (25) represents the inventory balance at 
the DC. Constraint (26) implies that RIs can be distributed to the TH on 
the condition that the TH is instituted in the location h. Constraint (27) 
states that RIs are delivered from RCWs to the DC when the DC is opened 
in location j. Constraint (28) represents that the RIs transfer from DCs to 
the EC when the DC in location j is opened. Constraints (29) – (30) ex-
press the balancing equations for the amount of shortage and surplus of 
RIs in ECs and THs, respectively. Constraints (31) – (32) illustrate the 
upper bound of RI’s shortage in demand zones, and whether the lower 
bound of RI’s surplus is represented in constraints (33) – (34). Constraint 
(35) implies that the total number of fleets at each period in the supply 
chain network does not exceed the maximum number. Constraint (36) 
implies that the instituted DCs must be lower than the maximum num-
ber. Eventually, constraints (37) – (38) are related to the problem’s 
decision variables. 

3.5. Linearization 

In order to linearize the objective function (19), it can be converted 
to the objective function (39) and two constraints (40) and (41) by two 
free variables proposed in the following: 

minZ2
Ấ
= y1 + y2 (39)  

s.t. 

y1 ≥ (imppk × (RQCts
pk −

∑

j,f
Qts

pjkf ))∀p, k, t, s (40)  

y2 ≥ (impph × (RQHts
ph −

∑

j,f
Qts

pjhf ))∀p, h, t, s (41)  

3.6. The proposed credibility-based fuzzy chance-constrained 
programming model 

Regarding the discrepancies between Fuzzy Mathematical Pro-
gramming and the stochastic approach, stochastic modeling uses prob-
abilistic modeling and theory to cope with uncertainty. Hence, a known 
probability distribution for the uncertain parameters is required in this 
approach. In contrast, FMP deploys the Fuzzy Set Theory to tackle un-
certain data, which is not stochastic. In other words, the uncertain pa-
rameters do not have a specific probability distribution (Zadeh, 1996). 
Furthermore, the major benefit of FMP is that it models a problem with 
linguistic variables instead of exact numerical variables to illustrate the 
imprecise data (a soft approach to tackle uncertainty), and it considers 
these parameters as fuzzy numbers (Ross, 2005). Similar to FMP, the 
probability distribution of uncertain parameters is not defined in robust 
optimization. However, these variables belong to an uncertainty set and 
they do not have an exact central value (Ghaffarinasab, 2022). 

In our case study, the distribution of uncertain parameters is not 
well-defined, and we encounter imprecise data with no distributional 
information. Many parameters are defined by experts and officials of 
humanitarian organizations in the aftermath of a disaster, which are 
based on linguistics and their perception. For instance, to calculate the 
imprecise transportation cost after an earthquake, experts assess the 
roads by aerial pictures and define the price based on the road demo-
lition linguistically (e.g., if the roads are destroyed badly, the trans-
portation cost is around 1$, otherwise it is 0.75$). 

Regarding the uncertain ambiance prevailing in the aftermath of 
disasters, some parameters corresponding to the demand, supply, dis-
tribution, and network connection are considered uncertain in our 
study. Therefore, the input parameters involving inventory holding cost, 
transportation cost, the capacity of DCs, and the number of individuals 
residing in each AA that affects the demand of RIs quantity are consid-
ered fuzzy numbers. Regarding the severity of disasters, it is possible 
that some distribution centers or parts of them cannot be utilized. 
Hence, uncertainty in capacity of DCs and inventory holding cost make 
the model real-life. Also, Transportation costs may be volatile by the 
destruction of roads and fluctuation in the gasoline price because many 
fuel suppliers may fall into disuse. Additional information regarding the 
ambiguities of many of these parameters can be seen in Sarma et al. 
(2019) and Torabi et al. (2018). 

The reasons for hiring FCCP approach are presented in the following: 
(Pishvaee et al., 2012).  

• In general, this method is a computationally efficient FMP depending 
on mathematical concepts, e.g., credibility measure and expected 
value.  

• It can support all kinds of fuzzy numbers, including triangular, 
trapezoidal, and pentagonal fuzzy numbers.  

• At least defined confidence levels, FCCP allows the decision-maker to 
meet those chance constraints.  

• FCCP uses the credibility measure instead of possibility and necessity 
measures, which allow decision-makers to consider both optimistic 
and pessimistic views concurrently. In other words, a fuzzy event 
may fail even if its possibility hits 1 and happen even if its necessity 
equals 0. The fuzzy event must happen if its credibility is 1, and fail 
to happen if its credibility equals 0, though.” 

Assume ̃ϑ is a fuzzy number defined by three prominent value as ̃ϑ =
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(
ϑ(1), ϑ(2),ϑ(3)

)
, μ(x) is the membership function, and r is a real number. 

The credibility measure can be defined as below like Liu & Liu (2002). 

Cr{ϑ̃ ≤ r} =
1
2
(supx≤rμ(x)+ 1 − supx>rμ(x) ) =

1
2
(Pos{ϑ̃ ≤ r}+Nec{ϑ̃

≤ r} )
(42) 

Noteworthy, the FCCP utilized possibility and necessity measures 
simultaneously called the average of both measures. Additionally, the 
expected value of ϑ̃ can be calculated as follows using credibility 
measure. 

E[ϑ̃] =
∫ ∞

0
Cr{ϑ̃ ≥ r}dr −

∫ 0

− ∞
Cr{ϑ̃ ≤ r}dr (43) 

Based on Eq. (43) and credibility measure functions (44) and (45) the 
expected value of ϑ̃ is 

(
ϑ(1) +2 × ϑ(2) +ϑ(3)

)/
4. 

Cr{ϑ̃ ≤ r}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, r ∈
(
− ∞,ϑ(1)

)

r − ϑ(1)

2
(
ϑ(2) − ϑ(1)

), r ∈
(
ϑ(1),ϑ(2)

)

r − 2ϑ(2) + ϑ(3)

2
(
ϑ(3) − ϑ(2)

) , r ∈
(
ϑ(2), ϑ(3)

)

1, r ∈
(
ϑ(3),+∞

)

(44)  

Cr
{

ξ̃ ≥ r
}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, r ∈ (− ∞,ϑ(1))

2ϑ(2) − ϑ(1) − r
2
(
ϑ(2) − ϑ(1)

) , r ∈ (ϑ(1),ϑ(2))

ϑ(3) − r
2
(
ϑ(3) − ϑ(2)

), r ∈ (ϑ(2), ϑ(3))

0, r ∈ (ϑ(3),+∞)

(45) 

Also, it can be calculated if ϑ̃ is a triangular fuzzy number and ω >

0.5 then: 

Cr{ϑ̃ ≤ r} ≥ ω ⇔ r ≥ (2 − 2ω)ϑ2 +(2ω+ 1)ϑ3 (46)  

Cr{ϑ̃ ≥ r} ≥ ω ⇔ r ≥ (2 − 2ω)ϑ2 +(2ω+ 1)ϑ1 (47) 

Eqs. (46) and (47) can be deployed to convert the fuzzy constraint to 
crisp ones (Zhu & Zhang, 2009). 

Based on Pishvaee et al. (2012), the hybrid approach of FCCP is 
embraced because using only expected values to make a crisp model 
makes the optimization simpler, but it does not consider control on the 
confidence level. However, considering credibility-based measures for 
objectives and constraints may increase the number of constraints and 
complexity of the model, it needs the ideal solution for each objective. 
Hence, hybrid models are hired to convert uncertain objective functions 
with expected values and chance constraints with credibility measures 
into a crisp model. It does not increase the number of constraints and 
does not require additional information, e.g., confidence level and ideal 
solution. According to the descriptions mentioned above, the proposed 
FCCP can be formulated for this HRL problem. 

3.6.1. The first level of the fuzzy model 

minZ1,Z2 

St. 
Constraints (5) – (8), (11) – (17) and 

Cr

{
∑

m,t

pẤts

mh +
∑

k,t

pẤ
Ấts

kh ≤ ̃CapHhs × THhs

}

≥ αh∀h, s  

Cr

{
∑

m,t
Pts

mK −
∑

h,t

pẤ
Ấts

kh ≤
̃CapECks × ECks

}

≥ αh
Ấ
∀k, s  

Cr

{

Õpts
m =

∑

k
pts

mk

}

≥ γm∀t,m, s  

Cr

{

̃PCOts
m =

∑

h

pẤts

mh

}

≥ μm∀t,m, s  

3.6.2. The second level of the fuzzy model 

minZ1
Ấ
=
∑

s
PSs ×

((
∑

j,p,t
IHCt

pj × Its
pj

)

+

(
∑

f ,t
E
[
TCts

f

]
×

(
∑

i,j
dijfs × Qts

pijf

+
∑

j,k
djkfs × Qts

pjkf +
∑

j,h
djhfs × Qts

pjhf

))

+

(
∑

j
E
[
ICDj

]

× TDCjs

)

+

(
∑

p,k
imppk × PCSpk ×

∑

t
Z3

pkts +
∑

p,h
imp

Ấ
ph × PCS

Ấ
ph

×
∑

t
Z
Ấ3

phts

)

+

(
∑

p,k
PCSupk ×

∑

t
Z2

pkts +
∑

p,h
PCSu

Ấ
ph ×

∑

t
Z
Ấ2

phts

))

minZ2
Ấ
,Z3

Ấ 

St. 
Constraints (25) – (38) and 

Cr

{
∑

p
Its

pj × volp ≤ ̃CapDjs × TDCjs

}

≥ α̈j∀j, t, s 

Based on Eqs. (46) and (47) and expected value formula, the 
credibility-based model can be converted to the crisp model. 

3.6.3. The first level of the crisp model 

minZ1,Z2 

St. 
Constraints (5) – (8), (11) – (17) and 

∑

m,t

pẤts

mh +
∑

k,t

pẤts

kh ≤
[
(2αh − 1)CapHh(1)s +(2 − 2αh)CapHh(2)s

]
× THhs∀h, s  

∑

m,t
Pts

mk −
∑

h,t

pẤts

kh ≤
[
(2αh

Ấ
− 1)CapECk(1)s +(2 − 2αh

Ấ
)CapECk(2)s

]

× ECks∀k, s  

(2γm − 1)Opts
m(1) + (2 − 2γm)Opts

m(2) ≤
∑

k
pts

mk∀t,m  

(2γm − 1)Opts
m(3) + (2 − 2γm)Opts

m(2) ≥
∑

k
pts

mk∀t,m, s  

(2μm − 1)PCOts
m(1) + (2 − 2μm)PCOts

m(2) ≤
∑

h

pẤt

mh∀t,m, s  

(2μm − 1)PCOts
m(3) + (2 − 2μm)PCOts

m(2) ≥
∑

h

pẤt

mh∀t,m, s  
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3.6.4. The second level of the crisp model 

minZ1
Ấ
=
∑

s
PSs ×

((
∑

j,p,t
IHCpj

× Its
pj

)

+
∑

p,f ,t

(TCts
pf (1)+2 • TCts

pf (2) + TCts
pf (3)

4

)

×

(
∑

i,j
dijfs × Qts

pijf

+
∑

j,k
djkfs × Qts

pjkf +
∑

j,h
djhfs

× Qts
pjhf

)

+

(
∑

j

(
ICDj(1) + 2 • ICDj(2) + ICDj(3)

4

)

× TDCjs

)

+

(
∑

p,k
imppk × PCSpk ×

∑

t
Z3

pkts +
∑

p,h
imp

Ấ
ph × PCS

Ấ
ph

×
∑

t
Z
Ấ3

phts

)

+

(
∑

p,k
PCSupk ×

∑

t
Z2

pkts +
∑

p,h
PCSu

Ấ
ph ×

∑

t
Z
Ấ2

phts

))

minZ2
Ấ
,Z3

Ấ 

St. 
Constraints (25) – (38) and 

∑

p
Its

pj × volp ≤
[(

2αj − 1
)
CapDj(1)s +

(
2 − 2αj

)
CapDj(2)s

]
× TDCjs∀j, t, s 

It should be assumed in the model mentioned above, the confidence 
level in chance constraints should be met by more than 0.5. 

4. Solution method 

The proposed two-phase model is a multi-objective linear model. 
There are several methods in the literature to convert multi-objective 
functions to single-objective functions. To deal with the multi- 
objective function, we use the LP-metric method in this study for both 
phases. The LP-metric technique aims to minimize the deviation (dis-
tance) of objective functions from the ideal solution. This method was 
elaborated clearly in the study proposed by Bagheri and Bashiri (2013). 

LP = {
∑Y

y=1
wj × [

fi(x*j) − fi(x)
fi(x*j) − fi(xj)

]
p
}

1/p (48) 

First, the optimal value or ideal solution, considered as fi(x*j), (in this 
study, the minimum values are calculated) for each objective function 
must be calculated separately. Afterward, the anti-ideal solution, 
considered as fi(xj), (the maximum values are calculated) must be 
calculated. Also, the obtained values should be placed in Eq (48). In 
order to minimize derivations from the ideal solution, Eq (48) should be 
minimized. Note that, wj represents the importance (weight) of each 
objective function. Moreover, p emphasizes the deviation. It should be 
noted that all calculations are conducted by GAMS 28.2 with a LINDO 
solver. Additionally, a laptop with a 2.71 GHz processor and 4 GB of 
internal memory is utilized. 

5. Case study 

5.1. Case description 

As mentioned above, the proposed model has two interconnected 
phases, evacuating people from AAs and distributing RIs equally 
regarding the COVID-19 outbreak. In order to model and solve the 
problem, the data is collected from Salas-e-Babajani city, located in 
Kermanshah province, in the east of Iran. The exact location of this city 
in Iran is depicted in Fig. 5. This city is selected because of the occur-
rence of numerous severe earthquakes in recent years, explained in the 
following. Also, this city is surrounded by two faults, increasing the 
earthquake dangers, as shown in Fig. 6. 

Based on statistics (Jamalreyhani et al., 2017), in the most severe 
earthquake with Mw 7.3 that occurred on 12 November 2017, more than 
600 people were killed, and over 8000 people were injured in Salas- 
Babajani and Sarpol-zahab cities. Moreover, in August and November 
2018, two severe earthquakes with Mw 6.0 and Mw 6.4 occurred in the 
proximity of both cities, respectively. It is worth noticing that this region 
experienced more than 133 aftershocks continuously, exceeding Mw 4.0 
until 30 December 2019. The epicentre and intensity of the most severe 
earthquake are illustrated in Fig. 7 and Fig. 8, respectively. What makes 
this city more sensitive amid the COVID-19 outbreak is the lack of 
appropriate healthcare sectors because of the earthquake that occurred 
in 2017 crippled this section. According to the COVID-19 outbreak 

throughout the world, evacuation of people and transferring RIs are 
conducted difficultly. Akin to the world situation, this city has been 
experiencing a dangerous situation more than five times, shown as the 
red area on the Iranian COVID-19 interactive map (https://app.mask. 
ir/map). 

In order to handle the disaster effectively, RCWs, DCs, THs, and ECs 
are utilized in this real case. The location of the above-mentioned cen-
ters is illustrated in Fig. 9. The RCW is located in Kermanshah city, the 
capital of Kermanshah province. Regarding severe earthquakes 
mentioned above, three scenarios are considered to involve all types of 
intensive earthquakes. Each scenario relates to the Richter scale. The 
first scenario is considered for the fifth Richter scale, and the second and 
third one is taken for the sixth and seventh Richter scales, respectively. 
The planning horizon of this model is 72 h, which is made up of three 
days because most aftershocks happened in the 3-day period in this 
region. 

According to the Iranian Seismological Center (http://irsc.ut.ac. 
ir/index.php?lang=ea?lang=fa), most earthquakes that occurred in 
Kermanshah range from 4.5 to 5.5 Richter scale. The probability of 
earthquake occurrence with five Richter is 50 percent, and for 6 and 7 
scale are 30 % and 20 %, respectively. The infection rate determined by 
IoT systems and diagnostic tests is considered 3 % in AAs and ECs. Also, 
the sensitivity analysis on the infection rate is conducted to illustrate 
different situations before an earthquake occurs. 

RIs in this study include sanitizing package, 1.5L hygienic drinkable 
water, PPE package, and prepared foods. The consumption rate for the 

∑

p
Qts

pijf × volp ≤
[(

2βf − 1
)
CapFf (1) +

(
2 − 2βf

)
CapFf (2)

]
× numFt

fij∀f , i, j, t, s

∑

p
Qts

pjkf × volp ≤

[(
2βf

Ấ
− 1
)

CapFf (1) +
(

2 − 2 βf
Ấ
)

CapFf (2)

]

× numF
Ấ ts

fjk∀f , j, k, t, s

∑

p
Qts

pjhf × volp ≤

[(

2βf

Ấ
Ấ

− 1
)

CapFf (1) +

(

2 − 2 βf
Ấ

Ấ )

CapFf (2)

]

× numF
Ấ
Ấ ts

fjh∀f , j, h, t, s   
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first and second items is one. Also, two PPE packages and three cans of 
conserved food are considered for people in ECs and THs for daily 
consumption. The volume of RIs packages are 0.0015, 0.003, 0.005, and 
0.0015 m3 respectively. In the proposed model, trucks and cargo drones 
transport RIs simultaneously. The maximum volume of products trans-
ferred by a truck and a drone is 6 and 1 m3. The capacity of THs, DCs, 
and ECs has been presented in Table 2. Data relating to costs are ob-
tained by interviews with officers of the Red Crescent Society of Ker-
manshah province. The ECs capacity is calculated by areaofEC/6m2 

because based on Sakamoto et al. (2020), each person needs 6 m in ECs. 
It is noteworthy that the uncertain parameters in the proposed model are 
considered a triangular fuzzy number with a 10 % deviation from the 
center. 

In previous articles, most of them considered Tehran (capital of Iran) 
or other metropolitans in Iran as a case study. In these cities, the level of 
uncertainty is somewhat controllable, but in our case, this level may be 
difficult to control because this location has experienced a lot of harsh 
earthquakes and it has become underdeveloped in recent years. All 
uncertain parameters with the accompaniment of FMP and scenario- 
based optimization are considered to tackle the ambiguous environ-
ment. In addition, because of the lack of an airport in this city, airplanes 
and helicopters cannot have high efficiency. Thus, we added drones to 
our logistics networks, along with trucks to distribute RIs. As mentioned 
before, the distributional infrastructure of the city is weak in comparison 
to other giant cities. To control the outbreak, the distribution of RIs is 
based on minimizing costs, transportation time, distance, and demand 

coverage. Furthermore, the IoT framework is widely used in COVID-19 
management worldwide (some practical examples are discussed in 3.1). 
In our study, we developed the framework that a basic version of this 
was utterly practical in finding COVID-19 suspects. 

Based on the centers located in Fig. 9, the distances and travel time 
between centers are acquired by Google map (https://www.google. 
com/maps) listed in Table S1 – S3, S12, and S13, respectively. All 
data about costs, including inventory holding costs, institution costs, 
penalty costs, and transportation costs, have been presented in Tables S4 
– S11. The number of individuals in each AA who needs accommodation 
is presented in Table S14, changed in each scenario. This number is 
estimated by officers of the Red Crescent Society based on their recent 
experiences with earthquakes. 

5.2. Results 

Regarding Fig. 4, our solution comprises two phases, including se-
lection of the location of ECs and THs and calculation of the individuals 
number living in them in the first phase and selection of DCs locations 
and allocation RIs to them in the second phase, along with an inter-
mediate stage, called the calculation of demand for RIs. It is worth 
mentioning that demand quantity is obtained by the multiplication of 
the number of individuals by consumption coefficients. 

5.2.1. Results of phase 1 
In order to distribute RIs among people in THs and ECs, the number 

Fig. 5. Location of Salas Babajani city.  
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of individuals in both centers should be defined first. This result is ob-
tained by solving the first phase of the proposed model. In the first 
phase, the best locations for instituting THs and ECs are selected from 
potential ones. Then, the individuals are allocated to ECs based on Fig. 2. 
In our case, the results are depicted in Table 3 and Table 4. 

After defining the number of individuals in both centers, the demand 
for RIs can be computed simply by multiplying the consumption rate 
with data in Table 3 and Table 4. 

5.2.2. Result of phase 2 
In the second phase, first, the location of DCs should be selected from 

the potential ones, and afterwards the RIs should be distributed from 
DCs to ECs and THs. Flows of RIs between the instituted and used centers 
are presented in Fig. 10. The total quantity of RIs transferred from RCWs 
to DCs is illustrated in Table 5. Also, the RIs quantity transferred from 
DCs to ECs and THs is represented in Table 6 and Table 7. It is worth 
noticing that the objective function weights in the second phase are 
considered 0.3, 0.5, and 0.2, respectively. 

One of the essential objectives of the study is to minimize the amount 
of shortage and surplus of RIs. It is clear that the shortage in the first 

scenario is lower than in other scenarios because of the lower Richter 
scale. The surplus amount, in this case, is zero in all scenarios due to RIs 
shortage. The amount of shortage in THs and DCs is represented in Ta-
bles 8 and 9. The result of the shortage demonstrates that the area of the 
city with a higher population density has more shortages. The RIs stored 
in the inventory are illustrated in Table 10. 

Aside from RIs quantity, the number of trucks and drones used in this 
case is represented in Table 11. As shown in Table 11, most drones are 
allocated to centers with lower distances between them. 

5.3. Sensitivity analyses and discussion 

Sensitivity analysis is conducted on critical parameters of this study. 
In order to reduce the redundancy, all analyses are executed on the third 
scenario (the most severe earthquake) presented in the following. 

5.3.1. Sensitivity analysis of virus parameters 
Parameters of virus transmission directly impact the number of 

infected patients transferred to hospitals. Since the most significant 
objective is to minimize the shortage and surplus of RIs, the effect of the 

Fig. 6. Iran fault lines.  
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infection rate of the virus on RIs shortage, RIs quantity, number of 
people living in THs and ECs, and total cost are analyzed. 

According to Figs. 11 and 12 and Tables S15 and S16, the infection 
rate defined by IoT system and PCR test in AAs directly impacts the 
number of people living in THs and affects the number of people living in 
ECs reversely. Because of that, RIs shortage and RIs quantity in ECs 
decreased. Adversely, the trend of shortage and quantity in THs is 
increased because more people are transferred to THs. Moreover, this 

rate incurs an extra cost in this supply chain which is noticeable in the 
aftermath of disasters. Notably, the more deployment of IoT-based 
equipment can reduce this probability which is impactful in reducing 
the infection rate of the virus in ECs. 

As shown in Figs. 13 and 14 and Tables S17 and S18, the infection 
rate calculated by IoT systems and PCR tests in interiors and ECs has 
similar behaviour to AAs’ rate. Based on the meticulous analysis of 
Figs. 12 and 14, the utilization of the system mentioned above in AAs 

Fig. 7. Epicentre of Mw 7.3 earthquake.  
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can detect more infected cases than in ECs. However, faster detection of 
infected cases increases the supply chain costs. 

5.3.2. Sensitivity analysis of capacity parameters 
The second sensitivity analysis is based on the capacity of DCs and 

transportation capacity. The available number of vehicles represents the 
transportation capacity in this model. The SA results are shown in 
Figs. 15, 16, and 17. As shown in Fig. 15 and Table S19, the increase in 
ECs capacity can decrease RIs shortage and increase RIs quantity 
transferred from DCs to THs and ECs. Furthermore, a significant increase 
in the capacity of distribution centers alone would not alleviate the 
shortage but would only increase storage capacity because the trans-
portation capacity is limited. 

According to Figs. 16 and 17 and Tables S20 and S21, the trans-
portation capacity plays a significant role in decreasing shortage along 
with DCs capacity. The utilization of more trucks and cargo drones, 
interconnected with IoT systems, can deliver more quantity to demand 
points. Therefore, it is concluded that RIs shortage can be depleted on 
the condition transportation and DCs capacities increase 

simultaneously. Regarding the comparison between drones and trucks, 
the increase in drones is more impactful for transferring RIs and 
reduction of shortages because drones can carry items to remote areas in 
a shorter time. 

5.3.3. Sensitivity analysis of RIs parameters 
In this section, SA is performed on the RIs specifications involving 

the importance and consumption coefficient of RIs. The decision-maker 
determines both coefficients according to the criteria defined by the IoT 
surveillance and monitoring system. As shown in Fig. 18 and Table S22, 
the importance of RIs may differ in enhancing the hygienic condition 
and reducing virus transmission. To illustrate, if the importance of 
sanitizer package in ECs increases, the shortage of sanitizer package 
decrease drastically and reaches zero in the highest importance, and the 
delivered quantity of this package increases and reaches the peak. The 
quantity of other RIs transferred to demand points decreases because an 
item with higher priority should be transferred at first. Note that less 
important RI requires less storage because the warehouse should be 
allocated to items with high priority. 

Fig. 8. The intensity of Mw 7.3 earthquake.  
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Moreover, the changes in RIs importance may engender changes in 
RIs consumption coefficient. The more people consume RIs in demand 
points, the more shortage of RIs we have. According to Fig. 19 and 
Table S23, the amount of sanitizer package transferred to demand in-
creases noticeably because of the increase in sanitizer demand. There-
fore, the total costs experience tremendous growth. 

5.4. Managerial insights and discussion 

The main goal of the research is to detect and transfer people and 
infected patients along with planning a fair and prompt distribution of 
RIs in catastrophes among the COVID-19 outbreak. The main contri-
bution of this article is the extensive use of IoT-based systems in the 

Fig. 9. Location of centers in Salas Babajani city.  

Table 2 
Capacity of ECs, THs, and DCs.  

Capacity s = 1 s = 2 s = 3 

EC TH DC EC TH DC EC TH DC 

1 1000 150 10 950 143  9.5 900 135 9 
2 950 120 8 903 114  7.6 855 108 7.2 
3 1000 160 10 950 152  9.5 900 144 9 
4 850 150 8 808 143  7.6 765 135 7.2 
5 650 100 8 618 95  7.6 585 90 7.2 
6 950 100 – 903 95  – 855 90 – 
7 550 150 – 523 143  – 495 135 –  

Table 3 
Number of people living in ECs.  

People in 
EC 

s = 1 s = 2 s = 3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

k = 1          
k = 2 423 576 626 592 685 731 892 892 892 
k = 3    437 898 972 198 669 909 
k = 4       798 798 798 
k = 5       610 611 611 
k = 6 712 919 981 873 883 938 2 702 860 
k = 7       379 380 379  
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humanitarian supply chain, which distinguishes it from the article 
written by Ghasemi et al. (2019), who considered only patient transfer 
and RI allocation with shortage reduction. Notably, IoT frameworks 
proposed by Zahedi et al. (2021) and Goodarzian et al. (2022) cannot be 

utilized for disaster management. In our work, a novel framework is 
presented, connected with our mathematical model. Also, fleet man-
agement is considered in the article by Abazari et al. (2021). However, 
they did not consider the shortage reduction of RIs. In addition, Torabi 
et al. (2018) considered all aspects of uncertainty in humanitarian lo-
gistics networks, but the model is not commensurate with the response 
phase of disaster. Regarding the specification of this model, several 
implications are presented to managers of health-related and Red Cross 
organizations. Some of the managerial insights obtained by the results 
and sensitivity analysis are mentioned in the following:  

1. According to Figs. 12 and 14, one way to manage disasters in a 
COVID-19 epidemic is to reduce the infection rate because an 
outbreak can spread quickly. The presence of domestic and foreign 
humanitarian workers and aid organizations may increase the risk of 

Table 4 
Number of people living in THs.  

People in 
TH 

s = 1 s = 2 s = 3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

h = 1 1 1 7 15 100 58 50 93 80 
h = 2       5 49 71 
h = 3 72 96 96 107 56 109 99 76 52 
h = 4       27 36 76  

Fig. 10. The flow of RIs in three different scenarios (green arrows illustrate the flow between DCs and THs and yellow arrows define the flow for ECs). (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 5 
Quantity of RIs transferred from RCW to DCs.  

Q s = 1 s = 2 s = 3  

i→j t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3   

→j = 1 1226 3716 3328 2309 4819 3472 3399 4450 4859 
i = 1 →j = 2       3926 3685 4636  

→j = 3    5474 4085 4832 4666 5764 4739  
→j = 5 4690 4416 4583 3614 4418 5412 3713 5279 5227  
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Table 6 
Quantity of RIs transferred from DCs to THs.  

Q s = 1 s = 2 s = 3 

j→h t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 

j = 1 →h = 1  3    292 262   
→h = 2        321 344 
→h = 3     278     
→h = 4         149 

j = 2 →h = 1         465  
→h = 3      544 533 308 404 
→h = 4       115 273  

j = 5 →h = 1   35 104 498   642  
→h = 3 363 482  643       

Table 7 
Quantity of RIs transferred from DCs to ECs.  

Q s = 1 s = 2 s = 3 

j→k t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 

j = 1 → k=2 196 784 3328 1198 3757 2004 656   
→k = 3     980 1274   653 
→k = 4       2236  2538 
→k = 5          
→k = 6 638 3321  817    2504 1502 
→k = 7       22 1522  

j = 2 →k = 2        653 1590 
→k = 3       601 521  
→k = 4        1825  
→k = 6       1826 653 2613 
→k = 7       1499   

j = 3 →k = 2    1924 392   2613  
→k = 3     2613 2613  2570  
→k = 4       1702   
→k = 5       2317  2461 
→k = 6    3549 1081 1675    
→k = 7         1875 

j = 5 →k = 2 2086 2371  1021 644 2432 3713  1960 
→k = 3    1749     2613 
→k = 4        2116 653 
→k = 5        2521  
→k = 6 2241 1223 4889  3336 3018     

Table 8 
RIs shortage in THs.  

Shortage in TH s = 1 s = 2 s = 3 

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 

h = 1 1 2 14  3  52 185 157 
h = 2         65 
h = 3 145 193 192 214 111 148 209 57 162 
h = 4       46 109 112  

Table 9 
RIs shortage in ECs.  

Shortage in EC s = 1 s = 2 s = 3 

t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 t = 1 t = 2 t = 3 

k = 2 751 651 1058  428 789 1647 3208 3593 
k = 3    1201 2695 2916 435 2206 3103 
k = 4       1575 2116 2283 
k = 5       1219 1730 1822 
k = 6 1246 1818 1956 1746 1767 2005 731 1524 1821 
k = 7       608 609 941  
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transmitting the virus. There are some practical solutions to tackle 
this inevitable problem mentioned below:  

A. Informing people about the instructions and keeping them posted 
about how to get aid can significantly reduce the rate of virus 

transmission. It is recommended to managers that IoT-based systems 
are an appropriate way to send information quickly and securely, 
consisting of Web-based applications and announcement drones 
shown in Fig. 20.  

B. In addition to suitable announcements, surveillance of people for 
paying obedience to guidelines and social distancing plays a pivotal 
role. The utilization of two types of IoT surveillance systems can be 
taken as a panacea. Surveillance drones, shown in Fig. 21, and 
monitoring cameras can detect people’s neglect.  

C. Prompt and timely detection of infected people and their transfer to 
quarantine centers can reduce the spread of the COVID-19 virus 
(infection rate). It is also impossible to test all people with PCR-kit in 
the affected areas because it imposes a high cost and time. Due to 
emerging new mutations of the coronavirus, e.g., Indian and Bra-
zilian, which have higher transmission rates, patients should be 
diagnosed and transferred immediately. Therefore, the use of the IoT 
monitoring system can quickly identify suspects. This interconnected 
system comprises web-based applications, thermal sensors and 
cameras, and monitoring drones and powered by Artificial Intelli-
gence, as shown in Figs. 22, 23, and 24. Suspects detected by this 
system are shown on monitors. So, taking PCR tests from suspects to 
ensure the virus infects them is not complicated via this real-time 
data. Note that all people should answer a questionnaire in the 
web-based application and report their general well-being 
continuously. 

Table 10 
Quantity of RIs stored in DCs.  

Inventory s = 1 s = 2 s = 3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

t = 1 t =
2 

t =
3 

j = 1 262   425 98  98   
j = 3    98 327  1624 292  
j = 5 223   98    327   

Table 11 
number of required trucks and drones in mentioned routes.  

Fleet s = 1 s = 2 s = 3   

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

t =
1 

t =
2 

t =
3 

f =
1 

i→j 3 4 4 6 6 6 7 8 8 
j→k 3 5 5 7 7 7 8 7 7 
j→h 1   1 2 1    

f =
2 

i→j    2 3 4 4 2  
j→k 2    5 5 2 3 5 
j→h 1 2 1 1 2 1 3 5 5  

0% 1% 2% 3% 4% 5% 6% 7% 8%
0

10000

20000

30000

40000

50000

60000

Changes in P1

Shortage in THs

quantity delivered to THs

Shortage in Ecs

Quantity delivered to ECs

total cost/100000

Linear (Shortage in THs)

Fig. 11. The effects of infection rate in AAs on shortage, quantity, and cost.  

0% 1% 2% 3% 4% 5% 6% 7% 8%
100

1000

Changes in P1

NoPEC1
NoPEC2
NoPEC3
NoPTH1
NoPTH2
NoPTH3

Fig. 12. The effects of infection rate in AAs on the number of people living in THs and ECs. Cue: (NoPEC: number of people living in ECs) & (NoPTH: number of 
people living in THs). 
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0% 1% 2% 3% 4% 5% 6% 7% 8%
0

10000

20000

30000

40000

50000

60000

Changes in P2

Shortage in THs

quantity delivered to THs

Shortage in Ecs

Quantity delivered to ECs

total cost/100000

Fig. 13. The effects of infection rate in ECs on shortage, quantity, and cost.  

0% 1% 2% 3% 4% 5% 6% 7% 8%
100

1000

10000

Changes in P2 

NoPEC1

NoPEC2
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NoPTH1

NoPTH2

NoPTH3

Fig. 14. The effects of infection rate in ECs on number of people living in THs and ECs. Cue: (NoPEC: number of people living in ECs) & (NoPTH: number of people 
living in THs). 
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Total shortage
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Linear (Total shortage)

Linear (Total quantity)

Fig. 15. The effect of DCs capacity on RIs shortage, quantity, and inventory.  
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D. Replacing clinical care robots and IoT-based systems with humans in 
hospitals and quarantine places to treat and care for infected patients 
can prevent the healthcare section from being crippled significantly 
in the aftermath of disasters. That is to say, China has been utilizing 

disinfection and clinical care robots in a field hospital located in 
Wuhan,1 which city designed for 20,000 patients. The mentioned 
systems are illustrated in Figs. 25 and 26. 

3734635623
32327 3094929909

4732749051
52347 5372454764

11 12 13 14 15 16 17 18 19
25000

30000

35000

40000

45000

50000

55000

60000

Maximum number of trucks

Total shortage

Total quantity

Linear (Total shortage)

Linear (Total quantity)

Fig. 16. The impact of number of available trucks on RIs quantity and shortage (number of trucks represents MNFf for f = 1).  

33534 32580 32327
29690 29534

51139 52093 52347
54983 55139

5 6 7 8 9 10 11 12 13 14 15
25000

30000

35000

40000

45000

50000

55000

60000

Maximum number of drones

Total shortage

Total quantity

Linear (Total shortage)

Linear (Total quantity)

Fig. 17. The impact of number of available drones on RIs quantity and shortage (number of drones represents MNFf for f = 2).  

15120 14580 

0 0 0 
0 1 2 3 4 5

0

10000

20000

30000

40000

50000

60000

Importance of Sanitizer package

Shortage of sanitizer

Quantity of sanitizer

Quantity of other products

inventory×10

Linear (Shortage of sanitizer)

Linear (Quantity of sanitizer)

Linear (Quantity of other
products)
Linear (inventory×10)

Fig. 18. The effect of importance of an RI (type 1) on shortage, quantity, and inventory.  

1 https://www.cnbc.com/2020/03/18/how-china-is-using-robots-and-tele 
medicine-to-combat-the-coronavirus.html. 
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2. Along with controlling the virus transmission rate in disasters, the 
fair and rapid distribution of RIs plays a crucial role in controlling the 
virus. Also, either the lack or surplus of items or unfair distribution 
causes dissatisfaction among people in ECs and THs. Therefore, 
several recommendations have been made for the distribution of RIs:  

A. Regarding Fig. 15, one of the critical recommendations for managers 
is to increase the capacity of distribution centers to the extent 
determined by the model. It should be noted that an excessive in-
crease in the centers’ capacity cannot help improve the situation 
noticeably. Also, more RIs with lower priority can be stored in DCs, 
and RIs with higher importance can be transferred to THs and ECs if 
the capacity of DCs increases, but the total cost increases drastically. 
It is worth mentioning that it is better to extend storage in densely 
populated areas because most of the shortage happens in these zones. 

0 
4021 

15910 16020 

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

0 1 2 3 4 5
Consumption coefficient of sanitizer package (number per day)

shortage of sanitizer

quantity of sanitizer

total costs/10000000

Linear (shortage of
sanitizer)

Linear (quantity of
sanitizer)

Linear (total
costs/10000000)

Fig. 19. The effect of consumption coefficient of an RI (type 1) on shortage, quantity, and total cost.  

Fig. 20. Announcement drone.  

Fig. 21. Surveillance drone.  

Fig. 22. IoT thermal sensor.  

Fig. 23. IoT monitoring system for infected people detection.  
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B. Based on Figs. 16 and 17, one way to increase the amount of trans-
ported RIs is to improve transportation capacity. Managers are 
advised that instead of spending much money to increase distribu-
tion centers, increasing the number of trucks is better. In addition, 
cargo drones can be used with trucks to quickly send RIs to remote 

and inaccessible areas, albeit with lower capacity to expand trans-
portation capacity. Thus, Investing in IoT-based cargo drones can 
also improve shortages and equitable distribution. For example, JD 
Company2 in china has used cargo drones to transfer commercial 
items and rapid covid-19 test kits to remote locations illustrated in 
Figs. 27 and 28.  

C. According to Fig. 18, due to new COVID-19 virus mutations, the 
importance of RIs can be changed by the medical decision-maker. 
These changes lead to increase demands and shortages of RIs. 
Paying more attention to the above-mentioned recommendations for 
reducing virus transmission is a way to control the changes in 
importance.  

D. Regarding Fig. 19, daily RIs should include the necessary items for 
people and patients. Consuming RIs without a predefined plan can 
increase shortage and unfair distribution. Determining the proper 
consumption pattern by managers for people in THs and DCs, along 
with timely announcement and consumption surveillance with IoT- 
based systems, can modify the situation.  

3. In terms of results obtained from this case study, infected cases 
detected by IoT-based technology and PCR test should be transferred 
to quarantine swiftly. Location of temporary quarantine places plays 
a pivotal role in controlling outbreaks because the more accessibility 
centers have, the less time it takes to transfer infected, and the more 
patients are transferred 

Fig. 24. Monitoring drone.  

Fig. 25. Disinfection drone.  

Fig. 26. Autonomous robot.  

Fig. 27. Cargo drone introduced by JD Company.  

Fig. 28. Cargo drone.  

2 https://www.weforum.org/agenda/2020/03/three-ways-china-is-using 
-drones-to-fight-coronavirus. 

B. Ehsani et al.                                                                                                                                                                                                                                  

https://www.weforum.org/agenda/2020/03/three-ways-china-is-using-drones-to-fight-coronavirus
https://www.weforum.org/agenda/2020/03/three-ways-china-is-using-drones-to-fight-coronavirus


Computers & Industrial Engineering 175 (2023) 108821

25

6. Conclusion and further research 

In this paper, an uncertain, scenario-based, two-stage, multi- 
objective, multi-products, multi-fleet, multi-period, IoT-based, loca-
tion-allocation-inventory, mixed-integer mathematical programming 
model was proposed for the response phase of disasters in the epidemic 
outbreak. The proposed model has five echelons involving Affected 
Areas (AAs), Relief Collection Warehouse (RCW), Distribution Centers 
(DCs), Temporary Hospitals (THs), and Evacuation Centers (ECs). Fuzzy 
mathematical programming is hired to cope with uncertainty in this 
problem. Also, due to the uncertain behaviour of the COVID-19 
outbreak, the infection rate of the virus is obtained by the proposed 
IoT framework. Two objective functions, including minimizing the 
establishment cost of ECs, and minimizing transferring time of patients 
to THs, are considered for patients and people transferring. In the next 
phase, three objective functions involve minimizing the total cost, 
shortage of RIs, and the number of used fleets. The preliminary decision 
of the proposed model was locating ECs and THs, finding infected cases 
in AAs and ECs using an IoT system, transferring them to THs, locating 
DCs based on people’s demand, allocating RIs fairly between people in 
THs and ECs, and finding an optimum number of drones and trucks. 

The proposed two-level model was solved using the LP-metric 
method with GAMS software. Then, this model was evaluated by a 
real case study in Salas-e-Babajani city, Kermanshah province. Finally, 
sensitivity analyses were conducted on obtained data that might differ in 
three scenarios of earthquakes and presence of a new mutation of 
COVID-19. The results of sensitivity analyses indicate that the increase 
the infection rate of COVID-19 in AAs and ECs leads to increase patients’ 
numbers, demand in THs, and RIs shortage in THs. We find that the 
utilization of IoT-based systems in monitoring and informing can alle-
viate the situation in ECs and THs. Notably, using this system in AAs 
meticulously can be more effective than detecting infected cases in ECs, 
but it incurs an extra cost on the supply chain. We also find that the 
increase in the number of fleets and DCs capacity simultaneously reduce 
the shortage effectively, which is not very impactful if one increases 
solely. One of the study’s findings is the use of cargo drones instead of 
trucks. Although they have less capacity than trucks, but have a more 
significant impact on reducing shortage. It should be noted that the use 
of drones also increases supply chain costs. The last finding is the effect 
of the importance and consumption coefficient of RIs on the shortage, 
inventory, and quantity of RIs transferred to demand points. If the 
importance and consumption rate increase, the RIs shortage will in-
crease in ECs. Also, we find that the inventory is allocated to RIs with 
higher priority. 

Our model has some limitations but can be developed in many ways. 
For further research, it is recommended that the routing problems of 
fleets be considered, along with traffic congestion and road disruption. 
Second, waste is an inevitable problem that should be treated. Locating 
temporary treatment centers for this problem can be taken as future 
work. Third, incorporating the location problem of portable blood dis-
tribution centers and the allocation problem of portable ventilators can 
modify decision-making. Researchers can incorporate the injured pa-
tients into this model and consider the problem of location-allocation- 
routing of ambulances for this supply chain network amid the COVID- 
19 outbreak. Another significant novelty that can enrich this study is 
to model a location-allocation problem for IoT equipment. For instance, 
because of the internet’s interruption after a severe disaster, the location 
and number of the internet antennas to provide the internet for IoT 
devices can be an intriguing issue for future research. Furthermore, in 
some logistics networks, in order to reduce the shortage, we can consider 
the min–max type objective function on the transportation objective 
function (minimizing transportation time), along with minimizing 
shortage quantity and the penalty costs. 
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