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Rationale & Objective: Patients with a high-risk
Apolipoprotein L1 (APOL1) genotype are more
likely to develop chronic kidney disease and
kidney failure. It is unclear whether this increased
risk is entirely mediated by the development of
proteinuria.

Study Design: Retrospective observational study
of the African American Study of Kidney Disease
and Hypertension cohort and Chronic Renal
Insufficiency Cohort.

Exposures & Predictors: Self-identified race
(Black/non-Black) and presence of high-risk
APOL1 genotype. The primary model was
adjusted for age, sex, diabetes, estimated
glomerular filtration rate, and urinary protein-
creatinine ratio.

Outcomes: Time to kidney failure defined as time
to dialysis or transplantation.

Analytical Approach: We used Cox proportional
hazard models to study how proteinuria mediates
the association between APOL1 and kidney failure.
We modeled proteinuria at baseline and as a time-
varying covariate.

Results: A high-risk APOL1 genotype was
associated with a significantly higher risk of
kidney failure, even for patients with minimal
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proteinuria (HR, 1.87; 95% CI, 1.23-2.84). The
association was not significant among patients
with high proteinuria (HR, 1.22; 95% CI, 0.93-
1.61). When modeling proteinuria as a time-
varying covariate, a high-risk APOL1 genotype
was associated with higher kidney failure risk
even among patients who never developed
proteinuria (HR, 2.04; 95% CI, 1.10-3.77).
Compared to non-Black patients, Black patients
without the high-risk genotype did not have
higher risk of kidney failure (HR, 0.96; 95% CI,
0.85-1.10).

Limitations: Two datasets were combined to in-
crease statistical power. Limited generalizability
beyond the study cohorts. Residual confounding
common to observational studies.

Conclusions: A high-risk APOL1 genotype is
significantly associated with increased kidney
failure risk, especially among patients without
baseline proteinuria. Although our results suggest
that the risk is partially mediated through
proteinuria, higher kidney failure risk was present
even among patients who never developed
proteinuria. Providers should consider screening
for the high-risk APOL1 genotype, especially
among Black patients without proteinuria in
populations with chronic kidney disease.
Fifteen percent of US adults have chronic kidney disease
(CKD), and Black Americans are disproportionately

represented.1 Black Americans with CKD are 3 times more
likely than non-Black Americans to progress to kidney
failure.1

The high-risk Apolipoprotein L1 (APOL1) genotype (2 high-
risk alleles), found in about 13%2 of Black Americans, is a
major contributor to accelerated CKD progression.3-6 The
role that proteinuria plays in APOL1-mediated progression
remains unclear. Some studies suggest that a high-risk APOL1
genotype predisposes patients to developing proteinuria;
once present, proteinuria is the primary driver for kidney
decline.6 Others suggest that even though a high-risk ge-
notype increases patients’ risk for developing proteinuria, it
might also contribute to kidney function decline indepen-
dent of proteinuria.3-5 Understanding this mechanism is
critical clinically because it could inform whether providers
should regularly test patients for APOL1 high-risk alleles. For
instance, even in the absence of proteinuria, providers may
more closely monitor patients with a high-risk genotype for
CKD progression and consider education and other prepa-
ration for kidney failure treatment. Prior studies investi-
gating the relationship between APOL1 and proteinuria have
been limited to short timeframes, do not account for lon-
gitudinal changes in proteinuria, and do not consider the
persistence of severe levels of proteinuria.3-6

In this study, we combined data from the African
American Study of Kidney Disease and Hypertension
(AASK) and the Chronic Renal Insufficiency Cohort (CRIC)
cohort studies to investigate the long-term risk of kidney
failure associated with the APOL1 gene. We modeled the
time-varying nature of proteinuria to assess whether
APOL1 is associated with kidney failure independent of
proteinuria.
METHODS

Overview

In this work, we developed 2 survival models to study
the association between APOL1 and kidney failure risk.
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PLAIN-LANGUAGE SUMMARY
Some variants in the Apolipoprotein 1 (APOL1) gene are a
major risk factor for developing kidney failure and are
typically only found in Black individuals. However, it is
unclear whether the increased risk from these “high-
risk alleles” is due entirely to the development of pro-
teinuria (protein in the urine). Data from 2 cohort
studies of patients with chronic kidney disease were
used to assess the association between APOL1 and
kidney failure. We find that having high-risk alleles
were associated with more kidney failure regardless of
proteinuria. Moreover, Black patients without high-risk
alleles were not more likely to develop kidney failure
than non-Black patients. Screening patients without
proteinuria for APOL1 could help providers better
identify patients at risk for kidney failure.

Nguyen et al
In Model 1, we studied the association between kidney
failure risk with APOL1 status, age, sex, estimated
glomerular filtration rate (eGFR), and patients’ baseline
proteinuria level, measured as the urinary protein-
creatinine ratio (UPCR). Because this first model only
used baseline characteristics, it could not differentiate
between patients who developed proteinuria after the
baseline period and those who never developed pro-
teinuria. To study whether APOL1 is associated with an
increased risk of kidney failure even in patients who
never developed proteinuria, we subsequently conducted an
additional analysis (Model 2) that accounted for UPCR’s
time-varying nature. Intuitively, these models compared
patients who never developed proteinuria during the
entire study period with those who did.
Data and Population

We used publicly available data from the AASK and CRIC
cohort studies. Study protocols for each can be obtained
from the National Institute of Diabetes and Digestive and
Kidney Diseases Data Repository.7-9 This study was
approved by University of Southern California institutional
review board, approval number HS-18-00733. No
informed consent was necessary for this study, as data
were deidentified.

The AASK study included individuals who self-
identified as Black, aged 18-70, and had CKD attribut-
able to hypertension. The study had an initial trial phase
where 1,094 participants were randomly assigned to
different intensities of blood pressure control and different
antihypertensive drug regimens.10 Of the 795 patients
who did not develop kidney failure or die during the trial
or transition period, 691 were followed for up to 5.4
years in a cohort study where all participants received the
standard blood pressure regimen.10 Participants had
environmental, genetic, physiologic, and socioeconomic
2

factors collected annually.7 We studied the 691 partici-
pants in the cohort phase because they received standard
of care.

The CRIC study is a longitudinal cohort of patients aged
21-74 with mild to moderate CKD (eGFR within 20-
70 mL/min/1.73 m2).11,12 CRIC participants are followed
every 6 months to ascertain interim medical history and to
collect physiologic data.9 The maximum follow-up time
was 14.5 years, and we used data collected through
January 2020.

Our primary analysis combined both cohorts and
adjusted for confounders common to both datasets. In a
secondary analysis, we limited our analysis to the CRIC
cohort, which has more complete information on socio-
demographic and biomedical factors.

We required participants have complete information on
APOL1 status, race (Black or non-Black), age, sex, UPCR,
serum creatinine (used to calculate eGFR), and presence of
diabetes. For the secondary CRIC-limited analysis and
sensitivity analyses, we required patients have complete
data on cystatin C and relevant sociodemographic and
biomedical confounders.

Outcome

The outcome of interest was time to kidney failure defined
as dialysis or transplant. We censored for loss to follow-up,
death, and end of the study period.

Exposures

Our main exposures were self-identified race (Black vs
non-Black) and the presence of a high-risk APOL1 ge-
notype. We defined a high-risk genotype as having 2
high-risk alleles in the APOL1 gene (7.7% of our sample
population). Because only Black patients have a high-risk
APOL1 genotype, we examined 3 groups of patients:
Black patients with a high-risk APOL1 genotype (having 2
high-risk alleles), Black patients without a high-risk APOL1
genotype (having 1 or no APOL1 high-risk alleles), and
non-Black patients. We will refer to these groups as the
Black-HR (Black high-risk), Black-LR (Black low-risk), and
non-Black patients, respectively.

Main Prediction Variables

Because the Kidney Failure Risk Equation developed by
Tangri et al13 is a widely used model for the risk stratifi-
cation of patients with CKD, we based our initial model on
the Kidney Failure Risk Equation 4-variable equation,
which considers age, sex, eGFR, and albuminuria
(measured through the urinary albumin-creatinine ratio
[UACR]) as the main predictors for progression to kidney
failure. We also included whether a patient was diagnosed
with diabetes.

We estimated eGFR with the updated 2009 Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
creatinine equation refit without race.14,15 In the CRIC
cohort, UACR is only available for the baseline visit, but
Kidney Med Vol 4 | Iss 12 | December 2022 | 100563
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the researchers collected longitudinal data on proteinuria
through the UPCR. Prior studies have shown that UACR
and UPCR are strongly correlated, so we used UPCR
instead of UACR.16,17

Model 1 only incorporated patients’ baseline protein-
uria, whereas Model 2 included proteinuria as a time-
varying covariate. Both models modeled proteinuria as a
categorical variable (“Minimal Proteinuria” or
UPCR ≤ 0.220 mg/mg, “Moderate Proteinuria” or
UPCR > 0.220 mg/mg to UPCR ≤ 1 mg/mg, and “High
Proteinuria” or UPCR > 1 mg/mg). These cutoffs are
similar to those used in prior studies.3 In sensitivity anal-
ysis, proteinuria was also modeled as a continuous variable
(natural logarithm of UPCR).

Statistical Modeling

We conducted descriptive analyses comparing baseline
characteristics among Black-HR, Black-LR, and non-Black
patients. We used a Pearson χ2 test to compare categori-
cal variables and a Kruskal-Wallis test to compare contin-
uous variables. We plotted the probability of developing
kidney failure over time using Kaplan-Meier survival
curves, stratifying by level of proteinuria, using the log-
rank test to test for statistical differences.
AASK Cohort
N = 691

With APOL1 
informaƟon

N = 570

Removed those with 
missing UPCR / SCR

N = 559

Removed those with 
missing or implausible 

events N = 520 

No APOL1 informaƟon 
(N = 121)

Missing values for UPCR 
(N = 9) or for SCR (N = 2)

Missing ESKD event (N=19)
Missing death event Ɵme 

(N=17)
Implausible event Ɵme 

(N=3) 

Total num
observaƟ

N = 48

Figure 1. Participant inclusion diagram. Abbreviations: AASK, Afric
Apolipoprotein L1; CRIC, Chronic Renal Insufficiency Cohort Stu
serum to creatinine ratio; UPCR, urinary protein-creatinine ratio.
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We subsequently used Cox proportional hazards models
with robust standard errors to assess the association be-
tween APOL1 genotype, race, and risk of developing kidney
failure after accounting for age (per 10 years), sex, eGFR
(per 5 mL/min/1.73 m2), proteinuria, and diabetes.

In Model 1 (the “non–time-varying” model), we only
included proteinuria at the baseline visit and an interaction
term between the APOL1 high-risk genotype and protein-
uria. This interaction term assesses whether the association
between APOL1 and progression to kidney failure was
heterogeneous by proteinuria level.

We then considered whether the future development of
proteinuria might influence the association between the
APOL1 high-risk genotype and kidney failure development.
Model 2 (the “time-varying” categorical model) modeled
proteinuria as a time-varying covariate.

We studied the association between APOL1 and the risk
of developing kidney failure at different levels of pro-
teinuria, using the delta method to obtain standard errors.

Sensitivity Analyses

We performed the following sensitivity analyses. First,
we modeled proteinuria as a continuous variable (the
natural logarithm of proteinuria). Second, the primary
CRIC
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(N = 960)
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(N = 41) or for Cys C (N = 

6)

Missing 
sociodemographic

values (N = 1)

Missing biomedical
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Implausible event Ɵme 
(N = 15)
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an American Study of Kidney Disease and Hypertension; APOL1,
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Table 1. Descriptive Statistics for the Study Population (CRIC and AASK Studies)

Non-Black
(N = 2,911)

Black without APOL1
(Black-LR)
(N = 1,570)

Black with APOL1
(Black-HR)
(N = 374)

Kidney failurea,b,c 592 (20%) 430 (27%) 152 (41%)
Age (y)a,b,c 59.6 (11.1) 57.7 (9.9) 54.0 (12.0)
Sexa,b

Male 1,777 (61%) 831 (52.9%) 183 (48.9%)
Female 1,134 (39%) 739 (47.1%) 191 (51.1%)

Baseline proteinuria levela,c

UPCR ≤ 0.220 mg/mg 1,719 (59.1%) 943 (60.1%) 164 (43.9%)
0.220 mg/mg < UPCR ≤ 1 mg/mg 621 (21.3%) 332 (21.1%) 129 (34.5%)
UPCR > 1 mg/mg 571 (19.6%) 295 (18.8%) 81 (21.7%)

Mean UPCR (mg/mg )a,b,c 0.9 (2.3) 0.8 (1.9) 0.9 (1.9)
eGFR (mL/min/1.73 m2)a,b 51.0 (16.2) 39.6 (38.9) 38.9 (15.1)
Diabetesa,b,c

Has diabetes 1,389 (47.7%) 621 (39.6%) 114 (30.5%)
Notes: Data are expressed as number (%) or mean (SD). Statistically significant differences are observed between all 3 groups for each characteristic.
Abbreviations: AASK, African American Study of Kidney Disease and Hypertension; APOL1, Apolipoprotein L1; eGFR, estimated glomerular filtration rate; Black-HR,
Black with 2 high-risk APOL1 alleles; Black-LR, Black with one or no high-risk APOL1 alleles; CRIC, Chronic Renal Insufficiency Cohort Study; SD, standard de-
viation; UPCR, urinary protein-creatinine ratio.
aIndicates significant difference between Non-Black and Black-LR
bIndicates significant difference between Non-Black and Black-HR
cIndicates significant difference between Black-LR and Black-HR

Nguyen et al
analysis was repeated with 3 alternative CKD-EPI equa-
tions.15 For some of these, only the CRIC data could be
used because of the need for cystatin C data (Tables S1-
S2, Item S1). Third, we used albuminuria instead of
proteinuria. Albuminuria levels at the first visit were
recorded and categorized as minimal (UACR ≤ 60 mg/g),
moderate (60 mg/g < UACR ≤ 480 mg/g), and high
(UACR > 480 mg/g). Albuminuria levels at follow-up
visits were estimated using proteinuria via a previously
published conversion equation by Sumida et al.16 Fourth,
we assessed if other sociodemographic and biomedical
factors confounded the results of the primary analysis.
Most of these factors are only available in the CRIC data,
so this analysis was performed exclusively on the CRIC
cohort. In this analysis, we adjusted for sociodemo-
graphic and biomedical confounders in the CRIC cohort:
biomedical confounders (ankle-brachial index, body
mass index, ever visited a nephrologist, drinking in last
12 months, drug use, congestive heart failure, moderate
depression, cause of kidney disease, family history of
kidney disease or coronary artery disease, stroke, car-
diovascular disease, atrial fibrillation, hypertension, and
anemia) and sociodemographic confounders (Hispanic,
health insurance, income, education, and marital status).
We tested the sensitivity of our results when including:
(1) biomedical confounders plus the base variables, (2)
sociodemographic confounders plus the base variables,
and (3) biomedical confounders, sociodemographic
confounders, and base variables.
RESULTS

Of 6,190 individuals (691 from AASK and 5499 from
CRIC), we included 4,855 in our study (520 from
4

AASK and 4,335 from CRIC) (Fig 1). The maximum
follow-up time for the included individuals was 5.4 years
for the AASK participants and 14.5 years for the CRIC
participants. As seen in Table 1, non-Black patients were
older (mean age 60 versus 58 for Black-LR and 54 for
Black-HR), more likely male (61% vs 53% for Black-LR
and 49% for Black-HR), more likely to have diabetes
(48% vs 40% for Black-LR and 31% for Black-HR), and
more likely to have a higher mean eGFR (51 mL/min/
1.73 m2 vs 40 mL/min/1.73 m2 for Black-LR and 39 mL/
min/1.73 m2 for Black-HR). Non-Black patients and
Black-LR patients were less likely to have proteinuria (41%
and 40% respectively relative to 56% for Black-HR
patients). Statistically significant differences were found
for all variables among the 3 groups. Pairwise differences
are presented with the full descriptive statistics in Table 1
and Table S1.
Unadjusted Analyses

In unadjusted analysis, Black patients, and especially
those with a high-risk APOL1 genotype, were significantly
more likely to develop kidney failure than non-Black
patients (Fig 2). When stratifying by proteinuria levels,
we observed similar patterns. Black-HR patients pro-
gressed more quickly to kidney failure than Black-LR
patients, and both groups progressed more quickly
than non-Black patients. For patients with minimal pro-
teinuria, the likelihood of kidney failure for non-Blacks
versus Black-LRs was similar in the first 5 years but
diverged by 10 years of follow-up. For patients with high
proteinuria levels, the likelihood of kidney failure was
similar for the first 7 years but diverged by 10 years of
follow-up.
Kidney Med Vol 4 | Iss 12 | December 2022 | 100563
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Figure 2. (A and B) Patients with the high-risk APOL1 genotype have higher risk of kidney failure even when stratifying by protein-
uria. Survival curves constructed using the Kaplan-Meier estimator. Log-rank tests indicated that at the 2 higher UPCR levels, plots
(C) and (D), there is no statistically significant difference between Black with APOL1 and Black without APOL1 subgroups. All other
pairwise comparisons showed statistically significant differences (P < 0.01). Abbreviations: APOL1, Apolipoprotein L1; Black-HR,
Black with 2 high-risk APOL1 alleles; Black-LR, Black with 1 or no high-risk APOL1 alleles; eGFR, estimated glomerular filtration
rate; UPCR, urinary protein-creatinine ratio.
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Primary Adjusted Analyses

After adjusting for age, sex, eGFR, and presence of dia-
betes, we found that having a high-risk APOL1 genotype
was associated with a significantly higher risk of devel-
oping kidney failure at all baseline levels of proteinuria
(Model 1 in Table 2, Fig 3). Figure 3 illustrates how the
high-risk APOL1 genotype is associated with increased
kidney failure risk across different proteinuria strata. The
association is blunted at more severe proteinuria levels,
although the interaction term was not significant at the 5%
level (Table 2). The APOL1 high-risk genotype was asso-
ciated with higher kidney failure risk among patients with
minimal (hazard ratio [HR], 1.87; 95% confidence interval
[CI], 1.23-2.84) and moderate (HR, 1.41; 95% CI, 1.06-
1.87) proteinuria at baseline, but not among patients with
high (HR, 1.22; 95% CI, 0.93-1.61) levels of proteinuria
(Table S2).
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Model 2, which allowed proteinuria to vary over time,
showed similar results: a high-risk APOL1 genotype was
associated with a higher kidney failure risk, again blunted at
higher levels of proteinuria (Fig 2). Interaction terms for
APOL1 and proteinuria were not significant (Table 2). In
contrast to Model 1, patients with the high-risk APOL1 ge-
notype and who developed high proteinuria at any point
during the study period had a higher risk of kidney failure
(Model 2: HR, 1.39; 95% CI, 1.11-1.74). We additionally
found that APOL1 was associated with kidney failure risk even
for patients who never developed proteinuria during the study
period (Model 2: HR, 2.04; 95% CI, 1.10-3.77; Table S2).

Sensitivity Analyses

In sensitivity analyses, we did not observe material changes
to our results regarding APOL1 and proteinuria when
modeling proteinuria as a continuous variable or when
5



Table 2. Higher Risk of Kidney Failure Associated with APOL1 and Proteinuria

Variables

Model 1
Proteinuria:
non–time-varying

Model 2
Proteinuria:
time-varying

HR 95% CI HR 95% CI
Race
Non-Black Ref Ref
Black 0.963 (0.847-1.095) 0.906 (0.797-1.029)

APOL1 genotype
Low-risk (0-1 allele mutation) Ref Ref
High-risk (2 allele mutation) 1.875 (1.237-2.842)a 2.040 (1.103-3.772)b

Proteinuria
Minimal (UPCR ≤ 0.220 mg/mg) Ref Ref
Moderate (0.22 mg/mg < UPCR ≤ 1 mg/mg) 3.458 (2.871-4.165)a 4.222 (3.228-5.523)a

High (UPCR > 1 mg/mg) 9.747 (8.159-11.644)a 15.830 (12.381-20.241)a

APOL1 × proteinuriac

APOL1 high-risk × moderate proteinuria 0.733 (0.448-1.199) 0.831 (0.414-1.668)
APOL1 high-risk × severe proteinuria 0.636 (0.391-1.035) 0.680 (0.357-1.297)

Age (per 10 y) 0.824 (0.781-0.868)a 0.789 (0.748-0.831)a

Sex
Female Ref Ref
Male 1.343 (1.194-1.511)a 1.222 (1.086-1.376)a

eGFR (per change in 5 mL/min/1.73 m2)d 0.688 (0.670-0.707)a 0.695 (0.675-0.716)a

Presence of diabetes
No Ref Ref
Yes 1.628 (1.439-1.842)a 1.636 (1.447-1.851)a

Notes: Two Cox models were developed. Proteinuria was modeled in 2 different ways: (1) proteinuria level at baseline, and (2) proteinuria modeled as a time-varying
covariate. These models use both CRIC and AASK data (N = 4,855). HRs estimated using a Cox proportional hazards model, adjusting for the above covariates.
Higher risk of kidney failure is associated with proteinuria and APOL1. Age is measured in years, and eGFR is measured in mL/min/1.73 m2. Age HR is per 10 years
and eGFR HR is per 5 mL/min/1.73 m2.
Abbreviations: AASK, African American Study of Kidney Disease and Hypertension; APOL1, Apolipoprotein L1; CI, confidence interval; CKD-EPI, Chronic Kidney
Disease Epidemiology Collaboration; CRIC, Chronic Renal Insufficiency Cohort Study; eGFR, estimated glomerular filtration rate; HR, hazard ratio; Ref, reference;
UPCR, urinary protein-creatinine ratio.
aSignificant at 0.01
bSignificant at 0.05
cInteraction between the presence of a high-risk APOL1 genotype and proteinuria level
dEstimated using CKD-EPI equation without race fit

Nguyen et al
using any of the other eGFR estimation equations
(Table S2). When using UACR instead of UPCR, our results
were consistent. We explored the impact of including
biomedical and sociodemographic factors (see Table S1 for
descriptive statistics). In all cases, including these addi-
tional confounders does not materially change our
adjusted results. HRs for the stratified proteinuria groups
can be found in Table S2. Relevant variable HRs can be
found in Table S2.
DISCUSSION

We found that having a high-risk APOL1 genotype was
associated with significantly increased kidney failure risk,
especially among patients with lower levels of proteinuria.
The association between the high-risk APOL1 genotype and
kidney failure was blunted at higher levels of proteinuria,
though it remained significant among patients who
eventually developed severe proteinuria during the study
period. Notably, the high-risk genotype was associated
with higher kidney failure risk even among patients who
never developed proteinuria during the study period.
6

A leading hypothesis for how the high-risk APOL1 ge-
notype causes CKD progression is through the development
of proteinuria. Prior studies have suggested that among
patients without proteinuria, the presence of a high-risk
APOL1 genotype significantly increases patients’ future risk
for developing proteinuria, a finding that is consistent with
ours.5 Previous research into the mechanism of how APOL1
accelerates CKD progression have focused a large part on the
development of proteinuria. However, we find in this study
that faster CKD progression rates were associated with the
high-risk APOL1 genotype even when patients do not have
proteinuria. Our findings are consistent with the trans-
lational literature suggesting nonglomerular mechanisms
for APOL1-mediated kidney damage, including endo-
plasmic reticular stress, mitochondrial dysfunction, and
cytotoxicity resulting in apoptosis and pyroptosis, among
others.18-21 Future studies should investigate additional
mechanisms independent of the development of protein-
uria. Although kidney damage from the high-risk APOL1
genotype is mediated in part by the development of pro-
teinuria, kidney damage may occur through a mechanism
independent of proteinuria.
Kidney Med Vol 4 | Iss 12 | December 2022 | 100563
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Figure 3. Increased risk of kidney failure for patients with the high-risk APOL1 alleles even for patients with minimal proteinuria. Es-
timates derived from a Cox proportional hazards model, adjusting for age, sex, diabetes, estimated glomerular filtration rate, and
UPCR. Proteinuria levels are defined as: Minimal (UPCR ≤ 0.22 mg/mg), Moderate (0.22 mg/mg < UPCR ≤ 1 mg/mg), and High
(UPCR >1 mg/mg). Both models show that there is an increased risk for kidney failure at all proteinuria levels if the patient has
the high-risk APOL1 allele. Abbreviations: APOL1, Apolipoprotein L1; UPCR, urinary protein-creatinine ratio.
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Our study extends current knowledge about the APOL1
gene in several ways. First, unlike previous studies that
focused on short term outcomes (2 and 5 years),13 ours
considers a longer follow-up period, up to 14 years after
the initial visit. Additionally, previous studies considered
proteinuria as a static characteristic measured once during
a baseline visit.22-27 However, proteinuria changes occur
over time, and accounting for longitudinal changes in
proteinuria may be important.28,29 Our time-varying
models suggest that the high-risk APOL1 genotype is an
important risk factor for developing kidney failure even
among patients who never developed proteinuria. These
findings were robust to multiple statistical formulations.

The literature remains unclear about whether screening
patients for APOL1 high-risk alleles conveys a clinical
benefit and acknowledge that the paucity of therapeutic
options for APOL1-mediated damage may limit the ben-
efits of more APOL1 testing.30 However, testing may help
providers and patients understand why a patient might
have progressive, nonproteinuric kidney disease. More-
over, in light of our results, providers may want to
reconsider the utility of using high-risk APOL1 genotype,
even in the absence of proteinuria, as a factor when risk
stratifying patients. This could be valuable in limited
resource or safety-net settings where optimizing the allo-
cation of intensive and expensive but cost-effective thera-
pies could improve overall population management of
patients with kidney disease. Prior studies have shown that
cost effectiveness of management of CKD varies drastically
across risk profiles and that risk stratification has the po-
tential to improve the cost-effective care by allowing
providers to target more intensive therapies to patients at
the highest risk for kidney failure.31 The presence of a
Kidney Med Vol 4 | Iss 12 | December 2022 | 100563
high-risk genotype could raise a provider’s index of sus-
picion for future CKD progression and could prompt more
frequent testing for evidence of CKD progression. Many
clinics have already included the Kidney Failure Risk
Equation as a way to stratify patients,32-35 and APOL1 may
serve as a valuable additional factor for risk stratification.
The utility of APOL1 may be even higher for younger
patients who have not developed proteinuria but have a
longer life expectancy, increasing the likelihood of devel-
oping kidney failure. This approach should be confirmed
in future studies.

Screening for APOL1 might also change the manage-
ment of kidney disease considering the abundance of ev-
idence demonstrating the efficacy of sodium/glucose
cotransporter 2 inhibitors. Early trials demonstrated
improved kidney outcomes, even among subgroups of
patients with higher eGFRs and without proteinuria.36,37

Recent studies have demonstrated the benefit of sodium/
glucose cotransporter 2 inhibitors in both diabetic and
nondiabetic CKD, but most of these trials have required
that patients have macroalbuminuria.38 Although a ran-
domized trial has not yet definitively demonstrated benefit
in patients with nonproteinuric CKD, sodium/glucose
cotransporter 2 inhibitors might confer benefits for pa-
tients without proteinuria but with the high-risk APOL1
genotype. A positive APOL1 test may prompt a provider to
control blood pressure more aggressively or use an so-
dium/glucose cotransporter 2 inhibitor in an otherwise
healthy patient without proteinuria.

Our study might also have important implications in the
recruitment of patients for trials testing novel therapeutics
to treat APOL1-mediated focal segmental glomerulo-
sclerosis. Many of these studies have proteinuria in their
7
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eligibility criteria. Although patients with proteinuria are
of the highest risk for developing kidney failure, these
patients have already suffered substantial glomerular
damage. Trials could consider testing the efficacy of ther-
apeutics among patients with a high-risk APOL1 genotype
but who have not yet developed proteinuria. It is impor-
tant to test whether moving upstream is more efficacious
in ameliorating the future risk of kidney failure.

Limitations of our study stem from data availability and
the use of multiple cohort studies for our study. A large
portion of the CRIC cohort lacked APOL1 data and were
excluded from our study. We also used proteinuria as a
proxy for albuminuria because of the lack of longitudinal
data on albuminuria in the CRIC dataset. Although our
study is unique in modeling proteinuria as a time-varying
covariate, we could only update proteinuria levels annually
given the follow-up schedules of both cohorts. Addition-
ally, our results may not be fully generalizable to the entire
US CKD population given the selective inclusion criteria
for the AASK and CRIC cohorts. For instance, some Black
patients with a high-risk genotype might not have CKD
due to APOL1 but rather other risk factors (eg, diabetes).
In a similar vein, both cohorts omitted patients with a
high-risk genotype but no evidence of CKD (ie, an absence
of proteinuria and normal eGFR). As with all observational
studies, our findings could be biased from residual con-
founding. However, given the size of the point estimates,
the robustness of our results to multiple model specifica-
tions, and the relatively small impact of including con-
founders on our results, the bias may not be sufficient to
invalidate our results. We also excluded the AASK popu-
lation in our exploratory secondary analyses because many
confounders were limited to the CRIC dataset. Finally,
although we used 2 rich cohorts with a long follow-up
period, our small sample size may have led to imprecise
estimates.

In summary, we find that APOL1 is significantly
associated with the long-term risk of developing kidney
failure, even for patients without underlying proteinuria
in populations with CKD. Although proteinuria may be
one mechanism by which APOL1 leads to kidney failure,
our findings suggest the importance of confirming
whether APOL1-mediated kidney damage could stem
from alternate mechanisms. Providers should consider
the value using APOL1 high-risk alleles as a risk-
stratifying characteristic.
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