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A B S T R A C T

The trucking sector contributes significantly to the economic vitality of the United States. Large trucks are pri-
marily used for transporting goods within and across states. Despite its economic importance, large truck crashes
constitute public safety concerns. To minimize the consequences, there is a need to understand the factors that
contribute to the severity outcomes of truck-involved crashes. Since many large truck drivers transport goods
across several states, the driver-centered crash factors are expected to differ between in-state and out-of-state
drivers. For this reason, this study developed two random parameters multinomial logit models with heteroge-
neity in means and variances to examine the factors contributing to the severity of crashes involving in-state and
out-of-state large truck drivers in Alabama. The study was based on the 2016–2020 large truck crashes in Ala-
bama. After data cleaning and preparation, it was observed that approximately 20% of in-state and 23% of out-of-
state large truck crashes were fatigue-related. There were more speeding related crashes (12.4%) among in-state
large truck drivers, but the contribution of speeding to crash severity outcomes was only significant in the out-of-
state model. More crashes related to red light running violation (14.2%) were observed among out-of-state
drivers, pointing to the fundamental issues of fatigue and unfamiliarity with the operations of signalized in-
tersections in Alabama. The study contributes to the literature on large truck crashes by uncovering the nuances in
crashes involving in-state and out-of-state large truck drivers. Despite the seeming similarity in factors that in-
fluence crash outcomes, this study provides the basis for truck drivers’ training and communication campaigns on
the differences that may exist in roadway characteristics from state to state. Also, policy formulations and stra-
tegies that prioritizes the well-being of the large truck drivers and creates a better working condition for them
should be explored.
1. Introduction

The trucking sector contributes significantly to the economic vitality
of the United States. In 2020, over 900,000 active truck drivers were in
the sector, generating approximately $732 billion in revenue and rep-
resenting 1% of the country's annual revenue (Duffin, 2022; Placek,
2022). The sector relies primarily on large trucks to transport goods
within and across different states. The outbreak of COVD-19 in 2020 and
the following lockdown did not significantly impact the trucking industry
as its regarded as an essential service. Despite the economic importance
of the trucking sector, large truck (with a gross vehicle weight rating
greater than 10,000 pounds) crashes constitute public safety concerns.
These vehicle types represent 4% of all registered vehicles but contribute
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about 9% to fatal crashes (National Safety Council, 2022; NHTSA,
2022a). Occupants of other vehicles and non-vehicle occupants (like
pedestrians and bicyclists) are more vulnerable to severe or fatal injury in
crashes involving large trucks (NHTSA, 2022b).

Moreover, large truck crashes often result in severe and fatal injuries
compared to other vehicle crashes due to their size and weight (Behnood
and Mannering, 2019; Liu and Fan, 2022). Data from the National Safety
Council (National Safety Council, 2022) showed that fatalities in large
truck crashes increased between 2014 and 2019, with 70% of the fatal-
ities representing occupants of other vehicles. Despite the decrease in
large truck-related fatalities observed in 2020 compared to the previous
year, the number of non-vehicle occupants (like pedestrians and bi-
cyclists) killed increased by 9.1% (NHTSA, 2022b). These statistics
23 November 2022
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:scokafor1@crimson.ua.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2022.e11989&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2022.e11989
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.heliyon.2022.e11989


S. Okafor et al. Heliyon 8 (2022) e11989
demonstrate the need to mitigate large truck crashes and their impact on
public safety by identifying the significant contributing factors to
implement effective countermeasures.

Aside from the public health safety concerns associated with large
truck crashes, the stressful working conditions among professional truck
drivers encourage unhealthy lifestyles resulting in higher risks of chronic
diseases (Garbarino et al., 2018). Compared to the population average,
the life expectancy of male truck drivers in the U.S is 16.1% and 25.8%
lower for unionized and independent drivers, respectively (Apostolo-
poulos et al., 2010). Long-haul routes expose truck drivers to various
mental health-related risks associated with the transportation environ-
ment (Apostolopoulos et al., 2010). In most cases, truck drivers spend
consecutive days away from their families and engage in stimulants,
alcohol, and drug use to meet the high delivery requirements (Heaton,
2005). These enormous industry demands often result in stress and
health challenges for truck drivers and can significantly impact road
safety. Therefore, understanding the peculiar challenges of truck drivers
will inform more effective countermeasures that complement the results
of large truck-involved crash models.

Previous studies have examined the association between large truck
injury severity outcomes and their contributing factors with a diverse
focus (Alrejjal et al., 2021; Azimi et al., 2019, 2020; Behnood and
Mannering, 2019; Hosseinzadeh et al., 2021; Liu and Fan, 2022; Tahfim
and Yan, 2021). Azimi et al. (2019) conducted a severity analysis of large
truck crashes in Florida between 2007 and 2017 using a random
parameter ordered logit model. They found that vision obstruction,
running red light, and following too close increased crash severity
significantly. By developing a mixed logit model as a baseline compared
to selected machine learning models, Li et al. (2020) examined the fac-
tors contributing to the severity of large truck crashes in Texas using data
from the Texas Crash Records Information System between 2011 and
2015. They identified that driving under the influence of drugs or alcohol
and fatigue were the most significant factors contributing to the severity
outcomes. They also found that the presence of curbs and medians and
lanes and shoulders with adequate widths can prevent severe large truck
crashes. Pulugurtha et al. (2022) study of truck-involved crashes in North
Carolina revealed that fatigue, inattention, and impairment are the
driver-related factors contributing significantly to crash occurrence.

Some other studies considered specific crash types like rollover or
run-off-road crashes and single-vehicle or multi-vehicle crashes. For
instance, Azimi et al. (2020) conducted a severity analysis of large truck
rollover crashes in Florida using a random parameter ordered logit model
and identified lighting condition, time of the crash, and driver vision
obstruction as significant contributing factors. Also, Liu & Fan (2022)
study of rear-end large truck crashes in North Carolina found that driving
under the influence of drugs or alcohol, rural roadways, dark lightning
condition, grade roadway configuration, and speed limits above 50 mph
increased injury severity significantly. Adanu et al. (2021), on the other
hand, considered the injury severity of lane change crashes involving
commercial motor vehicles on interstate highways. The study showed
that lane changing crashes on unlit roadway and involving older drivers,
at-fault commercial vehicles, and female drivers are more likely to result
in major injury.

Spatio-temporal differences like time of the day or location (urban/
rural areas, interstates, intersections) have also been explored among
large truck-involved crashes. For instance, Pahukula et al. (2015) con-
ducted a time-of-the-day analysis of crashes involving large trucks in
urban areas using reported data by Texas Peace Officer's Crash Reports.
For the analysis, they separated the data into five time periods and found
seatbelt use, sideswipe collision, driver age less than 25, and male drivers
to be significant factors in each period. For large truck crashes on
mountainous interstates, Alrejjal et al. (2021), used correlated random
parameters binary logit model and found that strong winds, over-
corrections, and run-off-road increased the risk of rollover. Thereby,
increasing the possibility of a severe crash outcomes. Additionally, Islam
et al. (2014) developed four different random parameter logit models to
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comprehensively analyze single and multi-vehicle large truck at-fault
crashes on rural and urban roadways in Alabama. Their results
revealed that driver fatigue, wet surface, overtaking, and hitting fixed
objects contributed significantly to single and multi-vehicle crashes in
rural areas. These studies identified several factors contributing to the
severity of large truck-related crashes given different circumstances.

Despite the studies uncovering the association between explanatory
variables and severity outcomes of crashes involving large trucks, no
known research effort has explored crashes involving in-state and out-of-
state large truck drivers. Viewing large truck crashes from the lens of the
drivers' primary state of residence is important to understand whether
familiarity with driving in a state plays a role in the types of crashes that
involve truck drivers. Indeed, drivers licensed and residing within the
state are more likely to be familiar with the state's driving environment
than drivers from other states. Similar factors might contribute differ-
ently to the severity of crashes involving in-state and out-of-state large
truck drivers. It is imperative to capture such similarities and differences
to be able to target driver-centered countermeasures.

Familiarity with the road network and traffic conditions influence
driving styles and driving behaviors. Generally, in-state drivers are
familiar with the local context of the transportation system. This
knowledge, or lack thereof on the part of out-of-state drivers, influences
traffic safety. This study aims to identify differences in the contributing
factors to large truck crashes in Alabama involving in-state and out-of-
state drivers and proposes some countermeasures. To achieve this,
separate random parameters multinomial logit models with heteroge-
neity in means and variances were developed to identify the explanatory
variables associated with crashes involving in-state and out-of-state large
truck drivers in Alabama. Five-year (2016–2020) crash data from the
Critical Analysis Reporting Environment (CARE) developed by the Uni-
versity of Alabama Center for Advanced Public Safety were used for the
analysis.

2. Data description

The study data was extracted from the Critical Analysis Reporting
Environment (CARE) developed by the University of Alabama Center
for Advanced Public Safety. Data from 2016 to 2020 was obtained,
representing the most recent 5-year records of large truck crashes. The
data contained five crash severity levels classified on the KABCO scale,
where K ¼ fatal injury, A ¼ incapacitating injury, B ¼ evident injury, C
¼ possible injury, and O ¼ no injury. We reclassified K and A as severe
injury (SI), B and C as minor injury (MIN), and O as no injury (NI).
Crashes involving large trucks licensed in Alabama were separated as
in-state crashes and other trucks as out-of-state crashes. A total of 6943
in-state and 6863 out-of-state large truck-involved crash observations
were used for the modeling. Figure 1 shows the number of crashes over
the study period. It indicates an increasing trend from 2016 to 2019 and
a decrease in 2020. There were more in-state crashes in 2016 and 2020
than out-state crashes. The reduction in crashes observed in 2020 can be
related to the Covid-19 pandemic when traffic volume decreased.
However, the proportion of severe crashes in 2019 and 2020 are similar
for both in-state and out-of-state crashes despite the reduction in total
crashes in 2020.

Figure 2 shows the proportion of in-state and out-of-state crashes for
severe, minor, and no injury. In-state crashes resulted in a higher pro-
portion of severe and minor crash severity, and out-of-state crashes
resulted in a higher proportion of no injury crash severity.

Figure 3 gives the proportions of selected primary contributing fac-
tors to severe crashes. “Fatigue” and “ran traffic light” contributed 22.9%
and 14.2% to out-of-state major crashes, respectively, higher than the in-
state crash observations. Overcorrection and run-off-road contributed
more to in-state severe crashes than out-of-state severe crashes.

Tables 1 and 2 present the detailed descriptive statistics of the
in-state and out-of-state large truck crash variables used in the model
estimation.



Figure 2. Proportion of in-state and out-of-state large truck crash severity.

Figure 3. Selected primary contributing factors for in-state and out-of-state severe crashes.

Figure 1. Frequency of large truck crashes over the study period.
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3. Methodology

Over the years, highway agencies and vehicle manufacturers have
focused on reducing traffic injury severities resulting from motor vehicle
crashes. While visible progress has been made in this regard, there still
3

exists the need for additional insights through empirical assessment of
the impacts of complex interactions of vehicle, roadway, environment,
and human attributes on crash-injury severity outcomes (Savolainen
et al., 2011). Traffic researchers have adopted several methodological
approaches to uncover the association between crash-injury severity



Table 1. Descriptive statistics of selected in-state large truck crash variables.

Variable Severe Injury Minor Injury No Injury Total

Count Percent Count Percent Count Percent Count

Driver age

Less than 25 years old 14 6.1% 47 20.6% 167 73.2% 228

25–40 years old 120 5.8% 367 17.8% 1580 76.4% 2067

41–65 years old 240 5.8% 737 17.9% 3145 76.3% 4122

Above 65 years old 47 9.0% 95 18.2% 381 72.8% 523

Driver race

Caucasian 290 6.7% 781 18.1% 3249 75.2% 4320

Black 125 4.9% 448 17.5% 1983 77.6% 2556

Others 20 7.5% 71 26.7% 175 65.8% 266

Crash location

Intersection 137 4.1% 564 17.0% 2624 78.9% 3325

Non-intersection 284 7.9% 682 18.9% 2650 73.3% 3616

Primary contributing factor

Fatigue 29 19.9% 41 28.1% 76 52.1% 146

Speeding 39 12.4% 99 31.5% 176 56.1% 314

Followed too close 21 4.1% 126 24.8% 362 71.1% 509

Improper turn 4 1.1% 32 9.1% 315 89.7% 351

Overcorrection 11 10.4% 29 27.4% 66 62.3% 106

Ran-off-road 37 14.6% 69 27.2% 148 58.3% 254

Ran traffic signal 7 6.9% 40 39.6% 54 53.5% 101

Equipment defect 24 4.8% 54 10.9% 417 84.2% 495

Improper load/size 0 0.0% 3 7.3% 38 1.4% 41

Others 249 5.4% 753 16.3% 3624 78.3% 4626

First harmful event

Collision with a ditch 36 17.7% 57 28.1% 110 54.2% 203

Collision with a guardrail 13 11.8% 23 20.9% 74 67.3% 110

Collision with a tree 23 18.4% 27 21.6% 75 60.0% 125

Others 349 5.4% 1139 17.5% 5017 77.1% 6505

Most harmful event

Rollover 153 15.9% 337 35.0% 473 49.1% 963

Collision with vehicle in traffic 159 4.3% 662 18.0% 2860 77.7% 3681

Others 109 4.7% 247 10.7% 1943 84.5% 2299

Manner of crash

Single vehicle 204 9.4% 453 20.9% 1506 69.6% 2163

Rear-end 81 6.0% 310 22.8% 967 71.2% 1358

Head-on 14 38.9% 6 16.7% 16 44.4% 36

Others 122 3.6% 477 14.1% 2787 82.3% 3386

Roadway condition

Dry 365 6.4% 1054 18.4% 4320 75.3% 5739

Wet 52 5.4% 175 18.2% 737 76.5% 964

Others 4 1.7% 17 7.1% 219 91.3% 240

Roadway lighting

Daylight 306 5.6% 948 17.5% 4163 76.9% 5417

Dark without streetlights 82 9.0% 172 18.9% 654 72.0% 908

Others 33 5.3% 126 20.4% 459 74.3% 618

Opposing lane separation

No separation 26 4.4% 85 14.5% 477 81.1% 588

Concrete barrier 19 2.9% 129 19.6% 510 77.5% 658

Metal/cable barrier 19 4.4% 63 14.5% 352 81.1% 434

Others 357 6.8% 969 18.4% 3937 74.8% 5263

Development

Rural 313 10.1% 610 19.6% 2185 70.3% 3108

Urban 108 2.8% 636 16.6% 3091 80.6% 3835

Locale

Open Country 326 8.9% 736 20.0% 2612 71.1% 3674

Residential 29 4.2% 102 14.8% 556 80.9% 687

Shopping or Business 51 2.4% 335 15.5% 1779 82.2% 2165

(continued on next page)
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Table 1 (continued )

Variable Severe Injury Minor Injury No Injury Total

Count Percent Count Percent Count Percent Count

Others 15 3.6% 73 17.5% 329 78.9% 417

Driver residence distance

Less than 25 miles 10 4.1% 33 14.2% 202 80.5% 245

More than 25 miles 295 4.4% 969 14.4% 5475 81.2% 6739

Highway classification

Federal 90 7.3% 248 20.1% 894 72.6% 1232

Interstate 70 4.5% 276 17.8% 1205 77.7% 1551

State 146 8.7% 331 19.7% 1204 71.6% 1681

County 85 9.7% 187 21.4% 600 68.8% 872

Others 30 1.9% 204 12.7% 1373 85.4% 1607

Functional class

Interstate 69 4.4% 282 18.1% 1205 77.4% 1556

Minor arterial 98 7.8% 230 18.3% 926 73.8% 1254

Major collector 69 8.7% 171 21.5% 554 69.8% 794

Local 30 4.5% 88 13.2% 551 82.4% 669

Others 155 5.8% 475 17.8% 2040 76.4% 2670

Time of day

Dawn (1 am–6 am) 159 5.7% 486 17.3% 2160 77.1% 2803

Morning (7 am–12 pm) 59 8.5% 151 21.8% 483 69.7% 693

Afternoon (1 pm–6 pm) 46 6.3% 125 17.1% 562 76.7% 733

Night (7 pm–12 am) 157 5.8% 485 17.9% 2071 76.3% 2713

Table 2. Descriptive statistics of selected out-of-state large truck crash variables.

Variable Severe Injury Minor Injury No Injury Total

Count Percent Count Percent Count Percent Count

Driver age

Less than 25 years old 14 5.1% 38 13.8% 223 81.1% 275

25–40 years old 92 4.3% 304 14.2% 1748 81.5% 2144

41–65 years old 179 4.3% 596 14.2% 3422 81.5% 4197

Above 65 years old 27 6.3% 78 18.2% 323 75.5% 428

Driver race

Caucasian 155 4.4% 511 14.6% 2831 81.0% 3497

Black 110 4.3% 370 14.5% 2075 81.2% 2555

Others 47 4.1% 145 12.6% 962 83.4% 1154

Crash location

Intersection 122 3.6% 485 14.2% 2820 82.3% 3427

Non-intersection 190 5.0% 541 14.3% 3047 80.7% 3778

Primary contributing factor

Fatigue 24 22.9% 25 23.8% 56 53.3% 105

Speeding 24 10.3% 55 23.6% 154 66.1% 233

Followed too close 15 3.1% 106 22.1% 359 74.8% 480

Improper turn 2 1.1% 10 5.7% 162 93.1% 174

Overcorrection 1 2.3% 8 18.6% 34 79.1% 43

Ran-off-road 14 7.9% 28 15.7% 136 76.4% 178

Ran traffic signal 17 14.2% 45 37.5% 58 48.3% 120

Equipment defect 11 2.2% 36 7.1% 461 90.7% 508

Improper load/size 0 0.0% 2 10.0% 18 90.0% 20

Others 190 3.8% 646 12.9% 4166 83.3% 5002

First harmful event

Collision with a ditch 10 12.5% 13 16.3% 57 71.3% 80

Collision with guard rail 10 11.1% 7 7.8% 73 81.1% 90

Others 277 4.2% 934 14.0% 5440 81.8% 6651

Most harmful event

Rollover 43 15.9% 82 30.3% 146 53.9% 271

(continued on next page)
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Table 2 (continued )

Variable Severe Injury Minor Injury No Injury Total

Count Percent Count Percent Count Percent Count

Collision with vehicle in traffic 143 3.8% 621 16.6% 2970 79.5% 3734

Others 112 3.9% 258 9.0% 2488 87.1% 2858

Manner of crash

Single vehicle 115 6.0% 223 11.6% 1591 82.5% 1929

Rear-end 72 5.6% 269 21.0% 938 73.3% 1279

Others 111 3.0% 469 12.8% 3075 84.1% 3655

Roadway condition

Dry 258 4.6% 813 14.4% 4585 81.1% 5656

Wet 50 4.3% 194 16.7% 919 79.0% 1163

Others 4 1.0% 19 4.9% 364 94.1% 387

Roadway Lighting

Daylight 191 3.9% 703 14.2% 4048 81.9% 4942

Dark without streetlights 80 6.2% 185 14.3% 1031 79.6% 1296

Others 41 4.2% 138 14.3% 789 81.5% 968

Opposing lane separation

No separation 14 2.8% 54 10.7% 439 86.6% 507

Concrete barrier 30 2.6% 177 15.4% 940 82.0% 1147

Metal or cable barrier 26 3.4% 125 16.3% 616 80.3% 767

Others 242 5.1% 670 14.0% 3873 80.9% 4785

Development

Rural 202 6.3% 460 14.3% 2549 79.4% 3211

Urban 96 2.6% 501 13.7% 3054 83.6% 3651

Locale

Open Country 245 6.1% 600 14.8% 3199 79.1% 4044

Residential 10 2.2% 45 10.0% 396 87.8% 451

Shopping or Business 46 2.1% 310 13.9% 1880 84.1% 2236

Others 11 2.3% 71 14.9% 393 82.7% 475

Driver residence distance

Less than 25 miles 14 5.2% 38 14.2% 215 80.5% 267

More than 25 miles 283 4.4% 910 14.1% 5267 81.5% 6460

Highway classification

Federal 69 6.7% 186 18.2% 768 75.1% 1023

Interstate 139 4.6% 439 14.6% 2427 80.8% 3005

State 66 6.4% 164 15.9% 803 77.7% 1033

County 12 3.5% 39 11.4% 292 85.1% 343

Others 12 0.8% 133 9.1% 1314 90.1% 1459

Functional class

Interstate 146 4.6% 473 14.9% 2552 80.5% 3171

Minor arterial 42 5.7% 98 13.3% 595 81.0% 735

Major collector 14 3.2% 51 11.8% 368 85.0% 433

Local 6 1.4% 31 7.2% 395 91.4% 432

Others 104 4.3% 373 15.3% 1958 80.4% 2435

Time of day

Dawn (1 am–6 am) 92 3.5% 357 13.7% 2158 82.8% 2607

Morning (7 am–12 pm) 70 7.9% 135 15.2% 684 76.9% 889

Afternoon (1 pm–6 pm) 89 4.1% 305 14.2% 1757 81.7% 2151

Night (7 pm–12 am) 48 3.9% 164 13.5% 1004 82.6% 1216
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levels and observed and unobserved contributing factors to facilitate the
development of effective countermeasures. The recent methodological
advances have created robust techniques that accommodate and account
for the randomity and unobserved heterogeneity across crash observa-
tions. In most cases, the researcher's choice of methodological approach
is contingent on the nature of the dependent variable and associated data
limitations (Savolainen et al., 2011). Typically, the dependent variable in
crash injury severity analysis can be modeled as a binary response
outcome (e.g., minor injury or major injury) or multiple response out-
comes (e.g., severe injury, minor injury, or no injury). Researchers have
also treated response variables with multiple outcomes as either ordinal
6

(ordered) or categorical (unordered) in nature. The application of these
various methodological approaches has provided useful insights, but the
inherent characteristics of the crash data often result in unaccounted
methodological limitations (Savolainen et al., 2011).

Methodological techniques that account for heterogeneity in crash
observations are popular within the traffic safety research community.
Such approaches include random parameter ordered probability models
(Azimi et al., 2020), random parameter multinomial logit models
(Ahmadi et al., 2020; Cheng et al., 2019), random parameter models with
heterogeneity in means and variances (Behnood and Mannering, 2017;
Damsere-Derry et al., 2021), latent class model (Shaheed and Gkritza,
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2014), and latent class logit and mixed logit models (Behnood and
Mannering, 2016).

Contextually, Guo et al. (2019) used full Bayesian random parameters
multivariate Tobit model to examine the correlation and heterogeneity in
crash rates by collision types. They found that accounting for heteroge-
neity improved the model fit significantly in comparison with other Tobit
model variants. Random parameter bivariate probit model has been used
to examine the impact of driver fatigue, gender and distracted driving on
aggressive driving behavior (Fountas et al., 2019). More recent studies
have adopted random parameters logit model with heterogeneity in
means and variances for traffic crash analysis (Damsere-Derry et al.,
2021; Liu et al., 2021; Waseem et al., 2019). Wassem et al. (2019), used
random parameters logit model with heterogeneity in means and vari-
ances to identify the significant contributing factors to
motorcyclists-injury severities in the Pakistian city of Rawalpindi.
Damsere-Derry et al. (2021) adopted the same approach to model injury
severity of intercity bus crashes in Ghana. In their study Behnood and
Mannering (2019) explored the effects of time variation and temporal
instability on injury severity in large-truck crashes.

For this study, two separate random parameter multinomial logit
models were developed for crashes involving in-state and out-of-state large
truck drivers in Alabama while allowing for heterogeneity in the random
parameters means and variances. Themultinomial logit model is a discrete
outcome model that extends the binary logit model to include more than
two response outcomes without explicitly considering the existence of po-
tential ordering in the response outcomes. Hence, it is used to model each
injury severity class as a categorical response variablewith its unique utility
function.Marginal effects or pseudo-elasticities are thenused tounderstand
the marginal effect of an explanatory variable in one utility function on
others. Theextendedconsiderationofheterogeneity inmeansandvariances
of the random parameters allows for a more generalized approach that
captures unobserved heterogeneity across the crash observations (Man-
nering et al., 2016). For analysis, the response outcomes or dependent
variables are usually the various crash or injury severity levels in the data or
those modified for the study. Most crash records have five categories of
injury severity (i.e., fatal, incapacitating injury, evident injury, minor
injury, andno injury) in thedata.However, for researchpurposes, the injury
severity levels are often reclassified into three categories, namely, major or
severe injury, minor injury, and no injury (Uddin et al., 2020).

While various models can exhibit inherent limitations, the random
parameters multinomial logit models with heterogeneity in means and
variances approach has produced more statistically superior outcomes in
recent crash or injury severity studies. The term crash severity represents
the injury level of the most severely injured crash victim. For a crash
involving large trucks, the most severely injured victim could be the truck
driver or an occupant, another vehicle occupant, or a vulnerable roaduser.
To start with, we define a crash severity function as shown in Eq. (1).

Skn ¼ βkXkn þ εkn (1)

where Skn is the crash severity function that determines the probability of
large truck crash severity category k in crash n, Xkn is a vector of
explanatory variables that influence the likelihood of large truck crash
severity level k in crash n, βk is a vector of estimable parameters for crash
severity k, and εkn is the distributed error term (Washington et al., 2020).
If εkn is assumed to follow an independent and identically distributed
extreme value Type I distribution (McFadden, 1981), and parameter
variations are allowed across observations by introducing a mixing dis-
tribution. According to McFadden and Train (2000), the resulting mixed
logit model is expressed as shown in Eq. (2).

PnðkÞ¼
Z

EXPðβkXknÞP
EXPðβkXknÞ f ðβφÞdβ (2)

where f ðβφÞ is the density function of β with φ representing a vector of
parameters of the density function (mean and variance), Pn ðkÞ is the
7

probability of crash severity category k in crash n conditioned on f ðβφÞ
and all other terms as previously defined. β can now account for
observation-specific variations in the effect of X on crash severity prob-
abilities, with f ðβφÞ used to determine β. Mixed-logit probabilities are
then a weighted average for the different values of β across observations
where some elements of the vector β can be fixed or allowed to vary
across observations. The parameters that vary across observations are
known as random parameters.

The random parameters (mixed) logit models can identify variables
that exhibit randomness but cannot account for the factors that explain
the randomness in the random variables. We addressed this limitation by
adopting random parameters (mixed) logit modeling approach with
heterogeneity in means and variances. The technique enables the iden-
tification of other variables (within the modeling dataset or from another
set of observations) that could further explain the random parameters
and their association with the response variables in the presence of other
explanatory variables. Therefore, the random parameter (mixed) logit
model with heterogeneity in means and variances model can account for
unobserved heterogeneity in the dataset than the conventional random
parameter models.

The heterogeneity in means and variances of random parameters are
modeled according to Eq. (3) by allowing βk to vary across crashes (Islam
and Mannering, 2020; Waseem et al., 2019).

βk ¼ βþ δkzk þ σk EXPðωkwkÞvk (3)

where β is the mean parameter estimate across all crashes, zk is a vector
of attributes that captures the heterogeneity in the mean, δk is the cor-
responding vector estimable parameters, wk is the vector of attributes
that captures heterogeneity in the standard deviation σk with corre-
sponding parameter vector ωk and a disturbance term vk. The vectors zk
and wk may contain crash factors or other potential sources of hetero-
geneity that might be unavailable in the crash database. Model param-
eters were estimated using simulated maximum likelihood with 1000
Halton draws, which are sufficient for accurate estimation based on
previous studies (Anastasopoulos and Mannering, 2009; Bhat, 2003;
Halton, 1960; Savolainen, 2016). Additionally, the marginal effects were
computed to examine the impact of explanatory variables on the
reclassified crash severity outcome probabilities (Washington et al.,
2020). By coding all the explanatory variables as indicator variables, the
marginal effects are calculated using Eq. (4).

MEPij
Xijk

¼Pij
�
Xijk ¼1

�� Pij
�
Xijk ¼ 0

�
(4)

The marginal effect of the kth indicator variable, Xijk is the probability
difference when Xijk changes from 0 to 1 while other variables are con-
stant. Marginal effects for variables with random parameters across all
observations are calculated using only the estimated mean coefficients.
Each marginal parameter effect is computed as the average of the mar-
ginal effects of all crash observations.

4. Model input variables

The outcome of a crash is influenced by several factors usually
referred to as the crash contributing factors. For the modeling, the
explanatory variables are selected based on the knowledge of significant
variables from previous studies on large truck crashes (e.g., Alrejjal et al.,
2021; Azimi et al., 2019, 2020; Uddin et al., 2020; Li et al., 2020). The
variables cut across driver characteristics, vehicle attributes, and
roadway and environmental features. Attention was given to selecting
variables that are significant and also improve the model fit. The variable
categories included in the final models are briefly described below.

Primary contributing factor: This parameter describes the main factor
that contributed to the occurrence of the crash. Some common primary
contributing factors include speeding, fatigue, overcorrection, and
driving under the influence of alcohol or drugs.
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Highway classification: It describes the type of highway where a crash
occurred. The common highway classes are federal, interstate, state,
municipal, and county highways. The data shows that most crashes
involving in-state and out-of-state drivers were recorded on state and
interstate highways, respectively.

Rural or urban: This parameter describes the development of the
environment where the crash occurred, either as rural or urban.

First harmful event: Most crashes are associated with multiple events
before the vehicle eventually halts. This parameter describes the pre-
ceding event in the crash. In some instances, the first harmful event might
not be the most harmful in a crash. Examples of first harmful events
include collision with a ditch, collision with a guardrail, and ran-off-road.

Most harmful event: This parameter describes the event that seems to
contribute mostly to the severity outcome of a crash. It can be the only
event in a crash or among the number of events leading to the final crash
outcome. Examples include rollover or collision with a vehicle in traffic.

Opposing lane separation: This data element describes the separation
between the opposing traffic. Examples are concrete barriers (median)
and metal/cable barriers.

Locale: This variable describes the vicinity of the crash and the
common activities in the area. A locale can be a shopping or business area
or an open country.

Driver residence distance: This variable describes the distance of the
crash location from the truck driver's residence. In the data, the distance
could either be less than 25 miles or more than 25 miles.

Road condition: This parameter describes the condition of the road
during the crash. The common road conditions are dry or wet.

Lighting condition: This variable describes the lightning state of the
road at the time of the crash. Aside from daylight conditions, other
lightning conditions include dark with streetlights and dark without
streetlights.

Manner of crash: This data element describes the form of the crash.
Aside from single vehicle large truck crashes, other common “manner of
crash” are head-on and rear-end collisions. Head-on or rear-end collisions
involves two or more vehicles.

Road curvature: This data element describes if a curve on the road
contributed to the crash outcome. The road curvatures included in the
model are curve left and level and curve right and level.

Airbag status: This parameter explains if the vehicle's airbag was
deployed or not during the crash. This is a safety related variable and
usually have a significant influence on crash outcomes.

Time of day (TOD): This variable describes the period when the crash
occurred. As shown in the descriptive statistics, TOD was divided into
dawn, morning, afternoon, and night.

5. Results

Separate random parameter multinomial logit models with hetero-
geneity in means and variances were estimated for analyzing crashes
involving in-state and out-of-state large truck drivers in Alabama. As
explained under the data description, three crash severity categories
were considered in the models: SI (fatal and incapacitating injury), MI
(evident and possible injury), and NI (no injury). The t-statistics of all
variables included in themodel estimation are statistically significant at a
90% confidence interval or above on a two-tailed t-test. The random
parameters were included in the model specification if their standard
deviation t-statistics corresponds to a 90% confidence interval or more.
Tables 3 and 4 present the detailed model results with their computed
marginal effects. The marginal effects indicate the impact of the
explanatory variables on the different crash severity categories. From
Tables 3 and 4, the McFadden pseudo-ρ2 values for the in-state and out-
of-state random parameter (mixed) logit models with heterogeneity in
means and variances are 0:413 and 0:503, respectively. The McFadden
pseudo-ρ2 value represents the ratio of the model log-likelihood at con-
stant (model with zero variables except for constants) to the log-
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likelihood at convergence of the measure (model with all the signifi-
cant variables). According to Ulfarsson et al. (2010), a ρ2 valuemore than
0.1 indicates meaningful model improvement. Hence, the obtained ρ2

values from the two models, as shown in Tables 3 and 4, reflect signifi-
cant improvement in their goodness-of-fit.

Two variables were obtained as random parameters for both the in-
state and out-of-state drivers’ models. The normal distribution provided
the most appropriate fit for the random parameters among the various
tested statistical distributions (like normal, lognormal, Weibull, etc.).

For the in-state model, the rural variable (defined for severe injury)
was estimated as a random parameter with a mean of �1:010 and a
standard deviation of 2:210. These values indicate that with a normal
distribution, the variable (rural) is positive for 32.4% of the large truck
crash observations (increasing the likelihood of severe injury) and
negative for the remaining 67.6% of the observations (decreasing the
probability of severe injury). The marginal effect also shows that the
rural indicator variable increased the probability of severe injury by
0.0354. Only the interstate and white driver indicators produced sig-
nificant heterogeneity in means among the explanatory variables. The
explanatory variable collision with a tree (as a first harmful event)
produced heterogeneity in the variance of the random parameter. The
mean of the rural random parameter decreased if the highway classi-
fication was interstate, suggesting a decrease in the likelihood of severe
injury and an increase in the likelihood of minor and no injury. Ran-off-
road, rollover, collision with a ditch, rear-end collision, and collision
with vehicle in traffic increase the likelihood of severe injury out-
comes. Rollover indicator variable increased the probability of severe
injury by 0.0163 marginal points. In daylight condition and at an
intersection, the probability of severe injury is significantly decreased
by 0.0255 and 0.006 marginal points, respectively. Fatigue, over-
correction, ran traffic light, and single vehicle increase the probability
of minor injury. Single vehicle crashes increased the possibility of
minor injury by 0.0222 marginal points. For crashes that occurred in an
open country, the likelihood of minor injury increases by 0.0206
marginal points.

In the out-of-state model, the daylight variable was estimated as a
random parameter (Table 4), having a mean of – 1.953 and a standard
deviation of 1.868. These values indicate that the daylight variable de-
creases the likelihood of severe injury for 85.2% of the crash observations
and increases the likelihood of severe injury for the remaining crash
observations. Among the explanatory variables, the improper turning (as
a primary contributing factor) indicator produced significant heteroge-
neity in means of the random parameter. The rollover (as a most harmful
event) indicator produced significant heterogeneity in the variance of the
random parameter. The improper turning indicator variable decreased
the mean of the daylight parameter, implying a decrease in the proba-
bility of a severe injury and an increase in the probability of minor or no
injury. In other words, crashes that involve improper turning in daylight
are less likely to result in severe crashes but more likely to result in minor
or no injury. Also, in the out-of-state model, speeding, collision with
guardrail, dry road condition, and summer increased the probability of
severe injury. Older drivers (above 65 years) variable decreased the
probability of severe injury but increased the likelihood of minor and no
injury.

The explanatory variables, ran-off-road, and collision with a ditch
increased the likelihood of severe injury in both models. On the other
hand, indicator variables for fatigue, ran traffic signal, overcorrection,
federal highway, and road with left curvature and level grade increased
the likelihood of minor injury in both models. Table 5 presents a com-
parison of both model estimates.

6. Model specification test

Researchers have used the Likelihood Ratio (LR) test to determine the
suitability of separate models for traffic crash studies (Islam et al., 2014).
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In this study, an LR test was conducted to justify the estimation of
different models for crashes involving in-state and out-of-state large truck
drivers using Eq. (5).

LR¼ � 2½LLðβallÞ� LLðβinÞ� LLðβoutÞ� (5)

where LLðβallÞ is the log-likelihood at convergence estimated for all the
crashes, LLðβinÞ is the log-likelihood at convergence estimated for crashes
involving in-state large truck drivers, and LLðβoutÞ is the log-likelihood at
convergence estimated for crashes involving out-of-state large truck
drivers. The test statistic is the χ2 distribution having degrees of freedom
equal to the sum of the estimated parameters in all the separate models
minus the number of estimated parameters in the corresponding model
Table 3. Model estimation and marginal effects for crashes involving in-state large tr

Category Variables Parameter estim

Random parameter

Rural or Urban Rural [SI] -1.010

Standard deviation of “Rural” (normally distributed) 2.210

Heterogeneity in means of random parameter

Highway Classification Interstate -0.570

Driver race Caucasian 0.492

Heterogeneity in variance of random parameter

First harmful event Collision with a tree 0.631

Defined for severe injury

Primary contributing factor Ran off-road 0.458

First harmful event Collision with a ditch 0.876

Most harmful event Rollover 1.332

Intersection Yes -0.407

Opposing Lane Separation Metal/cable barrier -0.725

Locale Shopping or business area -0.641

Driver residence distance More than 25 miles -0.279

Road Condition Wet -0.357

Lighting condition Daylight -0.858

Dark without streetlights -0.660

Defined for minor severity

Primary contributing factor Fatigue 0.516

Ran traffic signal 1.484

Overcorrection 0.578

Swerved to avoid animal 0.626

Defective equipment -0.611

Highway Classification Federal 0.330

County 0.307

Functional class Major collector 0.196

Locale Open Country 0.254

Road curvature Curve left and level 0.347

Manner of crash Single vehicle 0.447

Defined for no injury

Constant 2.024

Primary contributing factor Improper load/size 1.217

Ran stop sign -1.591

Manner of crash Rear-end -0.709

Highway Classification State -0.241

Opposing Lane Separation Concrete barrier -0.294

Airbag status Deployed 0.258

number of observations 6943

Log-likelihood at convergence -4480.001

Log-likelihood at zero -7627.665

McFadden Pseudo R-sq 0.413
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estimated for all crashes. The result showed that the test statistic
(LR ¼ 116Þ is more than the corresponding χ2 value of (χ2 ¼ 44:26) with
n degree of freedom (n ¼ 15) at a 99.99% confidence interval. We can
then reject the null hypothesis that the combined model log-likelihood is
not significantly different from the corresponding separate models and
conclude that a separate model specification is suitable.

7. Discussion

Freight transport contributes significantly to the overall economic
development of a state (Wang et al., 2021). A prerequisite for this,
however, is the timely arrival of goods at their destinations.
Truck-involved crashes are one of the leading causes of disruption to the
uck drivers.

ate t-score Marginal effects

Severe Injury Minor Injury No Injury

[SI] [MI] [NI]

-1.45 0.0354 -0.0083 -0.0271

3.58

-1.8

2.27

3.02

1.72 0.0014 -0.0003 -0.0011

2.68 0.0023 -0.0006 -0.0017

6.59 0.0163 -0.0041 -0.0122

-2.74 -0.006 0.0012 0.0048

-2.64 -0.003 0.0006 0.0024

-3.44 -0.0042 0.0007 0.0035

-2.08 -0.0062 0.0014 0.0048

-1.76 -0.0018 0.0004 0.0014

-5.5 -0.0255 0.0055 0.0201

-2.95 -0.0046 0.0011 0.0035

2.63 -0.0002 0.0022 -0.002

7.06 -0.0001 0.0051 -0.0049

2.4 -0.0002 0.0016 -0.0015

2.02 -0.0001 0.0009 -0.0008

-3.99 0.0003 -0.0041 0.0039

3.67 -0.0006 0.009 -0.0085

2.73 -0.0006 0.0062 -0.0056

1.82 -0.0003 0.0036 -0.0033

3.58 -0.0017 0.0206 -0.0189

2.05 -0.0002 0.0019 -0.0017

5.51 -0.0021 0.0222 -0.0201

24.82

1.95 -0.0001 -0.0004 0.0005

-3.46 0.0002 0.0009 -0.0011

-8.97 0.0044 0.0227 -0.027

-3.1 0.0024 0.0081 -0.0105

-2.69 0.0006 0.0041 -0.0046

3.94 -0.0032 -0.0146 0.0178



Table 4. Model estimation and marginal effects for crashes involving out-of-state large truck drivers.

Category Variables Parameter estimate t-score Marginal effects

Severe Injury [SI] Minor Injury [MI] No Injury [NI]

Random parameter

Lighting condition Daylight [SI] -1.953 -2.18 0.0091 -0.0013 -0.0078

Standard deviation of “Daylight” (normally distributed) 1.868 2.60

Heterogeneity in means of random parameter

Primary contributing factor Improper turning -1.737 -2.11

Heterogeneity in variance of random parameter

Most harmful event Rollover 0.571 3.36

Defined for severe injury

Driver age Above 60 years old -0.409 -1.72 -0.0137 0.0022 0.0116

Primary contributing factor Speeding 0.899 2.72 0.0018 -0.0003 -0.0015

Run off-road 0.579 1.7 0.0009 -0.0001 -0.0008

First harmful event Collision with a ditch 0.763 2.41 0.0014 -0.0002 -0.0012

Collision with guardrail 0.985 3.38 0.0020 -0.0003 -0.0017

Functional class Major corridor -0.787 -2.14 -0.0011 0.0001 0.0010

Opposing Lane Separation Metal/cable barrier -0.888 -4.59 -0.0057 0.0009 0.0048

Locale Shopping or business area -0.782 -3.78 -0.0043 0.0007 0.0036

Road Condition Dry 0.400 2.04 0.0111 -0.0018 -0.0093

Airbag status Deployed -0.854 -5.1 -0.0093 0.0014 0.0079

Time of day Night (7 pm–12 am) -0.429 -2.27 -0.0027 0.0004 0.0023

Season of year Summer 0.403 2.61 0.0040 -0.0006 -0.0034

Defined for minor severity

Primary contributing factor Fatigue 1.108 6.58 -0.0005 0.0062 -0.0057

Ran traffic signal 1.409 7.45 -0.0002 0.0058 -0.0056

Overcorrection 0.853 3.58 -0.0001 0.0022 -0.0021

Defective equipment -0.594 -3.34 0.0001 -0.0029 0.0028

Highway Classification Federal 0.509 4.55 -0.0005 0.0109 -0.0104

Interstate 0.417 4.36 -0.0011 0.0226 -0.0215

Road curvature Curve Left and Level 0.516 2.57 -0.0001 0.0019 -0.0018

Vehicle age New truck (2010–2020) -0.272 -3.69 0.0009 -0.0212 0.0202

Defined for no injury

Constant 2.273 20.84

Manner of crash Rear-end -0.566 -6.89 0.0032 0.0165 -0.0197

Most Harmful event Collision with vehicle in traffic -0.307 -3.95 0.0041 0.0218 -0.0259

Road curvature Curve right and level -0.673 -3.37 0.0006 0.0021 -0.0027

Highway Classification State -0.447 -4.23 0.0025 0.0082 -0.0107

Local 0.633 3.33 -0.0007 -0.0021 0.0028

Number of observations 7206

Log-likelihood at convergence -3935.43

Log-likelihood at zero -7916.60

McFadden Pseudo R-sq 0.503
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timely delivery of goods. As such, much effort has been devoted to un-
derstanding the factors that contribute to truck-involved crashes and
crash outcomes. Considering that crash incident clearance time is
significantly impacted by the crash severity (Ding et al., 2015; Islam
et al., 2021; Ji et al., 2014), this study contributes to this effort by
exploring differences and similarities in crashes involving in-state and
out-of-state truck drivers. It is worth noting that a preliminary analysis of
the data used in the study showed similar proportions of crashes
involving in-state and out-of-state drivers across the years. This indicates
that irrespective of truck drivers’ state of residence, the factors contrib-
uting to their crashes are perhaps generally very similar.

However, viewing large truck crashes through the lens of the driver's
state of residence is particularly important as familiarity with the
roadway and driver fatigue are major contributing factors to crashes.
Indeed, Figure 3 revealed a clear difference in the proportion of fatigue-
related crashes between in-state and out-of-state drivers. Similarly, it was
observed that out-of-state drivers were involved in more crashes related
to running traffic signals. These findings point to the fundamental issues
10
of fatigue among long distance truck drivers and their unfamiliarity with
the operations of signalized intersections in Alabama. Speeding was
found to contribute to more crashes among in-state drivers. In-state
drivers might be more familiar with the roadway characteristics than
their out-of-state counterparts. However, such familiarity could
encourage unsafe actions like speeding, possibly compromising traffic
safety. Figure 2 further revealed that the injury outcomes of truck-
involved crashes are not significantly different between in-state and
out-of-state drivers.

To better understand the crash factors that significantly influence
crash outcomes, two separate injury-severity models were estimated. For
ease of comparison, Table 5 was developed to present the variables
significantly contributing to large truck-involved crash outcomes between
in-state and out-of-state drivers. From Table 5, it can be observed that the
factors that influence large truck crash outcomes donot significantly differ
between in-state and out-of-state drivers. This finding is interesting
because, whereas different factors may contribute to the occurrence of
crashes, the outcome of the crashes are similar. Perhaps, this may bemore



Table 5. Model results comparison for in-state and out-of-state large truck
crashes.

Category Variable In-
state

Out-of-
state

Driver age >65 years old ↓ SI

Vehicle age New truck (2010–2020) ↓ MI

Primary contributing
factor

Ran off-road ↑ SI ↑ SI

Fatigue ↑ MI ↑ MI

Ran traffic signal ↑ MI ↑ MI

Overcorrection ↑ MI ↑ MI

Swerved to avoid animal ↑ MI

Defective equipment ↓ MI ↓ MI

Overload ↑ NI

Ran stop sign ↓ NI

Speeding ↑ SI

First harmful event Collision with a ditch ↑ SI ↑ SI

Collision with guardrail ↑ SI

Most harmful event Rollover ↑ SI

Collision with vehicle in traffic ↓ NI

Manner of crash Single vehicle ↑ MI

Rear-end ↓ NI ↓ NI

Intersection Yes ↓ SI

Locale Shopping or business area ↓ SI ↓ SI

Open Country ↑ MI

Driver residence distance More than 25 miles ↓ SI

Opposing lane separation Physical separation ↓ SI ↓ SI

Concrete ↓ NI

Highway classification Federal ↑ MI ↑ MI

Interstate ↑ MI

County ↑ MI

State ↓ NI ↓ NI

Local ↑ NI

Rural or Urban Rural ↓ SI

Road condition Wet ↓ SI

Dry ↑ SI

Lightning condition Daylight ↓ SI ↓ SI

Dark without streetlights ↓ SI

Functional class Major corridor ↑ MI ↓ SI

Road curvature Curve Left and Level ↑ MI ↑ MI

Curve right and level ↓ NI

Airbag status Deployed ↑ NI ↓ SI

Time of day Night (7 pm–12 am) ↓ SI

Season of year Summer ↑ SI

↑ indicates an increase in a severity category, ↓ indicates a decrease in a severity
category, SI ¼ severe injury, MI ¼ minor injury, and NI ¼ No injury.
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related to the vehicle characteristics (e.g., age, size, configuration, etc.)
and less to driver demographics. However, it should be noted that even
though the crash factors have similar effects on crash outcomes, they do so
to varying degrees. For instance, for the collisionwith a ditch variable, the
marginal effects indicate that this variable increases the probability of
severe injury by 0.0023and 0.0014 in the in-state andout-of-statemodels,
respectively. This difference in magnitude shows that truck crashes
involving in-state drivers are more likely to result in severe injury
compared to out-of-state drivers. There were more speeding related
crashes among the in-state large truck drivers, but the contribution of
speeding tominor crash severity outcomeswas only significant in the out-
of-state model. It is quite interesting that speeding was not significant in
the in-state model as one would have expected. However, since speeding
contribute to significant proportion of the crashes, measures should be
taken to adequately enforce speeding regulations.
11
In this study, it was observed that fatigue and red light running were
associated with increased crash severity in both in-state and out-of-state
truck large truck crashes. These findings are generally consistent with
previous studies (Azimi et al., 2019; Hosseinzadeh et al., 2021). Contrary
to Islam and Hernandez (2013), the results of this study revealed that
summer season was more likely to be linked with severe injury outcomes
for crashes involving out-of-state large truck drivers. FHWA (2020) made
an interesting finding that summer months are associated with vehicle
overheating and traffic congestion and these usually result in vehicle
malfunctioning and increased traffic incidents. Indeed, statistics have
also shown that severe road crashes involving large trucks are more likely
in summer compared to other seasons (Ahmed et al., 2020).

Despite the seeming similarity in factors that influence crash out-
comes, this study provides the basis for truck driver training and
awareness creation on differences that may exist in roadway character-
istics from state to state. Communication campaigns should be incorpo-
rated with training programs as evidence has shown that simultaneously
implementing both measures is more effective (Faus et al., 2021).
Long-distance truck drivers should be encouraged to use rest areas to
reduce the likelihood of getting into fatigue-related crashes (Adanu et al.,
2021; Pulugurtha et al., 2022). Driver-assist technologies also have the
potential to complement the driving task for truck drivers, hence mini-
mizing the chances of getting into crashes. Regular sensitization and
adequate traffic law enforcement are necessary to ensure road safety
compliance among truck drivers. In the long term, this is expected to
promote a positive safety culture among truck drivers. Policy formula-
tions and strategies that prioritize truck drivers’ well-being and create
better working conditions for them should be explored. Also, exchange
driver(s) should be provided for long-distance trips to minimize fatigue
driving and keep the main driver engaged.

8. Conclusion

This study extends the understanding of truck-involved crashes by
examining in-state and out-of-state large truck crashes in Alabama. The
analysis was based on 2016–2020 large truck crashes obtained from the
Critical Analysis Reporting Environment (CARE) developed by the Uni-
versity of Alabama Center for Advanced Public Safety. Crashes involving
in-state and out-of-state drivers were classified based on the driver's state
of residence. Crashes involving truck drivers residing in Alabama were
classified as in-state and others as out-of-state. Two random parameter
logit models with heterogeneity in means and variances were estimated
to identify the significant contributing factors to the severity outcomes of
crashes involving in-state and out-of-state drivers. An initial descriptive
analysis of the data revealed that speeding contributes to more in-state
crashes and running traffic light contributes to more out-of-state
crashes. Of all the primary contributing factors, fatigue contributed to
a significant proportion of the crashes and more for crashes involving
out-of-state drivers.

The model results revealed that the crash contributing factors do not
differ significantly among in-state and out-of-state drivers. Factors like
fatigue, ran off-road, ran traffic signal, overcorrection, and collision with
a ditch significantly increased severity outcomes in both models.
Speeding was associated with more in-state crashes but was only sig-
nificant in the out-of-state crash model. Perhaps, familiarity with the
roadway among in-state drivers encourage more speeding but is probably
less likely to result in severe crash outcomes. Also, overcorrection was
predominant among in-state drivers. However, overcorrection increased
the probability of minor injury for crashes involving out-of-state crashes
by 0.0022 marginal points compared to 0.0016 for in-state drivers.
Interstate, dry road condition, and summer season are other factors that
significantly increase severe or minor injury outcomes for crashes
involving out-of-state drivers.

Regarding heterogeneity, the impact of rural areas and daylight
lightning conditions showed significant variations among crash obser-
vations involving in-state and out-of-state drivers, respectively. This
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suggests that truck-involved crashes in rural areas or under daylight
conditions are less likely to result in severe injury outcomes. However,
the presence of other variables like fatigue, speeding, or running traffic
light could increase the injury severity outcomes. Besides the theoretical
advantages of this study, the consideration of heterogeneity across the
crash observations ensured better model estimations and proposal of
efficient countermeasures. Compared to the existing literature on
severity analysis of truck-involved crashes, this study identified similar
significant contributing factors. Consistent with prior studies, factors
such as fatigue, ran off-road, overcorrection, running red light, speeding,
collision with vehicle in traffic, dry road condition, curve left and level,
and summer season increased the probability of severe injury outcomes.
The study also identified that single vehicle and rollover crashes
involving in-state large truck drivers in open country are associated with
an increased likelihood of severe outcomes. Despite the seeming signif-
icant similarity in factors that influence crash outcomes, this study pro-
vides the basis for truck driver training and awareness creation on
differences that may exist in roadway characteristics from state to state.

In spite of the findings of this study which are interesting and
consistent with previous works, there are few limitations that should be
noted. The quality of any statistical model depends on the quality of the
data used. Underreporting is a common limitation of crash data (Kayani
et al., 2014; Watson et al., 2015), especially for minor or no injury
crashes. Crash reporting officers usually rely on their discretion, drivers,
and eyewitness accounts to determine the contributing factors in a crash.
The collected information, based on a standard reporting system format,
might not accurately represent all contributing factors. Where the driver
refused to disclose some information regarding the crash, the reporting
officer would have to rely on their experience to make a decision. These
discrepancies can create “bias” in the dataset, usually called unobserved
heterogeneity. However, in the absence of other sources of crash infor-
mation, researchers often rely on police-reported crash records and adopt
statistical methods to account for some of the unobserved heterogeneity
in the data. In that regard, this study developed a random parameter
multinomial logit model with heterogeneity in the means and variances.
Traffic volume during the crash was not available as an input variable for
this study. As a contributing factor, traffic volume could improve the
model and provide additional insights into the difference between
crashes involving in-state and out-of-state drivers. The classification of
in-state or out-of-state drivers was based on the driver's license state (i.e.,
the state that issued the driving license) regarded as the state of resi-
dence. The assumption was that most drivers reside in the state where
their driving license was issued. This approach might not be accurate
given that some drivers might obtain their license in one state but reside
or work in the state where the crash occurred. This possible interlink
within the data could create a distinctive classification challenge. Based
on the study outcome and highlighted limitations, the following sug-
gestions are provided for future research direction.

� Future studies should explore better ways to classify crashes involving
in-state and out-of-state drivers by interpolating two or more vari-
ables. For instance, if the truck driver's origin-destination is known
(which was not available for this study), a better classification of in-
state and out-of-state crashes could be obtained by interpolating it
with the driver state of residence considered as the driver's license
state in this study.

� The imbalance in the dataset, as shown in Figure 2, where observa-
tions from a particular injury severity class have a significantly lower
frequency than the other classes, could present a challenge of inad-
equate variability in model estimations. Therefore, future works
should compare different modeling techniques including machine
learning to identify the method (s) with improved model
performance.

� The study could benefit from additional information from a survey of
truck drivers for countermeasures proposition. Therefore, future
studies can incorporate a survey of truck drivers in and outside
12
Alabama to understand the challenges of the drivers that might be
critical to traffic safety.
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