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Abstract 

Background and aim:  Preoperative evaluation of microvascular invasion (MVI) in patients with hepatocellular 
carcinoma (HCC) is important for surgical strategy determination. We aimed to develop and establish a preoperative 
predictive model for MVI status based on DNA methylation markers.

Methods:  A total of 35 HCC tissues and the matched peritumoral normal liver tissues as well as 35 corresponding 
HCC patients’ plasma samples and 24 healthy plasma samples were used for genome-wide methylation sequencing 
and subsequent methylation haplotype block (MHB) analysis. Predictive models were constructed based on selected 
MHB markers and 3-cross validation was used.

Results:  We grouped 35 HCC patients into 2 categories, including the MVI− group with 17 tissue and plasma 
samples, and MVI + group with 18 tissue and plasma samples. We identified a tissue DNA methylation signature with 
an AUC of 98.0% and a circulating free DNA (cfDNA) methylation signature with an AUC of 96.0% for HCC detection. 
Furthermore, we established a tissue DNA methylation signature for MVI status prediction, and achieved an AUC of 
85.9%. Based on the MVI status predicted by the DNA methylation signature, the recurrence-free survival (RFS) and 
overall survival (OS) were significantly better in the predicted MVI− group than that in the predicted MVI + group.

Conclusions:  In this study, we identified a cfDNA methylation signature for HCC detection and a tissue DNA meth-
ylation signature for MVI status prediction with high accuracy.
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Introduction
Hepatocellular carcinoma (HCC) is the third leading 
cause of cancer-related mortality worldwide [1]. Approxi-
mately 50% of patients recur within 2 years after curative 
hepatectomy [2]. Microvascular invasion (MVI) is one of 
the most important risk factors for early postoperative 
recurrence of HCC [3]. The presence of MVI indicates 
aggressive behavior of HCC [4], and is closely related to 
increased risk of recurrence and reduced overall survival 
(OS) [4, 5].

The preoperative evaluation of MVI status is crucial 
for decision of surgical strategies. For liver resection in 
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patients with high-risk of MVI, anatomic resection with 
expanding resection margin should be performed if the 
remnant liver function is sufficient [6]. For liver trans-
plantation, absence of MVI is required for HCC patients 
[7]. Besides surgical decision-making, for patients with 
MVI, additional adjuvant therapies after surgery are pre-
ferred. A recent randomized controlled study showed 
that recurrence-free survival (RFS) could be significantly 
improved in patients with MVI treated with adjuvant 
transcatheter arterial chemoembolization (TACE) after 
resection [8]. Currently, the diagnosis of MVI is deter-
mined by postoperative histologic examination. There-
fore, an increasing number of studies were motivated to 
predict MVI status preoperatively, and mainly focused on 
serum alpha-fetoprotein (AFP) and imaging examination 
[9–13]. However, no stable and effective predictors have 
been demonstrated.

DNA methylation is one of the well-known patterns 
of epigenetic regulation. In general, hypermethylation 
of tumor suppressor genes is an early event in many 
tumors [14], suggesting the potential of DNA methyla-
tion marker to predict changes associated with tumori-
genesis and early metastasis. Previous studies have found 
that aberrant methylation of some specific genes was 
associated with HCC initiation and poor prognosis, such 
as RASSF1 [15, 16]. Recently, a multi-center study found 
that a three-CpG-based signature consisting of SCAND3, 
SGIP1 and PI3, can predict early recurrence for early-
stage HCC [17]. Currently, no feasible DNA methylation 
marker has been found for preoperative prediction of 
MVI status.

Circulating tumor DNA (ctDNA) consists of extracel-
lular nucleic acid fragments released into plasma via 
tumor necrosis, apoptosis, and active secretion of DNA 
[18]. Recent studies demonstrated that ctDNA has the 
potential to innovate screening, diagnosis and subtyp-
ing of cancer [19], promoting a blood test, that is, liquid 
biopsy that enables molecular diagnosis of cancer. Com-
pared with tissue biopsy, liquid biopsy is a noninvasive 
approach that can represent entire picture of tumor and 
allow for real-time monitoring of molecular changes in 
tumor [19, 20]. Recent studies found that ctDNA meth-
ylation markers can be applied to screening and diagno-
sis of HCC with accuracy of more than 90% [21, 22]. It is 
unclear whether ctDNA methylation marker is available 
for preoperative prediction of MVI in HCC.

In this study, we applied genome-wide methylation 
sequencing, and a novel DNA methylation biomarker 
analysis method, methylation haplotype block analysis, to 
HCC detection and prediction of MVI status. We found 
that DNA methylation biomarkers performed well not 
only in HCC detection, but also in MVI status prediction.

Materials and methods
Subjects and samples
A total of 60 liver tissues and 59 plasma samples were 
analyzed, including 35 HCC tissues and 25 matched peri-
tumoral normal liver tissues as well as 35 corresponding 
HCC patients’ plasma samples and 24 healthy plasma 
samples. The characteristic information of healthy con-
trols is presented in Additional file 4: Table S1. For HCC 
patients in our cohort, inclusion criteria were as follows: 
(i) curative hepatectomy performed as initial treatment 
and HCC diagnosed pathologically; (ii) Child–Pugh class 
A-B; (iii) Eastern Cooperative Oncology Group (ECOG) 
grades 0–1. Exclusion criteria were as follows: (i) extra-
hepatic metastasis; (ii) patients who underwent pallia-
tive resection; (iii) patients with missing data or loss of 
follow-up. HCC and peritumoral normal liver tissues 
were frozen by liquid nitrogen immediately after resec-
tion and stored at −80 ℃. HCC patients’ plasma samples 
were collected before surgery and all the plasma samples 
were stored at −80 ℃. The clinical data were obtained 
from the prospectively collected database of HCC in 
the First Affiliated Hospital, Sun Yat-sen University. Our 
Institutional Ethic Review Board has approved the cur-
rent study, following Declaration of Helsinki. Informed 
consent was obtained from each patient and healthy 
individual.

Determination of MVI
MVI was defined as the presence of tumor emboli in a 
vascular space lined by endothelial cells on microscopy. 
Two pathologists with more than 10 years of experience 
in HCC pathology reviewed all the specimen slices inde-
pendently, without knowing the patient’s clinical data. 
Inconsistency was resolved by consulting with another 
senior pathologist with 20  years of experience in HCC 
pathology.

Circulating free DNA extraction from plasma samples
All blood samples were collected before surgery. Col-
lected blood samples were first centrifuged at 1600 g for 
10 min at 4 ℃. Supernatant was then transferred to a new 
tube and centrifuged at 16000 g for 10 min at 4 ℃. Super-
natant was stored at −80 ℃.

Circulating free DNA (cfDNA) was extracted using the 
QIAamp Circulating Nucleic Acid Kit (Qiagen 55114) in 
accordance to the manufacturer’s instructions, quantified 
by Qubit 3.0 (ThermoFisher) and stored at −20 ℃.

Genome‑wide methylation sequencing
Briefly, genomic DNA or cfDNA was digested with 
restriction enzymes and ligated with a methylated adap-
tor compatible for Illumina sequencing platforms. 
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Ligation products were converted and purified using the 
MethylCode™ Bisulfite Conversion Kit (ThermoFisher 
Scientific) and were amplified using PfuTurboCx poly-
merase (Agilent). Libraries were pooled, size-selected 
using TBE polyacrylamide gel (Thermo Fisher Scientific) 
and sequenced on Illumina Hiseq X10 platform for pair-
ends (150 cycles).

Sequencing data analysis
Fastq data are trimmed by adapter and the first 2 bases 
from each end with trim-galore (https://​www.​bioin​
forma​tics.​babra​ham.​ac.​uk/​proje​cts/​trim_​galore). After 
reads trimming, both paired-end reads are merged to 
a single-end reads. The single reads are mapped to Bis-
mark [23] transformed hg19 genome with Bowtie 1 [24]. 
The mapped bam files are processed by in house scripts 
extracting the methylation haplotype information.

Identification of methylation haplotype block (MHB)
MHBs are defined as two adjacent CpG sites with r2 
higher than 0.5. Methylated haplotype load (MHL) is 
a measurement of the consecutiveness of methylated 
cytosines. After getting haplotype information MHBs 
identified in the last step, the MHL is calculated as 
weighted ratio of consecutively methylated CpG haplo-
types of each length within an MHB:

where l is the length of haplotype (the number of CpGs 
within an MHB); Wi stands for weight of each length of 
haplotype (we select l3 putting higher weights to longer 
haplotypes); P (MHi) stands for the fraction of consecu-
tively methylated haplotype of haplotypes with length i.

In contrast with MHL, the un-methylated haplotype 
load (UMHL) is a measurement of consecutiveness of 
un-methylated cytosines. The method is also similar to 
MHL. In brief, it is the sum of fraction of consecutively 
un-methylated CpG haplotypes of each length of haplo-
type within an MHB:

where l is the length of haplotype (the number of CpGs 
within an MHB); Wi stands for weight of each length of 
haplotype (we select l3 putting higher weights to longer 
haplotypes); P (UMHi) stands for the fraction of consecu-
tively un-methylated haplotype of haplotypes with length 
i.

MHL =

∑
l

i=1 wi × P(MHi)
∑

l

i=1 wi

,

UMHL =

∑
l

i=1 wi × P(UMHi)
∑

l

i=1 wi

,

MHB marker selection
We defined 225,025 MHB regions as previously 
described [25]. Samples with at least 25,000 detected 
MHBs are included for downstream analysis. The can-
didate MHBs are required to be detected in no less than 
2/3 of the samples, which leads to 40,676 MHBs. Among 
them, MHBs with MHL standard deviation no less than 
0.02 were selected for marker identification, which lead 
to 22,849 MHBs. From them a final of 1,022 MHB mark-
ers were selected using single-side Wilcoxonrank-sum 
test (FDR < 0.01).

Modeling and cross‑validation
With the makers identified, we built a Breiman’s random 
forest (RF) model implemented by R package “random-
Forest” with ntree = 500 and other default settings. Sup-
port vector machine (SVM) model was built with radial 
kernel implement by R package “kernlab”. Cost was set to 
1 by default. RBF kernel parameter sigma is tuned over 
to get the optimal model. The models were tested with 
3-cross validation implemented by R package “caret”.

Gene Ontology analysis
Gene Ontology (GO) analyses were conducted in 
GREAT, a web-based tool for GO annotation of regula-
tory regions [26]. Items with FDR < 0.05 were considered 
as significantly enriched.

Methylation markers for HCC detection
To discover methylation marker to differentiate HCC 
from normal liver tissues, unsupervised clustering was 
performed based on MHL and UMHL scores to unbias-
edly visualize the degree of separation between normal 
liver tissues and HCC tissues. Principle component anal-
ysis was also performed to show the degree of separation 
of methylation scores between normal liver and HCC 
tissues. Further, to screen potential MHBs which can be 
used for HCC diagnosis, Wilcoxon signed-rank test was 
used to identify candidate MHBs whose methylation 
scores were significantly different between normal liver 
tissues and HCC tissues (FDR < 0.05). Using these candi-
date MHBs and their MHL scores as independent vari-
ables, two supervised machine learning algorithms, RF 
and SVM, were separately employed to train and cross-
validate predictive models to classify normal liver tissues 
and HCC tissues. Further, these candidate MHBs and 
their MHL scores were used to train a predictive model 
to differentiate HCC patients and healthy individu-
als’ plasma samples by RF method, followed by 3-cross 
validation.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore
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Methylation markers for MVI prediction
To screen potential MHBs which can be used for MVI 
status prediction, Wilcoxon rank-sum test was used to 
identify candidate MHBs whose methylation scores were 
significantly different between MVI- and MVI + HCC tis-
sues (FDR < 0.05). Using these candidate MHBs and their 
MHL scores as well as UMHL scores as independent var-
iables, RF method was performed to train and cross-vali-
date predictive models to classify MVI- and MVI + HCC 
tissues. Then, these identified DNA methylation mark-
ers were used to classify MVI- and MVI + HCC plasma 
samples.

Statistical analysis
The continuous variables were described by 
mean ± standard deviation or median and quartile, and 
the categorical variables were described by frequency and 
percentage. Independent sample t test or Kruskal–Wallis 
(KW) nonparametric rank-sum test was used to compare 
the clinical characteristics between MVI-positive and 
MVI-negative groups for the continuous variables, while 
chi-square test or Fisher exact test for categorical vari-
ables. The area under receiver operator characteristics 
curve (AUROC), sensitivity and specificity were used to 
evaluate the performance of the predictive model. Sur-
vival curves were represented by using the Kaplan–Meier 
method compared with log-rank statistics. All the above 
statistical analysis were performed by R software. Uni-
variate and multivariate logistic regression models were 
used to evaluate the associations between MVI and the 
DNA methylation signature or other clinicopathologi-
cal variables and to estimate odds ratios (ORs) and 95% 
confidence intervals; variables with p < 0.05 were selected 
for multivariate analysis (SPSS software, version 26.0). 
Univariate and multivariate Cox proportional hazards 
models were used to evaluate the associations between 
RFS and the DNA methylation signature or other clin-
icopathological variables and to estimate hazard ratios 
(HRs) and 95% confidence intervals (R software). A two-
sided P value was considered statistically significant if 
less than 0.05.

Results
Patient demographic and clinical characteristics
A total of 35 patients and 24 healthy individuals were 
included (Fig.  1). We grouped 35 patients into 2 cat-
egories, including the MVI- group with 17 tissue and 
plasma samples, and MVI + group with 18 tissue and 
plasma samples. There were no significant differences 
in all oncology indicators and liver function indicators 
between the MVI + group and MVI- group except for 

AFP, indicating that the baseline data between the two 
groups were basically balanced (Table 1).

Tissue methylation markers to distinguish HCC tissues 
from non‑tumor tissues
To screen MHB for classifiers for HCC, we quantified the 
DNA methylation status of all sequenced MHBs by MHL, 
and then performed unsupervised clustering based on 
those scores to visualize the degree of separation between 
HCC tissues and non-tumor tissues. Results showed that 
based on MHL scores, the HCC tissues had consistently 
been separated from the normal liver tissues (Fig.  2A), 
which demonstrated that there were profound differ-
ences in DNA methylation patterns between HCC and 
peritumoral normal liver tissues. We further performed 
principal component analyses (PCA) on the MHL scores 
of normal liver and HCC tissue, and the results showed 
that the normal liver tissues were also separated from 
the HCC tissues (Fig. 2B), in agreement with the results 
observed in unsupervised clustering.

After filtering MHBs and libraries, we performed Wil-
coxon signed-rank test to the dynamic MHBs based on 
their MHL scores, and identified 65 MHBs whose meth-
ylation scores were significantly different between nor-
mal liver tissues and HCC tissues (False Discovery Rate 
(FDR) < 0.05) (Fig. 2C). Using these MHBs and their MHL 
scores as independent variables, and the liver tissues 
from our study cohort as training and validation sample 
sets, we separately employed two supervised machine 
learning algorithms, RF and SVM to train and cross-vali-
date binary predictive models to classify normal or HCC 
liver tissues. Results showed both RF- and SVM-built 
models were highly accurate in classifying HCC and nor-
mal liver tissues: the AUC is no less than 0.98 (RF model: 
AUC = 98.0%, 95% confidence interval CI 97.3–98.8%, 
10-time repeat, Fig. 2D; SVM model: AUC = 99.9%, 95% 
CI 99.9–99.9%, 10-time repeat, Additional file  1: Figure 
S1A).

Gene Ontology analysis of HCC methylation markers
To investigate the potential biological functions of these 
methylation markers, especially their roles in the pathol-
ogy of HCC, genes associated with identified MHBs 
were annotated and analyzed based on their known 
biological and molecular functions. Results showed the 
biological function categories that had the highest level 
of enrichment were those involved in the general or 
specific processes of embryonic development/differen-
tiation (Fig.  2E), such as pattern formation, embryonic 
organ morphogenesis and development, regionalization, 
sensory organ and skeletal system morphogenesis, etc. 
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This was consistent with the finding that many embry-
onic genes were re-expressed in cancer cells [27], sug-
gesting that these methylation markers might regulate 
these embryonic genes’ expression during HCC progres-
sion. Indeed, when those genes were re-analyzed based 
on their molecular function, the top categories with the 
highest level of enrichment were transcription factors 
that regulate the expression of other genes (Additional 
file 1: Figure S1B). This suggests that some of the identi-
fied MHB classifiers may be pivotal to the progression of 
HCC by regulating cascades of gene expression that are 
signatory to HCC.

cfDNA methylation signature to distinguish HCC patients 
from healthy individuals
To construct a cfDNA methylation signature for HCC, 
we sequenced methylation libraries of cfDNA samples 
from 35 HCC plasma samples of our study cohort and 
from 24 healthy individuals. We applied the RF-trained 
classification model to classify the filtered plasma DNA 
libraries (Fig. 3A). Results showed that it had an AUC of 

96.0% (95% CI 95.1–96.9%) from the ROC curve (Fig. 3B) 
in identifying HCC plasma.

DNA methylation markers for the prediction of MVI status
To identify DNA methylation markers that differenti-
ate MVI− and MVI + HCC tissues, we performed Wil-
coxon rank-sum test (FDR < 0.05) on the MVI− and 
MVI + HCC tissues’ DNA methylation profiles on their 
MHL and UMHL scores, and identified 3 MHL-quanti-
fied MHBs and 5 UMHL-quantified MHBs as classifiers 
for MVI− and MVI + tissues (Fig.  4A). We combined 
these MHBs’ and trained a Random-forest MVI classi-
fication models on our training cohort samples. When 
being cross-validated, this model showed an AUC of 
the model was 85.9% (Fig.  4B, 10-time repeats, 95% CI 
83.5–88.3%), suggesting that the identified DNA meth-
ylation markers consistently and robustly differentiate 
MVI− and MVI + HCC tissues. Further, survival analy-
sis revealed that RFS rate and OS rate were significantly 
worse in MVI + group predicted by our methylation 
markers than MVI- group predicted by our methylation 

Plasma samples
• 35 HCC plasma
• 24 Healthy controls plasma

Tissues samples 
• 35 HCC tissues
• 25 peritumoural tissues

Methylation sequencing

MHB analysis and MHL calculated

Wilcoxon
rank-sum test
(FDR < 0.05)

3 MHL-quantified MHBs &
5 UMHL-quantified MHBs

HCC vs Paracancerous tissues

Wilcoxon 
signed-rank test

(FDR < 0.05)

65 MHB tissue classifiers

Random-forest model

65 MHB markers in plasma

Tissue methylation signature
Diagnostic Model for HCC

cfDNA methylation signature
Diagnostic Model for HCC

Tissue methylation signature
Predictive Model for MVI

HCC vs Healthy plasma MVI+ HCC vs MVI- HCC 

3-cross-validated

Random-forest model 
& SVM model

3-cross-validated

Random-forest model

3-cross-validated
Fig. 1  Study flowchart. HCC hepatocellular carcinoma, MHB methylation haplotype block, MHL methylated haplotype load, MVI microvascular 
invasion, UMHL un-methylated haplotype load, SVM support vector machine
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Table 1  Baseline demographic and clinical characteristics in MVI− and MVI + groups

Continuous variables are presented as median (inter-quartile range, IQR) unless noted otherwise. Categorical variables are presented as n (%)

AFP alpha-fetoprotein, HBsAg hepatitis B surface antigen, ALB albumin, TBIL total bilirubin, ALT alanine aminotransferase, AST aspartate aminotransferase, PT 
prothrombin time, PLT platelet count

Variable Total (n = 35) MVI− (n = 17) MVI + (n = 18) P-value

Age (years) 54.0 (42.0, 62.0) 54.0 (48.0, 64.0) 51.0 (40.5, 61.5) 0.275

Gender 0.554

 Male 31 (88.6%) 14 (82.4%) 17 (94.4%)

 Female 4 (11.4%) 3 (17.6%) 1 (5.6%)

HBsAg 1.000

 Negative 3 (8.6%) 1 (5.9%) 2 (11.1%)

 Positive 32 (91.4%) 16 (94.1%) 16 (88.9%)

AFP (ng/mL) 0.012

  ≥ 400 10 (28.6%) 16 (94.1%) 9 (50.0%)

  < 400 25 (71.4%) 1 (5.9%) 9 (50.0%)

Tumor size (cm) 4.0 (3.1, 5.1) 3.5 (3.1, 5.1) 4.0 (3.0, 5.5) 0.974

Tumor number 0.977

 Solitary 34 (97.1%) 16 (94.1%) 18 (100.0%)

 Multiple 1 (2.9%) 1 (5.9%) 0 (0.0%)

Child–Pugh class 1.000

 A 33 (94.3%) 16 (94.1%) 17 (94.4%)

 B 2 (5.7%) 1 (5.9%) 1 (5.6%)

Liver cirrhosis 1.000

 Absence 12 (34.3%) 6 (35.3%) 6 (33.3%)

 Presence 23 (65.7%) 11 (64.7%) 12 (66.7%)

BCLC stage 0.500

 0–A 26 (74.3%) 14 (82.4%) 12 (66.7%)

 B–C 9 (25.7%) 3 (17.6%) 6 (33.3%)

TNM stage 0.369

 0–I 30 (85.7%) 16 (94.1%) 14 (77.8%)

 II–III 5 (14.3%) 1 (5.9%) 4 (22.2%)

Imaging tumor thrombus 0.062

 Absence 30 (85.7%) 17 (100.0%) 13 (72.2%)

 Presence 5 (14.3%) 0 (0.0%) 5 (27.8%)

Tumor necrosis 0.148

 Absence 26 (74.3%) 15 (88.2%) 11 (61.1%)

 Presence 9 (25.7%) 2 (11.8%) 7 (38.9%)

Tumor differentiation 1.000

 Well or moderate 30 (85.7%) 15 (88.2%) 15 (83.3%)

 Poor 5 (14.3%) 2 (11.8%) 3 (16.7%)

Ascites 1.000

 Absence 34 (97.1%) 17 (100.0%) 17 (94.4%)

 Presence 1 (2.9%) 0 (0.0%) 1 (5.6%)

ALB (g/L) 40.2 (37.5, 41.6) 40.4 (38.4, 41.8) 39.5 (36.8, 41.3) 0.530

TBIL (μmol/L) 14.4 (11.4, 21.1) 12.7 (11.3, 19.4) 16.1 (11.8, 22.7) 0.322

ALT (U/L) 33.0 (25.0, 50.0) 33.0 (25.0, 50.0) 33.0 (26.0, 46.5) 0.843

AST (U/L) 33.0 (25.0, 40.5) 34.0 (26.0, 41.0) 32.0 (25.3, 40.0) 0.779

PT (s) 12.1 (11.5, 13.1) 12.1 (11.5, 12.3) 12.1 (11.5, 13.3) 0.667

PLT (109/L) 164.0 (111.0, 206.0) 165.0 (150.0, 200.0) 154.5 (104.25, 203.0) 0.729
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Fig. 2  DNA methylation markers classify normal liver and HCC tissues with high degree of accuracy. A Unsupervised clustering of normal and 
HCC tissues based on top 100 MHBs that have the highest degree of variations in their MHL scores; B PCA analyses show clear separation between 
normal liver tissues and HCC tissues; C supervised analyses identified 65 MHBs as classifiers for normal liver tissues and HCC tissues; D RF-built 
classification models using the 65 MHB markers accurately classified normal liver tissues and HCC tissues, as was demonstrated by the AUC of their 
ROC curves; E top biological function categories of the identified MHB markers
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A B

Fig. 3  HCC tissue markers were able to classify normal and HCC plasmas. A Heatmap of the MHL scores of the 65 MHB tissue classifiers in normal 
and HCC plasmas samples; B normal and HCC plasma samples were classified using the 65 MHB markers by RF method, which demonstrated high 
degree of accuracy in classification

Fig. 4  DNA methylation markers differentiate MVI- and MVI + tissues. A Heatmap of MHL and UMHL scores of the 8 MVI markers in MVI- and 
MVI + tissues; B RF-built models using discovered MVI markers accurately classified MVI- and MVI + tissues in cross-validation; C–D recurrence-free 
survival rate (C) and overall survival rate (D) of HCC patients in MVI+ and MVI− groups predicted by tissue DNA methylation markers. Log-rank test 
was used
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markers, which validated high accuracy of our tissue 
DNA methylation markers for MVI status prediction 
(Fig. 4C–D).

The performance of DNA methylation signature to predict 
MVI status
To compare the prediction performance of the DNA 
methylation signature to the clinical characteristics, we 
performed ROC analysis for predicting MVI based on 
the diagnosis results of DNA methylation signature and 
clinical characteristics, respectively. We found that the 
AUROC of the DNA methylation signature was up to 
91.5% (95% CI 82.1–100.0%) (Fig. 5A). In contrast, none 
of the AUROCs of clinical characteristics were more than 
80.0%: AFP, 75.6% (95% CI 55.1–89.2%); TNM, 58.5% 
(95% CI 47.1–69.9%); BCLC, 56.5% (95% CI 41.0–72.1%); 
Tumor Size, 52.7% (95% CI 33.8–70.8%); and HBsAg, 
52.6% (95% CI 43.2–62.0%) (Fig. 5B−F). In addition, we 
also integrated AFP into our tissue DNA methylation 
markers to examine whether AFP could improve perfor-
mance of our tissue methylation makers for MVI status 

prediction (Additional file 2: Figure S2A). Unfortunately, 
the integrated methylation markers only achieved an 
AUC of 86.3%, which is not superior to our tissue DNA 
methylation markers (Additional file 2: Figure S2B).

Furthermore, we performed a univariable and multi-
variable logistic regression analysis to assess the associa-
tions between MVI and the DNA methylation signature 
or other clinical characteristics. On univariate analysis, 
variables associated with MVI were the DNA methylation 
signature (p < 0.001) and AFP ≥ 400  ng/mL (p = 0.028) 
(Table  2). The other parameters were not significantly 
correlated with MVI. At multivariate analysis, only the 
DNA methylation signature (p < 0.001; odds ratio, 47.51, 
95% CI 5.74–393.27) was independent risk factors for 
MVI (Table 2).

DNA methylation signature and RFS
On univariate analysis, DNA methylation signature 
was associated with RFS (HR 7.89, 95% CI 2.16–28.88, 
p = 0.002) and by MVI status (HR 32.22, 95% CI 4.06–
255.62, p = 0.001) (Additional file  5: Table  S2). Other 

Fig. 5  ROC analysis for diagnosing MVI based on the diagnosis results of DNA methylation signature and clinical characteristics. A ROC analysis for 
diagnosing MVI based on the diagnosis results of DNA methylation signature. B–F ROC analysis for diagnosing MVI based on clinical characteristics 
included AFP (B), TNM (C), BCLC (D), tumor size (E), and HBsAg (F)
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factors associated with RFS were AFP, ≥ 400 ng/mL (HR 
2.96, 95% CI 1.04–8.39, p = 0.042) (Additional file  5: 
Table  S2) and imaging tumor thrombus (HR 4.69, 95% 
CI 1.44–15.28, p = 0.010) (Additional file  5: Table  S2). 
On multivariate analysis, the DNA methylation signa-
ture was independently associated with RFS (HR 97.85, 
95% CI 3.21–2.98e + 03, p = 0.009) (Fig.  6) and by MVI 

status (HR 8.96e + 02, 95% CI 8.57–9.38e + 04, p = 0.004) 
(Additional file 3: Figure S3).

Discussion
In this study, we found that methylation pattern could 
be used as a reliable discriminatory tool for diagnosis of 
HCC and preoperative prediction of MVI status. First, 

Table 2  Univariate and multivariate analysis of risk factors for MVI of HCC

* Data are statistically significant results from logistic regression analysis

AFP alpha-fetoprotein, HBsAg hepatitis B surface antigen

Risk factor Univariate analysis Multivariate analysis

Odds ratio P-value Odds ratio P-value

Age (years) 0.97 (0.92, 1.04) 0.418

Gender 0.31 (0.03, 3.34) 0.336

HBsAg 2.27 (0.19, 27.58) 0.521

AFP (≥ 400 ng/mL) 7.11 (1.23, 40.98) 0.028* 3.10 (0.26, 36.86) 0.370

Tumor size (cm) 1.2 (0.29, 5.02) 0.803

BCLC stage 1.46 (0.32, 6.70) 0.628

TNM stage 0.58 (0.09, 4.01) 0.584

DNA methylation signature 60.00 (7.48, 481.57)  < 0.001* 47.51 (5.74, 393.27)  < 0.001*

Fig. 6  Multivariate Cox analysis of clinicopathologic factors and DNA methylation signature with recurrence-free survival
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using genome-wide methylation sequencing through tis-
sues, we identified tissue DNA methylation markers for 
detection of HCC and MVI. Second, we established a 
cfDNA methylation signatures, which can be applied to 
diagnosis of HCC, using patients’ plasma. Overall, our 
study showed that cfDNA methylation marker could be 
used for diagnosis of HCC and tissue DNA methylation 
marker could be  applied to preoperative prediction of 
MVI status.

Noninvasive cfDNA sampling from plasma, that is 
“liquid diagnosis”, is a promising and reliable method for 
detection and diagnosis of HCC. A large multi-center 
study identified a 10-methylation marker panel using 
cfDNA samples and the panel yielded an AUC of 96.6% 
in the training dataset and an AUC of 94.4% in the vali-
dation dataset for HCC detection, which was superior to 
AFP [21]. A more recent study identified a 6-methylation 
marker panel in a phase II clinical study and the model 
yield a sensitivity of 95.0% and a specificity of 92.0% for 
HCC detection [22]. Consistent with the results of these 
studies, we identified a cfDNA methylation signature 
for HCC detection, which yielded an AUC of more than 
95.0%. Our finding together with previous studies, have 
demonstrated that cfDNA methylation marker have the 
strong potential for clinical utility in the early detection 
of HCC.

Preoperative prediction of MVI is of great importance 
to clinical decisions. Previous studies focused on serum 
AFP and imaging examination. MVI mainly reflects the 
biological feature of the tumor, however, we found that 
despite superiority over other clinical characteristics, 
the performance of AFP in predicting MVI status is still 
unsatisfactory, suggesting that AFP cannot fully sum-
marize the biological features of the tumor. Moreover, 
serum AFP could not predict MVI in AFP-negative HCC. 
On the other hand, some image features of ultrasound, 
CT and MRI were predictive of MVI. However, a low 
accuracy restricted their application. A recent study has 
identified a 6-gene transcriptome signature associated 
with MVI based on formalin-fixed paraffin-embedded 
biopsies and this signature could predict MVI with 74.0% 
accuracy [28]. Consistent with this study, we developed 
and established a tissue DNA methylation signature for 
MVI, which could achieve an AUC of more than 85.0%. 
In real clinical work, MVI is determined by postopera-
tive pathology examination, but no additional interven-
tion could be done before or during surgery. Routine 
tumor biopsy could be used for identification of tissue 
DNA methylation marker and assisting in prediction of 
MVI status. If clinicians are aware of MVI preoperatively, 

enlarging surgical margin is a better choice for HCC 
patients with MVI. Our established tissue DNA meth-
ylation signature could realize the goal of preoperative 
prediction of MVI status, which could assist clinicians 
in strategy making. Moreover, in addition to predicting 
MVI status, our DNA methylation signature was prog-
nostic (correlating with RFS), which supports its useful-
ness for routine biopsy.

This study has several limitations. First, the sample 
size of this study was small and all samples were from a 
single center. Second, the performance of preoperative 
biopsy sample to predict MVI status needs to be further 
confirmed. Third, preoperative cfDNA signature cannot 
accurately predict MVI status in this study, although it 
is very attractive, and subsequent sample size expansion 
and analytical method optimization may help us develop 
markers for identification of MVI by liquid biopsy.

In conclusion, we identified and established a cfDNA 
methylation signature for HCC detection and a tissue 
DNA methylation signature for prediction of MVI status, 
which might provide assistance for clinicians in treat-
ment strategies making.
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