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Abstract 

Background:  Monoclonal antibodies (mAbs) have been used as therapeutic agents, 
which must overcome many developability issues after the discovery from in vitro 
display libraries. Especially, polyreactive mAbs can strongly bind to a specific target and 
weakly bind to off-target proteins, which leads to poor antibody pharmacokinetics in 
clinical development. Although early assessment of polyreactive mAbs is important in 
the early discovery stage, experimental assessments are usually time-consuming and 
expensive. Therefore, computational approaches for predicting the polyreactivity of 
single-chain fragment variables (scFvs) in the early discovery stage would be promising 
for reducing experimental efforts.

Results:  Here, we made prediction models for the polyreactivity of scFvs with the 
known polyreactive antibody features and natural language model descriptors. We 
predicted 19,426 protein structures of scFvs with trRosetta to calculate the polyreac-
tive antibody features and investigated the classifying performance of each factor for 
polyreactivity. In the known polyreactive features, the net charge of the CDR2 loop, the 
tryptophan and glycine residues in CDR-H3, and the lengths of the CDR1 and CDR2 
loops, importantly contributed to the performance of the models. Additionally, the 
hydrodynamic features, such as partial specific volume, gyration radius, and isoelectric 
points of CDR loops and scFvs, were newly added to improve model performance. 
Finally, we made the prediction model with a robust performance ( AUC = 0.840 ) with 
an ensemble learning of the top 3 best models.

Conclusion:  The prediction models for polyreactivity would help assess polyreactive 
scFvs in the early discovery stage and our approaches would be promising to develop 
machine learning models with quantitative data from high throughput assays for 
antibody screening.
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Introduction
Monoclonal antibodies (mAbs) have been important biological research tools and thera-
peutic agents due to their attractive properties, such as specific binding, conformational 
stability, safety for a human, and manufacturability [1, 2]. One of the most important 
properties of mAbs is specificity and binding affinity through complementary-determin-
ing regions (CDRs) to a specific antigen unique to its target. To discover novel mAbs, 
animal immunization has been traditionally used and it has limited control over speci-
ficity and binding affinity because of the difficulty in controlling antigen presentation to 
the animal immune system [2]. Advanced in vitro technologies, such as phage and yeast 
surface display, have enabled the rapid isolation of mAbs and improved control over 
antigen presentation [2]. However, the antibodies initially identified via either immuni-
zation or these display methods are not suitable for therapeutic use and usually have 
some unfavorable biophysical characteristics such as stability, solubility, viscosity, poly-
reactivity, and so on [1].

Therapeutic mAbs must have the desired biophysical properties. The use of mAbs as 
therapeutics needs to optimize several important properties, such as binding affinity, spec-
ificity, folding stability, solubility, pharmacokinetics, effector functions, and other com-
patibilities with additional antibody or cytotoxic drugs [2]. Although each property can 
be addressed through screening large antibody libraries, it is difficult to simultaneously 
optimize multiple properties of mAbs with the screening methods. Attempts to divide 
and conquer the properties sequentially are limited by the fact that optimizing one prop-
erty can worsen other properties. The computational antibody-design methods have been 
developed to overcome the complexity of optimizing multiple properties of mAbs [2].

Many computational tools have been developed to predict the developability of mAbs 
at an early stage, which includes high aggregation, and poor stability. The predictive 
tools for aggregation risk have been developed through the identification of chemical 
modifications in CDRs [3, 4], semi-empirical methods based on spatial-aggregation-
propensity [5–7], and machine learning methods predicting the hydrophobic chro-
matography retention time [8, 9] and the physicochemical properties such as viscosity 
and isoelectric point [10]. Many computational tools for predicting stability-enhancing 
mutations have been developed through the phylogenetic information from multiple 
sequence alignments, the biomolecular simulations for thermodynamic energies [11–
13], CDR-dependent position-specific-scoring-matrix [14], and other machine learning 
methods [15–17] trained with large databases such as ProTherm [18, 19] and TS50 [17]. 
Furthermore, the developability scores of mAbs have been quantified to help eliminate 
undesirable mAbs at an early stage through the Developability Index [5] and Therapeutic 
Antibody Profiler [20], which integrated the aggregation propensity, CDR lengths, and 
distributions of hydrophobicity and charges on a surface.

Although current antibody discovery methods focused on the generation of mAbs or 
fragments with high specificity on target, some mAbs can strongly bind to one target 
and weakly bind to additional antigens. Polyreactivity is called nonspecificity and is an 
important property because polyreactive mAbs can show reactivity for diverse off-target 
epitopes. Early assessment of polyreactivity is important in clinical development, which 
can allow for the prevention of potentially poor candidates. Because polyreactivity of 
mAbs is linked to poor antibody pharmacokinetics [21], the experimental assessments 
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of polyreactivity have been performed with an enzyme-linked immunosorbent assay 
(ELISA) [22], protein biochip-based ELISAs [23], and Fluorescence-Activated Cell 
Sorting (FACS)-based high-throughput selections [24–26]. Because the experimental 
assessments are usually time-consuming, expensive, and tedious, the computational 
prediction for polyreactivity help assess mAbs and narrow the search space early. The 
computational analysis tools for polyreactivity have been developed by identifying the 
biochemical features in CDRs of polyreactive mAbs, which showed the enrichment of 
glycine, tryptophan, valine, and arginine motifs [25], an increase in inter-loop crosstalk 
[27], neutral binding surface [27], high isoelectric points [28], constrained β-sheet struc-
tures [29], longer CDRH/L3 loops [30], and the occurrence of glutamine residues [30]. 
Recently, Harvey et al. showed machine learning (ML) models to assess the polyreactiv-
ity of nanobodies from protein sequences [26]. The ML models would help the antibody 
design and diminish experimental efforts because the ML models can allow the quantifi-
cations of the polyreactivity of mAbs.

Machine learning (ML) in protein engineering learns the information from data to 
predict the protein properties of new variants. Prediction models with ML can accel-
erate the optimization of protein properties by evaluating the new variants, separating 
the grain from the chaff, and diminishing experimental efforts. To build the ML mod-
els, suitable protein descriptors are required to obtain information in protein sequences. 
For example, one-hot-encoding of amino acids and single amino acid properties can 
be used to describe protein sequence as a bottom-up approach [31]. However, obtain-
ing meaningful labels and annotations from the explosively growing protein sequences 
databases needs expensive and tedious experimental resources [32]. Advanced natu-
ral language processing (NLP) techniques are applied to self-supervised learning with 
unlabeled protein sequences in large protein databases, which may extract evolutionary 
information from protein sequences [32–35]. In addition to protein sequences, extract-
ing useful information from protein structures is important because a protein function 
is directly related to and depends on its unique 3D protein structure. Figuring protein 
structures out is known as the folding problem and the prediction of protein structures 
from protein sequences has been a long-lasting challenge [36]. In the biennial Critical 
Assessment of protein Structure Prediction conference, deep learning methods such as 
AlphaFold and trRosetta outperformed other traditional methods [37, 38], and the more 
advanced methods such as AlphaFold2 and RoseTTA fold showed a better performance 
with three-track network architectures [36, 39].

In this work, we made prediction models for the polyreactivity of single-chain frag-
ment variables (scFv) with antibody features and NLP descriptors. First, we calculated 
sequence- and structure-based antibody features of scFvs. In the sequence-based fea-
tures, we calculated net charges and lengths of CDR loops. To obtain structure-based 
features, we predicted protein structures of scFvs with trRosetta. And then we calculated 
aggregation scores, solvent-accessible surface area, and hydrodynamic properties of 
scFvs. We investigated the classifying performances of the antibody features for polyre-
activity with the area under the curve (AUC) and p-values. Second, we made 20 predic-
tion models for the polyreactivity with the antibody features (F46) and NLP descriptors 
(UniRep, TAPE, ESM-1b, and ESM-1v) using four machine-learning algorithms (GBM, 
LGBM, RF, and XGB). Third, we made 16 prediction models with the concatenated 
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descriptors of the antibody features and NLP descriptors to improve model perfor-
mance. Fourth, we made 14 ensemble models with average- and linear regression-based 
methods using the 36 prediction models. The prediction models for polyreactivity would 
help detect the polyreactive scFvs in an early stage and our approaches would help 
develop machine learning models with high throughput data for antibody screening.

Methods
Dataset construction

The polyreactivity dataset of single-chain fragment variables was derived from the Pro-
taBank [40] and the high-throughput nonspecificity assays by Kelly et al. [25], where a 
FACS was used to sort depending on whether the scFvs bind to either the soluble mem-
brane preparations or soluble cytosolic preparations in HEK or Sf9 cells, or not. We per-
formed dataset preparation with three steps. First, we removed the duplicate sequences 
with the same sequences and identical annotations (nonspecific or not). Second, we 
removed the ambiguous sequences with the same sequences and different annotations. 
Third, we added pre-gene and post-gene overhang sequences to make full sequences of 
the scFvs. Finally, We obtained 19,426 sequences, containing the 8867 polyreactive scFvs 
and 10,559 non-polyreactive scFvs. For the supervised classification task, we prepared a 
stratified split with an 80% training set (15,540) and a 20% test set (3886) in Python using 
the Scikit-learn package with a fixed random seed [41].

Performance metrics and statistical analysis

Performances of the prediction models were evaluated using the area under the receiver 
operating characteristics curve (AUC), accuracy, precision, recall, and F1-score metrics. 
The AUC in the ROC curve is a performance measurement for classification problems at 
various threshold settings and indicates how much the prediction model can distinguish 
the polyreactivity of scFvs. The accuracy is the ratio of the correctly predicted polyreac-
tive and non-polyreactive scFvs to all the experimental polyreactive and non-polyreac-
tive scFvs in the given data set, which represents how the model can correctly classify 
the polyreactive and non-polyreactive scFvs out of the data set. The precision score is 
the ratio of correctly predicted polyreactive scFvs to the total predicted polyreactive 
scFvs in the given data set, which represents the ability to identify all polyreactive scFvs 
without any non-polyreactive scFvs. The recall score is the ratio of correctly predicted 
polyreactive scFvs to all the experimental polyreactive scFvs in the given data set, which 
represents the ability to correctly predict the polyreactive scFvs out of the experimental 
polyreactive scFvs. F1-score is the harmonic mean of precision and recall scores, which 
is an alternative to accuracy. In accuracy, precision, recall, and F1-score metrics, we used 
the criteria of 0.5.

Statistical difference between two groups of polyreactive and non-polyreactive mAbs 
in each factor was analyzed by the Student’s t-test and two-tailed tests. The p value 
was used to indicate a statistically significant difference, where *p value < 0.05, **p 
value < 0.01, and ***p value < 0.001 are considered in this work.
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Homology modeling and protein structure preparation

Homology modeling was performed with transform-restrained Rosetta (trRosetta) 
[38]. The trRosetta is a deep residual-convolutional network from multiple sequence 
alignments to make information on the relative distances and orientation of all resi-
due pairs in the protein [38]. And then the restrained minimization was performed to 
make a protein structure with a fast Rosetta model building protocol with the infor-
mation from the network [38].

All protein structures from homology modeling were prepared in the following 
steps. All hydrogen atoms in the protein structures were removed and re-added to 
the protein structures at pH 7.0. Their positions were optimized with the PROPKA3 
implemented in the Maestro program [42]. And then the restrained energy minimi-
zation was performed on all protein structures with OPLS3 in the Maestro program 
within 0.3 Å root mean square deviation [43].

2–4. Aggregation propensities and solvent-accessible surface area.
AggScore [7] is the prediction model for protein aggregation, which is one of the 

most routinely encountered developability issues [44]. Because the AggScore uses the 
distribution of hydrophobic and electrostatic patches on the surface of the 3D pro-
tein structures and uses the intensity and relative orientation of the surface patches 
[7], the application domain includes the antibody. Zyaggregator predicts the effects 
of mutations on the protein aggregation propensity with the physicochemical prop-
erties of amino acids [45]. The Zyaggregator score is the sum of Zyaggregator pro-
file Z-scores, whereas the Zyaggregator_p is the normalized score for comparing the 
proteins which have different lengths. Solvent-accessible surface area (SASA) is the 
surface of a protein that solvent molecules (water molecules) can access and a probe 
with the van der Waals radius of a solvent molecule sweeps by rolling over a protein. 
We calculated the SASA of all hydrophobic atoms (All Hydrophobic SASA) and the 
exposed hydrophobic atoms (Exposed Hydrophobic SASA). The AggScore, Zyaggre-
gator, and SASA were calculated with the command-line script ‘calc_protein_descrip-
tors.py’, implemented in Schrodinger suite ver. 2018–3.

Hydrodynamic properties

Hydrodynamic properties of scFvs were calculated with HullRad [46], which uses 
a convex hull to calculate the smallest convex envelopes with a set of points and to 
model a hydrodynamic volume of a protein [46]. The 13 factors for hydrodynamic 
properties are partial specific volume ( vbar , mL/g ), anhydrous volume sphere radius 
( Ro , Å), the anhydrous radius of gyration ( Rg , Å), maximum dimension ( Dmax , Å), 
axial ratio, frictional ratio ( f/f0 ), translational diffusion coefficients ( Dt , cm2/s ), trans-
lational hydrodynamic radius ( Rtrans , Å), sedimentation coefficients ( s , sec ), rotational 
diffusion coefficients ( Dr , s−1 ), rotational hydrodynamic radius ( Rrot , Å), tumbling 
correlation time ( tauC , ns ), and asphericity. The detailed mathematical equations of 
the factors are well described in Flemin et al. [46].
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The lengths and G/Q/R/V/W motifs of CDR loops

Delimitation and numbering of CDR regions in all scFv antibodies were performed 
with AbRSA [47], where the 40% similarity and Chothia scheme [48] were used. In the 
CDR lengths, the lengths of the whole CDR regions and only CDR3 regions were cal-
culated with the concatenated sequences of all CDR regions and only CDR3 regions. 
In the CDR3-G/Q/R/V/W motifs, the occurrences of the glycine, glutamine, arginine, 
valine, and tryptophan residues in CDR3 regions were calculated with the counts and 
count-to-length ratio using the concatenated CDR3 regions.

Isoelectric points (IEP)

Isoelectric points (IEP) are the pH, where a molecule has no net electric charge or the 
statistical mean of the electricity of a molecule is neutral. To estimate the effects of CDR 
on IEP, we subdivided IEPs into three classes (whole-IEP, CDR-IEP, and CDR3-IEP). 
The IEP values were predicted with the DTASelect algorithm [49] implemented in pIR 
[50]. To calculate whole-IEP, CDR-IEP, and CDR3-IEP, the linear approximations were 
performed with the 25 experimental antibodies’ IEPs [51] and 41,943 experimental pep-
tides’ IEPs [52] through Eqs. (1) and (2).

We applied IEPantibody to the calculation of whole-IEP and IEPpeptide to the calcula-
tions of CDR-IEP and CDR3-IEP. The concatenated sequences were used to calculate the 
CDR-IEP and CDR3-IEP.

Nanobody polyreactivity

The two prediction models for the polyreactivity of nanobodies were developed by Har-
vey et  al. [26], which are one-hot embedding (OneHot-CDRS) and 3-mer embedding 
(3MER-CDRS) logistic regression models. The OneHot-CDRS model learned weights 
for each amino acid type at each position in the CDR sequences, whereas the 3MER-
CDRS model learned weights for each motif of polyreactive nanobodies [26]. Although 
the models were applied to 19,426 scFvs, the polyreactivity scores of 16,337 scFvs were 
predicted. The AUC scores of OneHot-CDRS and 3MER-CDRS models were calculated 
with only 16,337 scFvs.

Protein language‑based descriptors (UniRep, TAPE, ESM‑1b, and ESM‑1v)

Natural language processing (NLP) techniques have been applied to extracting useful 
evolutionary information from unlabeled protein sequences with self-supervised learn-
ing [32–35]. We used UniRep, TAPE, ESM-1b, and ESM-1v descriptors for the NLP-
based protein sequence descriptors. The UniRep used the UniRef50 database and was 
based on a four-layer multiplicative LSTM with 256 hidden units, leading to 18.2  M 
parameters and 1900 features [33]. The Tasks Assessing Protein Embeddings (TAPE) 
used the Pfam database and was based on a 12-layer Transformer with a hidden size 
of 512 units and 8 attention heads, leading to 38 M parameters and 768 features [32]. 
The Evolutionary Scale Modeling-1b (ESM-1b) used the high-diversity sparse UniRef50 

(1)IEPantibody = 2.0306∗IEPDTASelect − 7.8541

(2)IEPpeptide = 1.1552 ∗ IEPDTASelect − 0.8839
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dataset and was based on a 33-layer Transformer with a hidden size of 5120 units and 20 
attention heads, leading to 650 M parameters and 1280 features [34]. The Evolutionary 
Scale Modeling-1v (ESM-1v) had the same architecture as ESM-1b (650 M parameters 
and 1280 features), but ESM-1v are ensembles of 5 models, used the UniRef90 dataset, 
and employed zero-shot inference to predict a new class unseen in training sets [35]. The 
UniRep descriptors were constructed with a concatenation of average hidden unit out-
puts, the final hidden unit, and the final cell, whereas the TAPE, ESM-1b, and ESM-1v 
descriptors were constructed with average hidden unit outputs.

Machine learning algorithms, hyperparameter tuning, and ensemble learning

Prediction models for polyreactivity of single-chain antibody fragments were con-
structed using the gradient boosting (GBM) classifier, the random forest (RF) classifier, 
the light GBM (LGBM) classifier, and the extreme gradient boosting (XGB) classifier 
models. The GBM combines many weak-leaning models, such as a decision tree, to 
make a strong prediction model and is based on additive expansions in a forward stage-
wise fashion [41, 53]. The RF is a meta-classifier with many classifying decision trees 
on various subsamples of the dataset, and it uses averaging to improve the predictive 
accuracy and to control overfitting problems [41]. The LGBM and XGB use the gradient 
boosting framework, but the difference is how to grow decision trees. The LGBM builds 
each decision tree in a leaf-wise fashion [54], whereas the XGB builds each decision tree 
in a depth-wise fashion [55].

In training, we used tenfold cross-validation with GridSearchCV in the Scikit-learn 
package [41] using hyperparameter settings (Additional file 1: Table S1). The best hyper-
parameters from the GridSearchCV were selected with the performance in cross-valida-
tion sets. And then the final model with the best hyperparameters was re-trained with 
all training sets. Some hyperparameters in GBM were incorporated for tuning the mod-
els; the number of boosting stages (n_estimators), the maximum depth of the individual 
regression estimators (max_depth), the number of features to consider when finding the 
best split (max_features), and the boosting learning rate (learning_rate) [41, 53]. Some 
hyperparameters in LGBM were incorporated for tuning the models; n_estimators and 
learning_rate [54]. Some hyperparameters in RF were incorporated for tuning the mod-
els; n_estimators and max_features [41]. Some hyperparameters in XGB were incorpo-
rated for tuning the models; n_estimators, max_depth, and learning_rate [55].

Ensemble learning through a meta‑learning classifier

Ensemble learning through a meta-learning classifier was performed with average-based 
(AVG) and linear regression-based (LR) methods. In the AVG method, we calculated 
the average of the probabilities from the pre-trained selected models. In the LR method, 
we trained a simple linear regression model without an intercept term using the prob-
abilities from the pre-trained selected models in the training set. The difference between 
the AVG and LR strategies is that the contribution to the final probability of each pre-
trained model is the same in the AVG strategy, whereas the contribution of each pre-
trained model is not the same in the LR strategy. Machine learning learns how to best 
use input features and information to predict nonspecificity, whereas ensemble learning 
learns how to best use the machine learning models to predict nonspecificity.
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Results
Computational prediction of the polyreactivity of antibodies is important in evaluating 
the developability of antibodies at an early stage. The workflow to make computational 
prediction models for the polyreactivity in scFvs is shown in Fig. 1.

Each performance of biochemical patterns in scFvs for polyreactivity
Most prediction methods for polyreactivity have focused on the identification of the bio-
chemical features which the polyreactive antibodies [25–30]. The biochemical patterns 
in polyreactive antibodies have been analyzed through an increase in neutral binding 
surface [27], longer CDRH/L3 loops, an increase of glycine, tryptophan, valine, and argi-
nine motifs [25], the occurrence of glutamine residues [30], and high isoelectric points 
[28]. To investigate each classifying performance of the sequence-based and structure-
based features, we predicted 19,426 scFv antibody structures with trRosetta and cal-
culated the area under the receiver operating characteristic curves (AUC) with the 51 
biochemical features (Additional file 1: Table S3 and Additional file 1: Table S4). The dis-
tributions of the statistically significant features (p value < 0.001) are illustrated in Addi-
tional file 1: Figure S1 and Additional file 1: Figure S2.

A slightly hydrophilic and neutral-charged binding surface can have weak interactions 
with various ligands [27]. To investigate the classifying performance of the increased 
neutral binding surfaces, we calculated the area under the ROC curves (AUC) with the 

Fig. 1  Workflow to make prediction models for polyreactivity in this work
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net charges of CDR loops, spatial aggregation propensities (SAP), and solvent-accessible 
surface area (SASA) with the predicted structures. Firstly, we delimited the CDR of scFvs 
with the Chothia scheme and calculated the net charges of all CDRs, CDR1, CDR2, and 
CDR3 loops. The AUC scores of the net charges of all CDRs and CDR1, CDR2, and 
CDR3 loops are 0.521, 0.556, 0.413, and 0.521, respectively. Secondly, we predicted the 
SAP of scFvs with AggScore and Zyggregator with the predicted structures. The AUC 
scores of AggScore, Zyggregator, and Zyggregator_p are 0.506, 0.489, and 0.541, respec-
tively. Thirdly, we calculated the SASA of all hydrophobic atoms and the exposed hydro-
phobic atoms with the predicted protein structures. The AUC scores of the hydrophobic 
SASA of exposed residues and all residues are 0.512 and 0.502.

In addition to the SAP and SASA, the molecular-scale hydrodynamic effects are 
related to the cavity-ligand binding due to the capillary fluctuations [56]. Hydrodynamic 
properties can be used to estimate the size and shape of the proteins in solution [46] 
because the hydrodynamic radius in a protein involves the motion of the protein rel-
ative to the aqueous solvent where the protein is dissolved [57]. We calculated the 14 
hydrodynamic properties and measured the classifying performance for polyreactivity in 
scFvs. In the 14 properties, the AUC scores of the anhydrous radius of gyration, asphe-
ricity, and frictional ratio are 0.628, 0.621, and 0.600, respectively. The three factors of 
the gyration radius, frictional ratio, and asphericity are related to the hydration effect 
[46, 58], they are relatively better predictive of the polyreactivity in scFvs than other 
hydrodynamic properties.

Lecerf et al. reported that the hydrophobicity and propensity for aggregation of mAbs 
are associated with the longer CDRH/L3 loops, but there is no significant correla-
tion between the size of hypervariable loops and the polyreactivity [30]. To investigate 
the correlation between the length of CDR loops and polyreactivity, we measured the 
lengths of all CDRs and CDR-1/2/3 loops in scFvs. The AUC scores of the lengths of 
all CDRs, CDR1, CDR2, and CDR3 are 0.482, 0.393, 0.530, and 0.545. The lower AUC 
scores mean that longer CDR lengths cannot distinguish the nonspecificity in scFvs. On 
the other hand, shorter lengths of CDR1 showed a relatively better classifying perfor-
mance ( AUC = 0.607 ). The results were in agreement with Lecerf et al. [30], where the 
mAbs with shorter CDR loops might tend to reduce the risk of polyreactivity.

Enrichment of the glycine-, glutamine-, arginine-, valine-, and tryptophan motifs in 
CDR-H3 is associated with polyreactivity [25, 30]. To investigate the classifying perfor-
mance of each motif, we calculated the AUC scores of the number and ratio of each 
motif in CDR3 and CDR-H3 (G, Q, R, V, W, VV, and WW motifs). Most motifs showed 
low AUC scores between 0.450 and 0.550, but the Trp motifs even misled the classifica-
tion ( AUC = 0.383).

Isoelectric points (IEP) of mAbs are important in solution behavior and related to vis-
cosity [10]. Because therapeutic antibodies need to be positively charged for efficient 
fluid-phase endocytosis at the physiological pH of 7.4, an IEP in the range of 8–9 is 
desirable. To investigate the correlation between IEPs and polyreactivity, we predicted 
the IEPs of scFvs based on the full sequences and concatenated CDR loops. Because 
most IEP prediction methods have been developed for peptides and proteins [49, 52], we 
corrected the predicted IEP with experimental IEPs from peptides and antibodies and 
prediction models for peptides and antibodies (Additional file 1: Figure S3). To predict 
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the IEPs for CDR loops, we collected the experimental IEPs of 41,943 peptides and made 
a prediction model of R2

= 0.9845 and RMSE = 0.2743 . Whereas, to predict the IEPs 
for antibodies, we collected the experimental IEPs of 25 antibodies and made a predic-
tion model of R2

= 0.9603 and RMSE = 0.1669 . The AUC scores of the predicted IEPs of 
CDRs and scFvs are 0.504 and 0.535, respectively.

Although the length of CDR1, anhydrous gyration radius, frictional ratio, and asphe-
ricity showed relatively high AUC over 0.6, the 40 biochemical features in scFvs showed 
low AUC if each pattern was used to classify the polyreactive scFvs alone. Because a sin-
gle biochemical feature in scFvs is not enough to distinguish and predict the polyreactive 
scFvs, it is necessary to build machine learning models to predict the polyreactivity of 
the scFvs.

Machine learning models with biochemical features
Machine learning models can utilize the information of the scFvs to predict the poly-
reactivity of the scFvs. We developed machine learning models with the combination 
of the biochemical features and four NLP-based descriptors (UniRep, TAPE, ESM-1b, 
and ESM-1v). To compare the performance of the models, we used the AUC scores in 
the test set after tenfold cross-validation and refitting for our-own models. And then we 
built baselines with the best AUC of the single features and the AUC for the two previ-
ously developed models for antibody fragments by Harvey et al. [26] (one-hot-CDRS and 
3mer-CDRs). The ROC plots of the two models are illustrated in Fig. 2A.

Fig. 2  Performance metrics of the models in this work. A ROC plots for the best models from the 
combinations of descriptors and algorithms. The ‘OneHot-CDRS’ and ‘3MERS-CDRS’ are the reported 
models by Harvey et al. (ref. 26) for nanobody and we used them as baselines. The ‘Rg’ is the anhydrous 
radius of gyration and the best single factor in this work. The best models were trained with the optimal 
hyperparameter after grid search. The AUC metric was measured in the test set. B Boxplot plot for the relative 
comparison rank of descriptors and algorithms. We put all the models together and ranked the descriptors 
and algorithms by the AUC metric in the test set
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The anhydrous radius of gyration showed the best performance ( AUC = 0.628 ) in the 
single biochemical features for predicting polyreactive scFvs. To build the baselines with 
the previously developed models, we applied the two polyreactive prediction models for 
antibody fragments by Harvey et al. [26] (one-hot-CDRS and 3mer-CDRS) to the scFvs. 
Due to the IMGT numbering scheme with ANARCI in Harvey et al. [26], the polyreac-
tivities of only 16,337 scFvs were used to calculate the AUC values. The AUC values of 
one-hot-CDRS and 3mer-CDRS for scFvs are 0.467 and 0.428.

To find the best model with the biochemical features, we made four machine learning 
models (GBM, LGBM, RF, and XGB) with 46 biochemical patterns (F46) except for two 
SASA and three aggregation factors. The performance metrics of the four models are 
summarized in Table 1. The optimal hyperparameters of the models are summarized in 
Additional file 1: Table S2. The prediction model from F46 and LGBM showed the best 
performance in the test set prediction ( AUC = 0.811 ). The best model was trained with 
the optimal hyperparameter (learning_rate = 0.01 and n_estimators = 500). Accuracy, 
precision, recall, and F1-score of the best model (F46/LGBM) are 0.762, 0.732, 0.756, 
and 0.744 in the training set, whereas those are 0.731, 0.700, 0.720, and 0.710 in the test 
set. The ROC plot of the best model (F46/LGBM) is illustrated in Fig. 2A.

We calculated the feature importance in the best model to investigate the contribu-
tions of the 46 biochemical features to the best model (F46/LGBM). The top 11 impor-
tant features in the best model had 50.87% contributions to the performance, which 
are the net charge of the CDR2 loop (7.25%), partial specific volume (6.00%), the iso-
electric point of CDR loops (5.90%), the anhydrous radius of gyration (4.45%), the ratio 
of tryptophan residues in CDR-H3 (4.41%), the isoelectric point of scFv (4.21%), the 
CDR1 length (4.01%), the anhydrous volume sphere radius (3.97%), the CDR2 length 

Table 1  Performance of models with different ML algorithms and single descriptors

The bold means the best performance, the AUC score in the test set

Descriptor Method Train AUC​ Valid AUC​ Test AUC​ Accuracy Precision Recall F1-score

F46 GBM 0.917 ± 0.006 0.705 ± 0.129 0.805 0.730 0.753 0.607 0.672

LGBM 0.858 ± 0.009 0.704 ± 0.124 0.811 0.731 0.700 0.720 0.710

RF 1.000 ± 0.000 0.697 ± 0.123 0.795 0.728 0.722 0.658 0.689

XGB 0.951 ± 0.003 0.701 ± 0.125 0.810 0.732 0.705 0.710 0.708

UniRep GBM 1.000 ± 0.000 0.591 ± 0.177 0.821 0.747 0.741 0.686 0.712

LGBM 0.926 ± 0.006 0.606 ± 0.178 0.816 0.734 0.704 0.722 0.713

RF 1.000 ± 0.000 0.575 ± 0.178 0.815 0.736 0.728 0.671 0.699

XGB 0.999 ± 0.000 0.596 ± 0.181 0.824 0.740 0.718 0.709 0.713

TAPE GBM 1.000 ± 0.000 0.647 ± 0.160 0.824 0.745 0.741 0.679 0.709

LGBM 0.919 ± 0.005 0.657 ± 0.155 0.810 0.731 0.703 0.713 0.708

RF 1.000 ± 0.000 0.638 ± 0.160 0.815 0.745 0.747 0.666 0.704

XGB 0.998 ± 0.000 0.651 ± 0.156 0.822 0.746 0.729 0.706 0.717

ESM-1b GBM 0.979 ± 0.003 0.603 ± 0.182 0.807 0.727 0.742 0.616 0.673

LGBM 0.922 ± 0.006 0.608 ± 0.176 0.807 0.730 0.697 0.722 0.710

RF 1.000 ± 0.000 0.593 ± 0.176 0.814 0.736 0.730 0.669 0.698

XGB 0.998 ± 0.000 0.604 ± 0.177 0.821 0.741 0.718 0.713 0.716

ESM-1v GBM 1.000 ± 0.000 0.594 ± 0.150 0.819 0.743 0.761 0.639 0.695

LGBM 0.919 ± 0.005 0.602 ± 0.172 0.813 0.730 0.694 0.729 0.711

RF 1.000 ± 0.000 0.582 ± 0.171 0.816 0.740 0.735 0.674 0.703

XGB 0.949 ± 0.002 0.597 ± 0.175 0.808 0.728 0.702 0.701 0.701
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(3.85%), the count of glycine residues in CDR-H3 (3.61%), and sedimentation coeffi-
cients (3.21%). The net charge of the CDR2 loop and the counts and ratios of tryptophan 
and glycine residues are associated with the known biochemical features of the neutral 
binding surface [27] and the enrichment of tryptophan and glycine motifs [25]. The four 
hydrodynamic properties (partial specific volume, the anhydrous radius of gyration, the 
anhydrous volume sphere radius, and sedimentation coefficients) had 17.63% contri-
butions to the performance of the best model, indicating that the solution behavior is 
important in the polyreactivity of the scFvs.

Machine learning models with NLP‑based descriptors
Natural language processing methods have been applied to large unlabeled protein 
sequence data sets through self-supervised learning, which leads to language model-
based descriptors. Because the language model-based descriptors can extract evolution-
ary information from protein sequences, we used four language model-based descriptors 
(UniRep, TAPE, ESM-1b, and ESM-1v) to extract information from scFvs’ sequences.

To find the best model with the language model-based descriptors, we made 16 
machine learning models with the combination of four machine learning algorithms 
(GBM, LGBM, RF, and XGB) and four language model-based descriptors (UniRep, 
TAPE, ESM-1b, and ESM-1v). The performance metrics of the 16 models are summa-
rized in Table 1. The ROC plot of the best model (TAPE/GBM) is illustrated in Fig. 2A.

In the UniRep, the prediction model from XGB showed the best performance in the 
test set ( AUC = 0.824 ). The best model (UniRep/XGB) was trained with the optimal 
hyperparameter (learning_rate = 0.01, max_depth = 10, and n_estimators = 500). The 
accuracy, precision, recall, and F1-score of the best model (UniRep/XGB) are 0.740, 
0.718, 0.709, and 0.713 in the test set, respectively. In the TAPE, the prediction model 
from GBM showed the best performance in the test set ( AUC = 0.824 ). The best model 
(TAPE/GBM) was trained with the optimal hyperparameter (learning_rate = 0.01, max_
depth = 10, max_features = ‘sqrt’, and n_estimators = 1000). The accuracy, precision, 
recall, and F1-score of the best model (TAPE/GBM) are 0.745, 0.741, 0.679, and 0.709 
in the test set, respectively. In the ESM-1b, the prediction model from XGB showed 
the best performance in the test set ( AUC = 0.821 ). The best model (ESM-1b/XGB) 
was trained with the optimal hyperparameter (learning_rate = 0.01, max_depth = 10, 
and n_estimators = 500). The accuracy, precision, recall, and F1-score of the best model 
(ESM-1b/XGB) are 0.741, 0.718, 0.713, and 0.716 in the test set, respectively. In the 
ESM-1v, the prediction model from GBM showed the best performance in the test set 
( AUC = 0.819 ). The best model (ESM-1v/GBM) was trained with the optimal hyper-
parameter (learning_rate = 0.05, max_depth = 15, max_features = ‘log2’, and n_estima-
tors = 3000). The accuracy, precision, recall, and F1-score of the best model (ESM-1v/
GBM) are 0.743, 0.761, 0.639, and 0.695 in the test set, respectively.

To compare the performance of the machine learning models from biochemical fea-
tures and language model-based descriptors, we used the AUC in tenfold cross-val-
idation test sets and five metrics in the test set (AUC, accuracy, precision, recall, and 
F1-score metrics).

In the AUC metric in tenfold cross-validation sets, the F46/LGBM model showed the 
best performance ( 0.704 ± 0.124 ), whereas the other models had relatively low mean 
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and high standard deviations of AUC in tenfold cross-validation sets. It indicated that 
the language model-based descriptors are more sensitive to the data splits than the 46 
biochemical features. In the AUC metric in the test set, the TAPE/GBM model showed 
the best performance (0.824), whereas the other models also showed a robust perfor-
mance over 0.8. The ROC plot of the best model (TAPE/GBM) is illustrated in Fig. 2A. 
In the accuracy in the test set, the TAPE/GBM model showed the best accuracy (0.745), 
whereas the other models also had similar accuracy over 0.730. In the precision metric 
in the test set, the ESM-1v/GBM showed the best precision score (0.761), whereas the 
other models also had a robust precision score of over 0.7. In the recall metric in the test 
set, the F46/LGBM model showed the best recall score (0.720), whereas the TAPE/GBM 
and ESM-1v/GBM models showed relatively low recall scores (0.679 and 0.639, respec-
tively). In the F1-score metric in the test set, the ESM-1b/XGB showed the best F1-score 
(0.716), whereas the ESM-1v/GBM model showed the worst F1-score (0.695) and the 
other models showed a robust F1-score over 0.7.

Machine learning models with both biochemical features and language 
model‑based descriptors
To improve model performance, we concatenated the 46 biochemical features and four 
language model-based descriptors and made the four descriptors (F46/UniRep, F46/
TAPE, F46/ESM-1b, and F46/ESM-1v). And then we made the 16 machine learning 
models with the combinations of the four descriptors and four machine learning algo-
rithms (GBM, LGBM, RF, and XGB), the performance metrics of which are summarized 
in Table 2. The optimal hyperparameters of the models are summarized in Additional 
file 1: Table S2.

In the F46/UniRep, the prediction model from GBM showed the best performance 
in the test set ( AUC = 0.834 ). The ROC plot of the best model (F46/UniRep/GBM) is 
illustrated in Fig.  2A. The best model (F46/UniRep/GBM) was trained with the optimal 

Table 2  Performance of models with different ML algorithms and the concatenated descriptors

The bold means the best performance, the AUC score in the test set

Descriptor Method Train AUC​ Valid AUC​ Test AUC​ Accuracy Precision Recall F1-score

F46/UniRep GBM 1.000 ± 0.000 0.624 ± 0.163 0.834 0.759 0.751 0.706 0.728

LGBM 0.928 ± 0.006 0.638 ± 0.166 0.830 0.746 0.719 0.729 0.724

RF 1.000 ± 0.000 0.594 ± 0.174 0.823 0.747 0.742 0.683 0.711

XGB 0.971 ± 0.002 0.624 ± 0.166 0.826 0.752 0.728 0.729 0.729

F46/TAPE GBM 1.000 ± 0.000 0.669 ± 0.137 0.829 0.748 0.745 0.680 0.711

LGBM 0.919 ± 0.006 0.676 ± 0.147 0.826 0.746 0.720 0.726 0.723

RF 1.000 ± 0.000 0.654 ± 0.153 0.823 0.749 0.752 0.671 0.709

XGB 0.997 ± 0.000 0.668 ± 0.151 0.831 0.748 0.727 0.718 0.722

F46/ESM-1b GBM 1.000 ± 0.000 0.643 ± 0.154 0.830 0.755 0.746 0.704 0.724

LGBM 0.882 ± 0.008 0.654 ± 0.157 0.821 0.744 0.709 0.746 0.727

RF 1.000 ± 0.000 0.622 ± 0.169 0.826 0.750 0.748 0.680 0.713

XGB 0.954 ± 0.004 0.648 ± 0.153 0.823 0.750 0.721 0.738 0.729

F46/ESM-1v GBM 0.985 ± 0.002 0.643 ± 0.139 0.814 0.738 0.741 0.654 0.695

LGBM 0.834 ± 0.010 0.657 ± 0.134 0.802 0.727 0.677 0.766 0.719

RF 1.000 ± 0.000 0.611 ± 0.165 0.827 0.751 0.750 0.681 0.714

XGB 0.951 ± 0.003 0.643 ± 0.151 0.822 0.743 0.709 0.742 0.725
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hyperparameter (learning_rate = 0.01, max_depth = 10, max_feature = ‘auto’, and n_estima-
tors = 1000). The accuracy, precision, recall, and F1-score of the best model (F46/UniRep/
GBM) are 0.759, 0.751, 0.706, and 0.728 in the test set, respectively. In the F46/TAPE, the 
prediction model from XGB showed the best performance in the test set ( AUC = 0.831 ). 
The best model (F46/TAPE/XGB) was trained with the optimal hyperparameter (learn-
ing_rate = 0.01, max_depth = 10, and n_estimators = 500). The accuracy, precision, recall, 
and F1-score of the best model (F46/TAPE/XGB) are 0.748, 0.727, 0.718, and 0.722 in the 
test set, respectively. In the F46/ESM-1b, the prediction model from GBM showed the 
best performance in the test set ( AUC = 0.830 ). The best model (F46/ESM-1b/GBM) was 
trained with the optimal hyperparameter (learning_rate = 0.01, max_depth = 10, max_fea-
ture = ‘auto’, and n_estimators = 500). The accuracy, precision, recall, and F1-score of the 
best model (F46/ESM-1b/GBM) are 0.755, 0.746, 0.704, and 0.724 in the test set, respec-
tively. In the F46/ESM-1v, the prediction model from RF showed the best performance in 
the test set ( AUC = 0.827 ). The best model (F46/ESM-1v/RF) was trained with the opti-
mal hyperparameter (max_feature = ‘auto’, and n_estimators = 500). The accuracy, preci-
sion, recall, and F1-score of the best model (F46/ESM-1b/GBM) are 0.751, 0.750, 0.681, and 
0.714 in the test set, respectively.

Ensemble models to improve the performance
To improve model performance, we performed ensemble learning with the 36 machine 
learning models from the previous hyperparameter optimization steps. We made 14 
ensemble models with the two combination methods and two ensemble learnings (aver-
age-based and linear regression-based methods). We ranked the 36 models with the AUC 
metric in the test set. In one combination, we selected all, the top 10, top 5, and top 3 mod-
els in all 36 models, which led to A36, A10, A5, and A3 models, respectively. In the other 
combination, we selected all models, the top 5, and top 3 models in the best models of nine 
protein descriptor sets, which led to B9, B5, and B3 models, respectively. The performance 
metrics are summarized in Table 3.

In the average-based ensemble learning (AVG), the prediction model from B3 showed 
the best performance in the test set ( AUC = 0.840 ). The accuracy, precision, recall, and 
F1-score of the best model (B3/AVG) are 0.765, 0.755, 0.717, and 0.735 in the test set, 
respectively. The prediction models from A10/AVG, A5/AVG, A3/AVG, and B5/AVG tied 
for the second performance in the test set ( AUC = 0.839 ). The prediction model from A36/
AVG also showed a slightly better performance than the base model (F46/UniRep/GBM), 
but it showed the worst performance in the average-based ensemble models. In the linear 
regression-based ensemble learning (LR), the prediction model from A36 showed the best 
performance in the test set ( AUC = 0.832 ). The accuracy, precision, recall, and F1-score of 
the best model (A36/LR) are 0.754, 0.773, 0.653, and 0.708 in the test set, respectively. The 
models from LR-based ensemble learning showed worse performance than the baseline 
(F46/UniRep/GBM), which may be from the overfitting problem.

Performance comparison of the prediction models.
To compare evaluation metrics in protein descriptors and machine learning algorithms, 
the performance of the 50 final models was ranked according to the mean value of 
decreasing order for the AUC in the test set in Fig. 2B. The Ensemble won in protein 
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descriptor ranking, followed by F46/UniRep, F46/TAPE, F46/ESM-1b, TAPE, F46/ESM-
1v, UniRep, ESM-1v, ESM-1b, and F46. The Ensemble/AVG won in machine learning 
algorithm ranking, followed by Ensemble/LR, XGB, GBM, RF, and LGBM.

Discussion
Antibodies have been successful biological drugs with over 100 molecules approved for 
therapeutic use and hundreds more in clinical development. Improved high-through-
put technologies enable to find of very specific antibodies against targets, but some can 
show polyreactivity with low affinity for multiple epitopes. Because polyreactive anti-
bodies have potential side effects through multiple epitopes, previous studies have iden-
tified the biochemical patterns and characteristics of polyreactive antibodies. Here, we 
constructed machine learning models to predict the polyreactivity of scFvs with anti-
body features and NLP descriptors. The computational frameworks to predict the poly-
reactivity of a given scFv would be useful by evaluating the potential fate of a therapeutic 
antibody and the potential efficacy with natural immune systems in the early discov-
ery stage. Many studies have focused to identify the biochemical polyreactive features 
in antibodies [25, 27–30], but the single factors have low AUC performance to classify 
the polyreactive scFvs. Recently, the in silico method has been developed to predict the 
polyreactivity of antibody fragment [26], but it focused on nanobodies and the applica-
tion to scFvs showed low AUC performance. Therefore, computational prediction mod-
els for polyreactivity in scFvs in this work could be used to support the isolation of the 
potential polyreactive scFvs in the process of therapeutic antibody screening. Moreover, 
similar approaches with the protein structural features from protein structure prediction 
methods and NLP descriptors would be promising and useful to make machine learning 
models for industrial enzymes and protein drugs.

Table 3  Performance of ensemble models with the trained model combinations

The bold means the best performance, the AUC score in the test set

Name Method Test AUC​ Accuracy Precision Recall F1-score

A36 Average-based Ensemble (AVG) 0.836 0.758 0.750 0.703 0.726

A10 0.839 0.764 0.757 0.710 0.733

A5 0.839 0.760 0.755 0.701 0.727

A3 0.839 0.764 0.751 0.724 0.737

B9 0.838 0.754 0.751 0.688 0.718

B5 0.839 0.759 0.748 0.711 0.729

B3 0.840 0.765 0.755 0.717 0.735

A36 Linear Regression-based
Ensemble (LR)

0.832 0.754 0.773 0.653 0.708

A10 0.828 0.748 0.745 0.680 0.711

A5 0.828 0.748 0.745 0.680 0.711

A3 0.831 0.759 0.751 0.706 0.728

B9 0.819 0.743 0.761 0.639 0.695

B5 0.830 0.758 0.750 0.705 0.727

B3 0.825 0.757 0.748 0.705 0.726

TAPE/GBM 0.824 0.745 0.741 0.679 0.712

F46/UniRep/GBM 0.834 0.759 0.751 0.706 0.728
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Advanced natural language processing technologies have enabled us to learn sta-
tistical representations and evolutionary information of protein sequences with 
continuously increased unlabeled protein sequence databases from advanced 
sequencing technologies. The NLP-based protein descriptors (UniRep, TAPE, ESM-
1b, and ESM-1v) can capture the polyreactive features of scFv sequences to classify 
the polyreactive scFvs. The machine learning models with the NLP-based descrip-
tors showed moderate performance, but they are more sensitive to data splits than 
structural features. Many language models have been proposed with large-scale 
databases of protein sequences over the families of related protein sequences [32–
34, 59]. Although we used four NLP descriptors in this work, the more advanced 
NLP descriptors with large-scale databases would improve the model performance. 
The NLP protein descriptors have the potential for diverse protein engineering tasks 
[31] because it enables us to compare the protein sequences too diverse to perform 
multiple sequence alignment analysis. However, there is an inevitable limitation of 
the sequence-function gap, because protein functions are from the accurately folded 
protein structures.

Protein structures form the basis of the structure–activity relationship. Although 
the protein structural features help the analysis of the relationship, the relatively 
small number of experimentally determined protein structures has set a limit on 
wide applications of machine learning and deep learning approaches with the deter-
mined protein structures. Protein structure prediction methods such as AlphaFold 
[37, 39], trRosetta [38], and RoseTTAFold [36], have enabled the rapid generation of 
protein structural features for machine learning approaches. Although we used the 
trRosetta method to predict the protein structures of scFvs due to the computational 
cost, AlphaFold 2 and RoseTTAFold have been known to outperform trRosetta to 
predict antibody structures [39, 60], which can improve model performance with the 
structural features from the more accurate protein structures. The more accurate 
and rapid protein structure prediction methods would accelerate the applications of 
machine learning and deep learning approaches with protein structures.

Not only the development of protein descriptors but also the advance of machine 
learning algorithms would help make prediction models. The decision tree models 
such as GBM, LGBM, RF, and XGB used in this work are ensemble methods with 
weak learners and are computationally efficient models and have been used in 
various classification tasks [61, 62]. Although we use only the decision-tree-based 
ensemble models, there are alternative or possibly better machine learning algo-
rithms. Kernel methods, such as support vector machine (SVM), calculate the simi-
larity between inputs and implicitly project the features into a high dimensional 
space. The SVM has been successfully applied to various classification tasks [63, 64] 
and worked well when there is a clear margin of separation between two classes. 
However, the SVM requires high computational cost and is not suitable for large 
data sets, because the SVM needs to calculate the similarity between input features. 
Recently, a canonical deep neural network architecture for tabular data (TabNet) 
was developed and showed better performance than the decision tree models for 
some supervised learning and semi-supervised learning tasks [65]. Therefore, to find 
a suitable combination for the training data, it would be helpful to build models with 
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diverse machine learning algorithms and compare the performance their perfor-
mance in the future.

Conclusion
Monoclonal antibodies have been essential biological therapeutic agents, which require 
optimizing many physical properties for clinical development after in  vitro library 
screening. Polyreactivity is one of the most important properties in clinical development 
because it leads to poor pharmacokinetic properties and potential poor candidates. 
We made prediction models with the known polyreactive antibody features and NLP 
descriptors, where we predicted all scFv protein structures with trRosetta to calculate 
structure-based features. The best model in this work showed a robust performance 
( AUC = 0.840 ) with 76.5% accuracy and 75.5% precision rates. Therefore, computa-
tional prediction for polyreactivity with our models would help detect the polyreactive 
mAbs and allow for the prevention of potentially poor candidates in the early discov-
ery stage. Furthermore, our approaches would be promising to make machine learning 
models with quantitative data from high throughput assays for industrial enzyme and 
antibody screening.
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