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Abstract

Apolipoprotein E4 (APOE-ε4), the strongest common genetic risk factor for Alzheimer’s disease 

(AD), contributes to worse cognition in older adults. However, many APOE-ε4 carriers remain 

cognitively normal throughout life, suggesting that neuroprotective factors may be present in 

these individuals. In this study, we leverage whole-blood RNA sequencing (RNAseq) from 

324 older adults to identify genetic modifiers of APOE-ε4 effects on cognition. Expression of 

RNASE6 interacted with APOE-ε4 status (p=4.35x10−8) whereby higher RNASE6 expression 

was associated with worse memory at baseline among APOE-ε4 carriers. This interaction was 

replicated using RNAseq data from the prefrontal cortex in an independent dataset (N=535; 

p=0.002), suggesting the peripheral effect of RNASE6 is also present in brain tissue. RNASE6 
encodes an antimicrobial peptide involved in innate immune response and has been previously 

observed in a gene co-expression network module with other AD-related inflammatory genes, 

including TREM2 and MS4A. Together, these data implicate neuroinflammation in cognitive 
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decline, and suggest that innate immune signaling may be detectable in blood and confer 

differential susceptibility to AD depending on APOE-ε4.
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1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder that is the 6th leading 

cause of death among all adults in the United States (Association, 2021). The most common 

form of Alzheimer’s disease is sporadic late-onset AD (LOAD), which is complex in 

etiology and heterogeneous in clinical presentation (Bekris et al., 2010; Reitz et al., 2020). 

Sporadic LOAD is polygenic, and to date, over 40 risk loci for AD have been identified via 

large genome-wide association studies (Jansen et al., 2019; Kunkle et al., 2019; Lambert et 

al., 2013; Wightman et al., 2021). One key genetic driver is APOE (apolipoprotein E), which 

has three common polymorphic alleles: ε2, ε3, and ε4. The APOE-ε4 allele is the strongest 

common genetic risk factor for AD (Corder et al., 1993; Saunders et al., 1993). A single 

allele of APOE-ε4 can increase AD risk by up to 3 times compared to APOE-ε3, and two 

APOE-ε4 alleles can increase risk by up to 15-fold (Reiman et al., 2020; Wu and Zhao, 

2016). In addition to increased AD risk, the APOE-ε4 allele is associated with increased 

brain amyloid and tau burden (Baek et al., 2020), subsequently leading to downstream 

neurodegeneration and cognitive impairment (Jack et al., 2013; Jack et al., 2010). However, 

many APOE-ε4 carriers remain cognitively normal throughout life despite the increased AD 

risk (Emrani et al., 2020), suggesting that there may be neuroprotective molecular modifiers 

of APOE effects. For example, mutations within the caspase 7 (CASP7) and Klotho (KL) 

genes were suggested to have protective effects (e.g., reduced AD risk, slower cognitive 

decline) in APOE-ε4 carriers in comparison to non-carriers (Seto et al., 2021). In the 

brain, epigenetic modifiers of APOE-ε4 have been observed, such as the recently described 

epigenomic factor of activated microglia (EFAM; (Ma et al., 2021). Indeed, identifying and 

describing APOE modifiers may provide critical insight into the pathophysiology of AD and 

provide novel targets for therapeutic intervention.

The primary function of the APOE protein is lipid transport and signaling, which plays 

important roles in the brain, innate immune system, and vascular system (Husain et al., 

2021; Safieh et al., 2019). Given the roles of APOE in both the peripheral and central 

nervous system (CNS), whole blood transcriptomics may provide an opportunity to identify 

novel genes and pathways that contribute to neuroprotection by modifying the effect of 

APOE. Blood transcriptomics provide some important advantages over brain transcriptomics 

alone, particularly when seeking for modifiers of APOE effects. While transcriptomic 

signatures in blood do not perfectly mimic the brain (Sullivan et al., 2006; Tylee et al., 

2013), many of the gene networks and molecular pathways that change over the course of 

AD are measurable in the blood and provide a window into relevant biological cascades such 

as inflammation (Cullen et al., 2021). Moreover, peripheral inflammation changes very early 

in AD and contributes to AD progression (King et al., 2018; Tao et al., 2018), with emerging 
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evidence (Kloske and Wilcock, 2020; Krasemann et al., 2017) suggesting that non-CNS 

inflammation is particularly relevant among APOE-ε4 carriers.

In the present study, we leverage whole blood RNA sequencing (RNAseq) data from the 

Vanderbilt Memory and Aging Project (VMAP) to identify genes that modify the association 

between APOE-ε4 and cognitive performance. We then extend our analyses to the brain 

to characterize whether genes identified in blood show comparable modifying effects in 

the brain. By leveraging blood and brain transcriptomics, we aim to better characterize 

the molecular modifiers of APOE on cognition and potentially uncover novel blood-based 

biomarkers and targets for future drug discovery efforts.

2. Materials and Methods

2.1 Participants

The Vanderbilt Memory and Aging Project (VMAP) is a longitudinal aging cohort that was 

established in 2012 to investigate the relationship between vascular health and brain aging. 

335 individuals were enrolled; the study preferentially recruited participants with mild 

cognitive impairment (MCI, N=168) aged 60 and above along with matched counterparts 

who had normal cognition (N=167). Individuals with cognitive diagnoses other than MCI or 

normal cognition (NC), history of neurological disease, MRI contraindications, heart failure, 

major psychiatric illness, or systemic or terminal illness were excluded. At enrollment, 

participants underwent a comprehensive evaluation including, but not limited to, APOE 
genotyping, neuroimaging, cognitive assessment, blood draw, and optional lumbar puncture 

(Jefferson et al., 2016).

Independent data for replication were acquired from the Religious Orders Study (ROS) and 

the Rush Memory and Aging Project (MAP), known as ROS/MAP collectively. The ROS 

began in 1994 and enrolls priests and nuns from across the United States. The MAP cohort 

began in 1997 and enrolls lay persons from northeastern Illinois. Both longitudinal aging 

studies were launched to better understand risk factors for and the neurobiology of cognitive 

decline and dementia. Both studies were approved by an Institutional Review Board of Rush 

University Medical Center. All participants were without known dementia at enrollment, 

agree to comprehensive neuropsychological evaluations, and sign an Anatomic Gift Act 

and Repository Consent to allow their data to be shared (Bennett et al., 2018). Additional 

ROS/MAP data can be requested via the Accelerating Medicines Partnership – Alzheimer’s 

Disease (AMP-AD) Knowledge Portal (https://adknowledgeportal.synapse.org/) as well as 

the Rush Alzheimer’s Disease Center Resource Sharing Hub (https://www.radc.rush.edu/).

2.2 Neuropsychological Assessment

Composite measures for memory and executive function in VMAP were generated following 

previously described procedures (Crane et al., 2012; Kresge et al., 2018). Briefly, the 

memory composite leveraged data from the California Verbal Learning Test (2nd edition) 

and the Biber Figure Learning Test. The executive function composite score in VMAP was 

derived from the following tasks: Digit Span from the Wechsler Adult Intelligence Scale 
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(3rd edition), Trail Making Test, Stroop Color Word Inhibition, and Controlled Oral Word 

Association.

The global cognition variable in ROS/MAP was generated by averaging the Z-scores of 

17 neuropsychological tests across five domains of cognition (i.e., episodic, semantic, 

and working memory, perceptual orientation, and perceptual speed). This composite 

measurement has been described fully elsewhere (Wilson et al., 2015).

2.3 RNA Extraction, Library Preparation, and Sequencing

2.3.1 Vanderbilt Memory and Aging Project—Blood draws were performed in 

the morning under fasting conditions. Approximately 2.5 mL of whole blood were kept 

frozen at −80oC in a PAXgene tube (QIAGEN, 761115) until processing (Jefferson et al., 

2016). RNA extraction, library preparation, and RNA sequencing were performed by the 

VANTAGE Core (Vanderbilt University, TN, USA). Total RNA was extracted from whole 

blood using the QIASymphony RNA Kit (QIAGEN, 931636), and both ribosomal RNA 

and hemoglobin were depleted with the NEBNext Globin and rRNA Depletion Kit (New 

England BioLabs, Inc., E7750). Library preparation was completed using the NEBNext 

Ultra Directional Library Prep Kit (New England BioLabs, Inc., E7420) before sequencing 

was performed using 150 base pair (bp) paired end reads on an Illumina NovaSeq 6000 

(Illumina), targeting an average of 50 million reads per sample.

2.3.2 Religious Orders Study and Memory and Aging Project—50 mg of frozen 

brain tissue were dissected and homogenized in DNA/RNA shield buffer (Zymo Research, 

R1100). RNA was extracted from the dorsolateral prefrontal cortex (DLPFC), posterior 

cingulate cortex (PCC), and head of the caudate nucleus (CN) using the Chemagic RNA 

tissue kit (PerkinElmer, Inc. CMG-1212) on a Chemagic 360 instrument. 500 ng of total 

RNA was used as input for sequencing library generation and rRNA was depleted with 

RiboGold (Illumina, 20020599). A Zephyr G3 NGS workstation (PerkinElmer, Inc.) was 

utilized to generate TruSeq stranded sequencing libraries (Illumina, 20020599). Libraries 

were normalized for molarity and sequenced using 2 x 150 bp paired end reads on a 

NovaSeq 6000 (Illumina) targeting a total of 40 to 50 million reads. Additional details 

are previously described (De Jager et al., 2018; Lee et al., 2021; Mostafavi et al., 2018). 

These data are available on the AMP-AD Knowledge Portal (https://www.synapse.org/#!

Synapse:syn3219045).

2.4 RNAseq Alignment and Quality Control

RNAseq alignment and quality control (QC) for both VMAP and ROS/MAP samples 

largely followed a previously reported procedure used by the AMP-AD Consortium 

(Logsdon et al., 2019). Alignment was performed using STAR (version 2.5.2b) with 

twopassMode set to basic (Dobin et al., 2013). Reads were aligned to the Ensembl 

(GRCh38, version 99) reference genome (Howe et al., 2021), and gene counts were 

computed using the featureCounts (Liao et al., 2014) command from the Subread package 

(version 2.0.0). Summary metrics were calculated using Picard (version 2.18.27, http://

broadinstitute.github.io/picard/) to evaluate sample quality and for later use as covariates 

(Institute, 2019).
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Before QC of the VMAP whole blood RNAseq, samples with RNA integrity number (RIN) 

less than 3.0 were excluded. In addition, genes with missing gene length or GC-content were 

removed, after which all gene counts were quantile normalized using the cqn R package 

(version 1.30.0) to remove technical variability due to gene length and GC-content (Hansen 

et al., 2012). At this time, gene expression values greater than three standard deviations 

from the mean expression for each gene were removed. Additional samples were removed 

if deemed principal component outliers or if missing RIN, age, sex, other demographic 

information, or cognition data prior to batch correction. Expression values were adjusted for 

batch effects using the R package limma (version 3.40.6; (Law et al., 2014; Ritchie et al., 

2015). This left 60,669 genes and 324 samples in VMAP for discovery analyses.

QC of the bulk brain RNAseq from ROS/MAP followed the aforementioned pipeline. From 

these data, samples with RIN less than 4.0 or with post-mortem interval (PMI) greater than 

24 hours were excluded. Additional samples were removed if missing covariates or cognitive 

data resulting in a final dataset of 535 samples.

Sensitivity analyses leveraged RNAseq data from VMAP that was additionally adjusted (i.e., 
along with quantile normalization and controlling for batch) for the following covariates 

using limma: sex, race, APOE-ε4 allele count, RIN, age, education, percentage pass-filter 

reads aligned, and percent coding, intergenic, intronic, and ribosomal bases.

2.5 Biomarker Quantification

2.5.1 VMAP Cerebrospinal Fluid Biomarkers—Cerebrospinal fluid (CSF) was 

collected from 155 individuals enrolled in VMAP. A total of 151 individuals remains when 

samples missing covariates are removed (Supplementary Table 1). Additional detail on 

lumbar puncture and collection is described elsewhere (Jefferson et al., 2016). Beta-amyloid 

(Aβ1-42, Fujirebio, 81583), total tau (Fujirebio, 81579), and tau phosphorylated at threonine 

181 (pTau, Fujirebio 81581) were quantified using commercially available immunoassays. 

The CSF thresholds for pathologic amyloid and tau positivity are as follows: CSF Aβ1-42 

less than 530 ng/L (Skillbäck et al., 2015) and CSF total tau levels greater than 400 ng/L 

(Dorey et al., 2015).

2.5.2 ROS/MAP Brain Neuropathological Measures—Neuropathological outcomes 

included beta-amyloid (Aβ), phosphorylated tau, neuritic plaques, and neurofibrillary 

tangles (NFT). Aβ and phosphorylated tau were identified via immunohistochemistry and 

quantified via image analysis. The overall amyloid level is defined as the mean percent 

of cortex occupied by Aβ across eight brain regions (hippocampus, angular gyrus, and 

entorhinal, midfrontal, inferior temporal, calcarine, anterior cingulate, and superior frontal 

cortices). The overall tangle density is defined as the mean cortical density per mm2 of 

the same eight brain regions mentioned above. Neuritic plaque and NFT burden were 

determined by microscopic examination of silver-stained slides across 5 brain regions 

(hippocampus and entorhinal, midtemporal, inferior parietal, and midfrontal cortices). These 

neuropathological measures were previously characterized by ROS/MAP (Bennett et al., 

2018). CERAD scores (Definite and/or Probable AD, 1 and 2) and Braak staging (Braak < 
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4) were used to determine amyloid and tau positivity (Bennett et al., 2006; Braak and Braak, 

1991; Mirra et al., 1991).

2.6 Statistical Analyses

All statistical analyses were performed using R (version 3.6.3, https://www.r-project.org/). 

False-discovery rate (Benjamini and Hochberg, 1995) was used to correct for multiple 

comparisons in all analyses, with family-wise α set a priori to 0.05. Both baseline and 

longitudinal memory and executive function scores were used as continuous outcome 

variables. Linear regression was used to assess the interaction between APOE-ε4 positivity 

(i.e., presence of at least one ε4 allele) and gene expression measured by RNAseq on cross-

sectional memory performance. Linear-mixed effects regression tested the APOE interaction 

with gene expression on longitudinal memory, where the intercept and interval from baseline 

were entered as both fixed and random effects. Covariates in both models included baseline 

age and sex.

Replication analyses were performed using ROS/MAP samples. Specifically, linear 

regression models were used to examine the interaction between APOE-ε4 positivity and 

bulk brain gene expression in the DLPFC, CN, and PCC (Supplementary Table 2) on the 

last global cognition composite score before death. Covariates included PMI, sex, and age at 

death.

2.7 Sensitivity Analyses

Sensitivity analyses included models with more stringent QC for VMAP whole blood 

RNAseq data (i.e., adjusted for batch, sex, age, RIN, percentage of coding, intronic, and 

intergenic bases) to determine whether the observed results were due to technical effects. 

Additional sensitivity analyses included stratifying by cognitive diagnosis and covarying for 

education because of their effects on cognitive performance.

2.8 Post-hoc Blood to Brain RNASE6 Expression Correlation

To investigate the correlation between peripheral RNASE6 expression and brain RNASE6 
expression, gene expression data from the NIH Genotype-Tissue Expression (GTEx) Project 

was leveraged (Lonsdale et al., 2013). Linear regression and Pearson correlation were 

used to assess the relationship between brain and blood RNASE6 expression. RNASE6 
expression in the brain cortex (N=137) and hippocampus (N=118) were evaluated against 

whole blood RNASE6 expression.

2.9 Post-hoc Biomarker Analyses

Given the relationship between APOE and AD biomarkers, we plan to examine 

the interaction between amyloid and tau positivity and any significant gene hits on 

cognition to better understand the biological mechanisms behind our cognitive results. 

For these analyses, we leveraged CSF measurements of amyloid and tau in VMAP and 

neuropathological measurements from ROS/MAP. Covariates for these analyses included 

age, sex, and PMI where relevant. Using similar regression models, we also investigated 

whether the gene x APOE-ε4 interaction had any effect on baseline CSF amyloid and tau 

levels, covarying for age and sex.
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3. Results

The characteristics of individuals from VMAP (N=324) and those from ROS/MAP who 

have DLPFC RNAseq (N=535) are presented in Table 1. Overall, a larger percentage 

of participants in VMAP are APOE-ε4 positive (34.8% versus 23.1%, respectively) and 

have normal cognition (51.8% versus 34.2%). VMAP participants are also younger than 

participants from ROS/MAP, on average. In contrast, a higher percentage of participants 

in ROS/MAP are tau and amyloid positive and they are more highly educated on average. 

It should be noted that cognition scores cannot be compared across studies because two 

different cognitive composites are used that are not scaled across studies. The total number 

of samples from each brain region in ROSMAP can be found in Supplementary Table 2.

3.1 Gene Expression Interactions with APOE-ε4 on Cognition

Of the 60,669 genes tested, expression of RNASE6, ribonuclease A family member K6, 

interacted with APOE-ε4 status on baseline memory in VMAP (β=−1.16, p.fdr=0.003, 

p.unadjusted= 4.35x10−8) whereby higher RNASE6 expression in whole blood was 

associated with worse memory performance at baseline among APOE-ε4 carriers (β=−0.96, 

p=4.43x10−8). In contrast, higher levels of RNASE6 expression were nominally associated 

with better memory among APOE-ε4 non-carriers (β=0.22, p=0.09, Figure 1A). We 

observed similar results for another cognitive domain, executive function (β=−0.54, 

p=0.008, Figure 1B). We did not observe any significant interactions between whole blood 

gene expression and APOE-ε4 positivity on longitudinal cognition.

The RNASE6 x APOE-ε4 interaction on baseline memory remained significant in sensitivity 

analyses (see Methods) when leveraging more stringent QC controlling for technical 

variation in RNA sequencing (p=2.23x10−8, Table 2). The interaction also remained 

significant when stratifying by diagnosis (i.e., normal cognition or MCI, Figure 1C, D) 

and covarying for education (p-values<0.00657, Table 2).

3.2 Replication in ROS/MAP

Leveraging data from an independent cohort, ROS/MAP, we examined the interaction 

between RNASE6 expression in brain tissue and APOE-ε4 genotype on global cognition 

at the final visit prior to death. Using bulk RNAseq data from 3 distinct brain regions: 

DLPFC, PCC, and head of the CN, we observed replication of the previous interaction on 

memory (β=−0.35, p=0.002) in the DLPFC (Supplementary Figure 1), though the observed 

effects were not present in the PCC or the CN (p-values>0.3; Table 3). Similar to VMAP, the 

RNASE6 x APOE-ε4 interaction was not significant longitudinally in ROS/MAP.

3.3 Correlation of Blood and Brain RNASE6 expression

To further investigate the relationship between blood and brain RNASE6 expression, we 

utilized data from the NIH GTEx project (Lonsdale et al., 2013) in which RNASE6 
expression was measured in both whole blood and brain tissue from the same individuals. 

Whole blood RNASE6 expression was significantly associated with RNASE6 expression 

in both the brain cortex (r=0.30, β=0.39, p=0.0004, Supplementary Figure 3A) and 

hippocampus (r=0.28, β=0.40, p=0.0024, Supplementary Figure 3B).
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3.4 Post-Hoc Analyses with Biomarkers

Like our initial findings within VMAP, we observed an interaction with amyloid positivity 

whereby higher levels of RNASE6 in blood were associated with worse baseline memory 

in VMAP (β=−1.14, p=0.001, Figure 2A). We also observed a similar interaction with tau 

positivity whereby higher levels of RNASE6 were associated with worse baseline memory 

(β=−0.63, p=0.04, Figure 2B). Neither interaction was significantly associated with baseline 

executive function (p-values>0.1). We replicated the amyloid interaction effect in ROS/MAP 

DLPFC leveraging an immunohistochemical measurement of amyloid (β=−0.26, p=0.007, 

Supplementary Figure 2), though the tau interaction did not replicate (p=0.1).

We also wanted to examine whether RNASE6 expression influenced AD biomarker levels 

in APOE-ε4 carriers and non-carriers. The main effect of RNASE6 was significantly 

associated with CSF Aβ1-42 (Figure 3A, β=91.8, p=0.02) such that higher RNASE6 levels 

in blood were correlated with reduced brain amyloid burden. However, when examining 

the RNASE6 x APOE-ε4 positivity interaction, this effect appeared to be in APOE-ε4 

non-carriers only, though the interaction was non-significant (p=0.1, Figure 3A). Though 

RNASE6 expression alone was not significantly associated with CSF tau or pTau, it 

significantly modified the relationship between APOE-ε4 and both CSF tau (β=230.1, 

p=0.003) and CSF pTau (β=22.7, p=0.01) levels such that APOE-ε4 carriers expressing 

higher levels of RNASE6 in blood have increased tau pathology at baseline (Figure 3B, C). 

None of these effects were observed using neuropathological measures of amyloid and tau in 

ROS/MAP.

4. Discussion

In this study, we observed the significant APOE4-modifying effect of RNASE6 expression, 

in both blood and brain tissues, on cognition. Specifically, APOE-ε4 carriers expressing 

higher levels of RNASE6 in whole blood had worse baseline memory and executive function 

performance. We also replicated this novel discovery in an independent sample leveraging 

transcriptomic data from the dorsolateral prefrontal cortex. We also demonstrated that 

whole blood RNASE6 expression significantly correlates with brain RNASE6 expression. 

In addition, we found that higher RNASE6 levels are associated with poorer memory 

performance in individuals that are amyloid-positive and/or tau-positive in comparison to 

individuals who are biomarker negative (Figure 2A, B). RNASE6 also modifies the effect of 

APOE-ε4 on CSF tau and pTau levels, such that APOE-ε4 carriers expressing higher levels 

of RNASE6 have increased tau burden.

RNASE6 is a fascinating, novel inflammatory risk factor for AD. Excitingly, RNASE6 
expression in whole blood significantly correlates with RNASE6 expression in the brain 

when using data measured within the same participants from GTEx (Lonsdale et al., 2013), 

suggesting that it may have utility as a blood-based biomarker in lieu of brain samples.

RNASE6 protein exhibits antimicrobial activity (Becknell et al., 2015). Overexpression of 

endogenous RNASE6 in mice is also associated with increased levels of reactive oxygen 

species as well as increased inflammatory factor secretion (Fang et al., 2021). In addition, 

RNASE6 levels are increased in individuals with AD across several brain regions including 
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the cerebellum, inferior frontal gyrus, and temporal cortex (AMP-AD Agora; https://

agora.adknowledgeportal.org/genes/(genes-router:gene-details/ENSG00000169413). It has 

been established that immune function plays a role in cognitive decline (King et al., 2018; 

Shen et al., 2019; Tao et al., 2018), and recent evidence has implicated the importance 

of neuroinflammation early in the AD cascade (Pascoal et al., 2021) driving downstream 

neurodegeneration. Furthermore, different microglial pathways appear to be involved in the 

accumulation of amyloid and tau proteinopathies (Patrick et al., 2021). RNASE6 was found 

to be upregulated in neurofibrillary tangle-bearing neurons suggesting that it may play a 

role in increasing tau pathology burden (Miller et al., 2013). However, we also observe a 

trend in which higher RNASE6 expression in APOE-ε4 non-carriers correlates to reduced 

brain amyloid burden (i.e., higher CSF Aβ1-42, Figure 3A). Though we cannot conclude 

it without further study, we hypothesize that RNASE6 may play two distinct roles in both 

the neuroinflammatory-related clearance and deposition of AD neuropathology in APOE-ε4 

carriers. In contrast, the observed effect of RNASE6 may simply be due to differences in the 

inflammatory milieu between APOE-ε4 carriers and non-carriers (Friedberg et al., 2020).

Our significant results are restricted to cross-sectional cognitive performance. Although we 

looked at longitudinal outcomes, it should be noted that the RNASE6 x APOE-ε4 interaction 

on cognitive performance over time is non-significant (p.unadjusted > 0.05) in whole blood 

and brain tissue suggesting that RNASE6 may play a role in the overall biological state of 

aging and/or neurodegeneration instead of affecting the rate of cognitive decline during the 

neuropathological progression of AD. This is further supported by our discovery that the 

RNASE6 x APOE-ε4 interaction on cognition remains significant despite diagnosis (i.e., 

individuals with normal cognition or MCI).

Additionally, we note that carrying the APOE-ε4 allele does not modify the association 

between amyloid and cognition in our sample (Supplementary Figure 4). The amyloid x 

RNASE6 interaction results and the lack of an APOE-ε4 x amyloid interaction in our sample 

suggests the effects of APOE-ε4 observed here are likely reflecting the known effects of 

APOE in driving AD neuropathology, primarily through amyloidosis. Thus, one explanation 

for the lack of a longitudinal association between baseline RNASE6 and cognitive decline 

among APOE-ε4 carriers (despite a strong association with cross-sectional cognition) may 

be that the effect of RNASE6 among amyloid-positive individuals occurs very early in 

disease, but longitudinal analysis of RNASE6, amyloid, and cognition would be needed 

to confirm this hypothesis. If RNASE6 expression is indeed a surrogate for an immune 

response, it may be that APOE-ε4 carriers have a higher susceptibility to a deleterious 

immune response to amyloid very early in disease.

However, there are other possibilities as to why we do not see longitudinal effects of the 

RNASE6 x APOE-ε4 interaction. First, we were unable to deconvolve the relationship 

between APOE-ε4 and amyloid in our analyses, although our results suggest the APOE-ε4 

interaction effect is largely mediated by amyloid burden. Second, these analyses are limited 

by small sample sizes and the lack of longitudinal gene expression and biomarker data. 

Thus, studies utilizing additional RNAseq, cognition, and biomarker timepoints are needed 

for further examination of RNASE6 in this context.
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There is substantial evidence that neuroinflammatory pathways may be particularly relevant 

among APOE-ε4 carriers (reviewed in (Kloske and Wilcock, 2020), and contribute to 

impaired amyloid clearance (Qiao et al., 2001), enhanced gliosis (Egensperger et al., 

1998), and enhanced brain cytokine levels (Lynch et al., 2003). APOE-ε4 carriers have 

also displayed prolonged inflammatory responses in comparison to non-carriers (Safieh et 

al., 2019). If RNASE6 expression is indeed a surrogate for an immune response, it can 

be hypothesized that APOE-ε4 carriers have a higher susceptibility to inflammation than 

non-carriers and also that our findings in baseline cognition may be due to prolonged 

inflammation before any changes to cognition.

RNASE6 is also in a brain gene co-expression module with several AD genes including 

TREM2 and MS4A6A (AMP-AD Agora, see above), which are both highly expressed 

in microglia (Deming et al., 2019; Hickman and El Khoury, 2014). In publicly available 

microglia data published previously, both RNASE6 and TREM2 are upregulated in an 

AD-associated microglial cluster (Miller et al., 2013; Olah et al., 2020).

As aforementioned, the report discussing EFAM and its impact on APOE-ε4 (Ma et al., 

2021) provides an interesting convergence of observations from the peripheral and CNS 

resident immune systems; future work can explore whether these two factors (EFAM and 

RNASE6) are independently influencing APOE-ε4 or may synergize. In addition, future 

work on RNASE6 expression in microglia may help clarify the potential mechanistic 

pathway of the observed effect. It is also notable that another RNASE family gene, 

RNASE13 was previously associated with executive function resilience (Mukherjee et al., 

2014), suggesting that this family of proteins may be exciting targets for future investigation, 

particularly in response to pathology along an inflammatory pathway.

This study has multiple strengths including our multi-modal discovery analyses, independent 

replication, and the use of comprehensive longitudinal cognitive data from two deeply 

characterized aging studies. Furthermore, our findings that brain and blood RNASE6 
expression are significantly correlated highlight the potential of blood transcriptomics to 

identify inflammatory and/or immune factors that have additional effects on the brain. 

Blood draws are also more accessible to individuals than in comparison to other procedures 

such as lumbar punctures, making similar analyses using blood transcriptomics increasingly 

viable in larger or more diverse populations. Also, recent studies not only allude that blood 

transcriptomics are useful in predicting AD (Lee and Lee, 2020) but also that brain markers 

of AD replicate in the blood, further supporting that RNASE6 may be an promising target 

for future study (Iturria-Medina et al., 2020; Panitch et al., 2022).

However, there are limitations in our study that should be considered. The individuals in 

our sample are largely non-Hispanic white and highly educated, limiting the generalizability 

of our results. We also lack functional data to support a specific mechanism of action; it is 

particularly challenging given that RNASE6 biology and the relationship between peripheral 

and brain RNASE6 expression is not well-characterized. Along with these considerations, 

the gene expression and pathology data used in our analyses are both cross-sectional; we 

cannot make a conclusion on how RNASE6 expression may affect AD neuropathology over 

time nor on how a diagnosis of AD may affect RNASE6 expression longitudinally. Future 
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work with data captured both peripherally and centrally will be critical to extend these 

findings.

4.1 Conclusion

To conclude, we identified a gene, RNASE6, that modifies the association between 

APOE-ε4 and baseline cognition. In addition to supporting previous analyses implicating 

neuroinflammation in cognitive decline, our results suggest that data from blood 

transcriptomics can provide information about AD-relevant biological changes that may 

be occurring in the brain.
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Fig. 1. APOE-ε4 allele carriers in VMAP have worse baseline cognition in the presence of higher 
levels of RNASE6 expression.
A) A scatterplot demonstrating how RNASE6 expression modifies the association 

between APOE-ε4 positivity and cognitive performance (β=−1.16, p=4.35x10−8). Baseline 

composite memory scores are denoted on the y-axis; and the x-axis represents quantile 

normalized and batch controlled RNASE6 expression in whole blood. Points and lines are 

colored by APOE-ε4 positivity where APOE-ε4 carriers are denoted by the color red. B) 

Baseline executive function scores are denoted on the y-axis. APOE-ε4 carriers expressing 

higher levels of RNASE6 also have worse baseline executive function (β=−0.54, p=0.008). 

C) A scatterplot including only individuals with normal cognition (β=−0.58, p=0.007). D) A 

scatterplot including only individuals with MCI (β=−0.87, p=0.002).
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Fig. 2. Amyloid and tau positivity drives poorer cognitive performance at baseline
A) A scatterplot demonstrating how RNASE6 expression modifies the association between 

amyloid positivity and baseline memory. Amyloid-positive individuals expressing higher 

levels of RNASE6 have worse baseline memory than individuals who are not amyloid-

positive (β=−1.14, p=0.001). Baseline composite memory scores are denoted on the y-axis; 

and the x-axis represents quantile normalized and batch controlled RNASE6 expression in 

whole blood. Points and lines are colored by amyloid positivity where amyloid positivity is 

denoted by the color red. B) Tau-positive individuals expressing higher levels of RNASE6 
also have worse baseline memory than individuals who are not tau-positive (β=−0.63, 

p=0.04).
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Fig. 3. CSF biomarker levels are modulated by RNASE6 expression.
A) Brain amyloid burden is reduced in APOE-ε4 non-carriers when RNASE6 expression is 

high (β= 91.8, p=0.02). Baseline CSF Aβ1-42 levels are denoted on the y-axis and whole 

blood RNASE6 expression is on the x-axis. CSF Aβ1-42 levels have an inverse relationship 

with brain amyloid burden such that higher CSF Aβ1-42 is indicative of lower brain amyloid 

levels. B) In contrast, CSF tau levels increase as RNASE6 levels increase in APOE-ε4 

carriers (β=230.1, p=0.003). C) CSF pTau levels also increase as RNASE6 levels increase 

in APOE-ε4 carriers (β=22.7, p=0.01). In all plots, CSF biomarker levels are denoted on 

the y-axis; and the x-axis represents quantile normalized and batch controlled RNASE6 
expression in whole blood. Points and lines are colored by APOE-ε4 positivity where 

APOE-ε4 carriers are denoted by the color red.
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Table 1:

Participant Demographics

VMAP ROS/MAP
a P

N 324 535

Age in Years
b 72.9 (7.3) 88.5 (6.6) < 1x10−5

Composite Cognition Score −0.009 (0.97)
c

−0.78 (1.04)
d

% Male 58.0 36.8 < 1x10−5

Education in Years 15.8 (2.7) 16.4 (3.5) 0.02

% Normal Cognition 51.8 34.2 < 1x10−5

# APOE-ε4 Alleles (0/1/2) 211 / 92 / 21 411 / 118 / 6 0.0002

% Amyloid Positive 30.4
e 60.5 < 1x10−5

% Tau Positive 43.0
e 52.3 0.04

a
Samples with dorsolateral prefrontal cortex RNAseq; demographics for other brain regions can be found at Supplementary Table 2

b
VMAP: age at baseline, ROSMAP: age at death

c
Memory composite score at baseline

d
Global cognition composite score at last visit before death

e
CSF measurements only available in 151 participants. Values are given as mean (SD) unless otherwise noted. Analysis of variance (ANOVA) 

analyses were performed to assess differences between the discovery (VMAP) and replication (ROS/MAP) datasets.
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Table 2:

Sensitivity Analysis Results for the RNASE6 x APOE-ε4 Interaction on Baseline Memory

Analysis N B SE P

Original RNASE6 x APOE-ε4 Interaction 324 −1.164 0.208 4.35x10−8

Using Strict RNAseq QC 324 −1.197 0.209 2.23x10−8

Participants with NC 168 −0.580 0.211 6.57x10−3

Participants with MCI 128 −0.867 0.278 2.30x10−3

Including Education as a Covariate 324 −1.042 0.206 7.47x10−7

Abbreviations: NC = normal cognition, MCI = mild cognitive impairment, B = beta, SE = standard error, P = p-value, QC = quality control
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Table 3:

Interaction Results of RNASE6 Expression and APOE-ε4 Positivity on Global Cognition at Last Visit in 

ROS/MAP Brain Regions

Tissue N B SE P.unadjusted

DLPFC 535 −0.349 0.11 0.002

PCC 322 −0.167 0.18 0.36

CN 435 −0.080 0.17 0.63

Abbreviations: B = beta, SE = standard error, P = p-value, DLPFC = dorsolateral prefrontal cortex, PCC = posterior cingulate cortex, CN = head of 
the caudate nucleus.
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