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Abstract

Background

A fatal case of Japanese encephalitis (JE) occurred in a resident of the Tiwi Islands, in the

Northern Territory of Australia in February 2021, preceding the large JE outbreak in south-

eastern Australia in 2022. This study reports the detection, whole genome sequencing and

analysis of the virus responsible (designated JEV/Australia/NT_Tiwi Islands/2021).

Methods

Reverse transcription quantitative PCR (RT-qPCR) testing was performed on post-mortem

brain specimens using a range of JE virus (JEV)-specific assays. Virus isolation from brain

specimens was attempted by inoculation of mosquito and mammalian cells or embryonated

chicken eggs. Whole genome sequencing was undertaken using a combination of Illumina

next generation sequencing methodologies, including a tiling amplicon approach. Phyloge-

netic and selection analyses were performed using alignments of the Tiwi Islands JEV

genome and envelope (E) protein gene sequences and publicly available JEV sequences.

Results

Virus isolation was unsuccessful and JEV RNA was detected only by RT-qPCR assays

capable of detecting all JEV genotypes. Phylogenetic analysis revealed that the Tiwi Islands

strain is a divergent member of genotype IV (GIV) and is closely related to the 2022 Austra-

lian outbreak virus (99.8% nucleotide identity). The Australian strains share highest levels of

nucleotide identity with Indonesian viruses from 2017 and 2019 (96.7–96.8%). The most

recent common ancestor of this Australian-Indonesian clade was estimated to have

emerged in 2007 (95% HPD range: 1998–2014). Positive selection was detected using two
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methods (MEME and FEL) at several sites in the E and non-structural protein genes, includ-

ing a single site in the E protein (S194N) unique to the Australian GIV strains.

Conclusion

This case represents the first detection of GIV JEV acquired in Australia, and only the sec-

ond confirmed fatal human infection with a GIV JEV strain. The close phylogenetic relation-

ship between the Tiwi Islands strain and recent Indonesian viruses is indicative of the origin

of this novel GIV lineage, which we estimate has circulated in the region for several years

prior to the Tiwi Islands case.

Author summary

A fatal human case of Japanese encephalitis (JE) occurred in a patient from the Tiwi

Islands of northern Australia in February 2021. The Tiwi Islands are 80km north of Dar-

win in the Timor Sea. Attempts to culture the virus from post-mortem brain tissue were

unsuccessful. However, the whole genome was successfully sequenced and compared phy-

logenetically to other JE viruses. The Tiwi Islands strain was shown to belong to the rarely

detected genotype IV (GIV) of the JE virus (JEV), together with the Australian 2022 out-

break strain, and is only the second fatal case of JE associated with a GIV virus. JEV strains

isolated from Indonesia in 2017 and 2019 were shown to be the most-closely-related to

the Australian GIV strain providing evidence for the geographic origins of the emergent

Australian virus. From evolutionary analysis, the clade containing the Australian and

recent Indonesian viruses was estimated to have emerged between 1998 and 2014,

suggesting that this lineage of GIV viruses has been circulating for several years before

the Tiwi Islands case. This is the third JEV genotype to be detected in Australia and

demonstrates the ease with which new genotypes can spread and unexpectedly cause

disease in new areas. The possible origin and risks of further incursions into Australia are

discussed.

Introduction

Japanese encephalitis virus (JEV), a zoonotic mosquito-borne flavivirus, is the major viral

cause of encephalitis in Asia, with approximately 68,000 cases typically occurring annually [1],

but may exceed 100,000 cases in some years [2]. Most human infections are asymptomatic,

with an estimated less than 1% of cases resulting in a clinical disease that ranges from a mild

febrile illness to severe meningomyeloencephalitis. Approximately 25% of clinical cases are

fatal, with a further 50% of cases resulting in permanent neuropsychiatric sequelae [3]. It is

well established that the virus exists in a zoonotic transmission cycle between ardeid water

birds, such as herons and egrets, and Culex mosquitoes, particularly Culex tritaeniorhynchus.
Domestic pigs are the major amplifying host [4–6]. The virus occurs as five phylogenetically

distinct genotypes (GI-GV), each with its own geographic distribution pattern [7]. All five

genotypes are found in the Indo-Malaysia region, where JEV is endemic and believed to have

originally emerged [8], but elsewhere in Asia and Oceania, between one and three specific

genotypes have coexisted in different geographic areas over different time periods [7,9].
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JEV has demonstrated a strong propensity to spread and establish in new areas

[5,6,8,10,11]. In 1995 JEV emerged for the first time in the Australasian region when three

cases of encephalitis, two of which were fatal, occurred on Badu, an island in the central Torres

Strait (S1 Table) [12,13]. The virus was isolated from both subclinical human infections and

from Cx. annulirostris mosquitoes [12,14]. Further incursions occurred in 1998 when two

encephalitis cases were reported, one from Badu and the first case of JE on mainland Australia

in south-western Cape York [15]. Serological evidence of JEV infection was also observed in

pigs close to the site of the human case on Cape York. Partial gene sequence analysis of virus

isolates obtained in 1995 and 1998 showed that these were nearly identical [15] and belonged

to GII, and distantly related to JEV isolates from Indonesia [16].

Investigations into the origin of JEV in northern Australia strongly implicated Papua New

Guinea (PNG) as the source; three isolates of JEV were obtained from Cx. sitiens subgroup

mosquitoes trapped in Western Province [17]; serological evidence of infection from human

and porcine sera collected from various sites in PNG between 1989 and 1997 [10,18]; and clini-

cal cases of JE reported across the New Guinea island [10,19–21]. PNG mosquito isolates also

showed high levels of nucleotide identity (>99%) with isolates obtained from Badu in 1995

and 1998 [17]. It has been suggested that the JEV-infected mosquitoes were blown into north-

ern Australia from PNG by cyclonic winds [22]. A further incursion of JEV into the Torres

Strait was observed in 2000, but no human case was reported [23]. Further virus isolates were

obtained from Cx. gelidus mosquitoes and porcine sera on Badu, and were found to cluster in

a different genotype, GI, and were most closely related to isolates from Thailand [24]. How

this new genotype reached Australia remains unknown. Further isolates were obtained from

mosquitoes trapped on Badu and the Northern Peninsula Area of Cape York in 2004 [25]. The

latter represents the first isolate of JEV from mainland Australia. Serological surveillance activ-

ities by the Northern Australian Quarantine Strategy program showed frequent JEV activity in

the following years in the Torres Strait (2005, 2010, 2012, 2013, 2014, 2016 and 2017) and

Northern Peninsula Area (2019, 2020 and 2021; data extracted from Animal Health Surveil-

lance Quarterly Reports, https://animalhealthaustralia.com.au/supporting-market-access/). A

JE vaccination program continues in the outer Torres Strait Islands and no further human JE

cases have been reported from that region since 1998.

The first locally acquired Australian detection of JEV outside the Torres Strait Islands or

northern Queensland occurred in a 45-year-old person living on the Tiwi Islands, located

80km north of Darwin (Northern Territory) in the Timor Sea between Australia and Indone-

sia. The patient, who had not travelled outside their community, was hospitalised in February

2021 with a 2 day history of acute confusion and fever [26]. Flavivirus encephalitis was sus-

pected based on MRI scan and serological results, but premortem PCR tests were negative.

The patient had rapid and progressive neurological deterioration and died 15 days after admis-

sion to the intensive care unit of Royal Darwin Hospital. This case was a harbinger for the

large, multi-state outbreak in south-eastern Australia in 2022 [27,28]. In this paper, we

describe the detection, whole genome sequencing, phylogenetic and evolutionary analysis of

the virus responsible for the fatal Tiwi Islands case, and consider the possible origins of the

virus, and the risks of further incursions of new genotypes into northern Australia.

Materials and methods

Ethics statement

The use of embryonated chicken eggs (ECE) was conducted with the approval of the Com-

monwealth Scientific and Industrial Research Organisation (CSIRO) Australian Centre for

Disease Preparedness Animal Ethics Committee (permit number AEC 2023). All procedures
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were conducted according to the guidelines of the National Health and Medical Research

Council as described in the Australian code for the care and use of animals for scientific pur-

poses [29].

Samples and virus detection

Postmortem brain tissue samples from the clinical case of JE in the Tiwi Islands were sent

from Northern Territory Pathology to PathWest Laboratory Medicine in Western Australia

(PWLM) and the ACDP, Victoria, for further laboratory investigation. The Tiwi Islands, com-

prising Melville Island and Bathurst Island, are part of the Northern Territory of Australia,

located at 11˚360S 130˚490E (Fig 1). At ACDP, a 10% (w/v) homogenate of the right thalamus

was prepared in Dulbecco’s PBS (ph 7.6; Oxoid) containing antibiotics (400 IU/ml of penicillin

and 400 μg/ml of streptomycin; Sigma-Aldrich) using a 3 ml syringe and 18G blunt needle.

Samples were clarified by low-speed centrifugation (1000×g, 5 min, 4˚C) and the supernatant

used for RNA extraction and virus isolation. At PWLM, homogenate was derived from a 1

cm3 sample of post-mortem brain tissue (n = 5) in a mortar pre-chilled at –20˚C and ground

Fig 1. Map of the Tiwi Islands showing its proximity to mainland Australia and the Northern Territory. The Tiwi

Islands comprise Bathurst Island and Melville Island. The locations of major settlements on these islands are shown.

Darwin is the capital city of the Northern Territory. The map was created in QGIS version 3.26.2-Buenos Aires (QGIS

Development Team (2022). QGIS Geographic Information System. Open Source Geospatial Foundation Project.

http://qgis.osgeo.org). The base layer of the map used to generate this figure was downloaded from https://www.abs.

gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-

downloads/digital-boundary-files and is licensed under a Creative Commons Attribution 4.0 International licence.

https://doi.org/10.1371/journal.pntd.0010754.g001
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in 5 mL of virus transport medium [30] using a sterilised pestle. Samples were clarified by low-

speed centrifugation (1000×g, 5 min, 4˚C) and the supernatant used for total nucleic extraction

and virus isolation.

RNA extraction and reverse transcription quantitative PCR (RT-qPCR)

At ACDP, RNA was extracted from a sample of brain homogenate, as previously described

[31]. Real-time RT-qPCR testing was performed using JEV-specific assays [32,33]. Briefly,

PCR testing was performed in 96-well plates in a 25 μl reaction volume containing 5 μL of

RNA, 12.5 μL of AgPath One-step RT-qPCR buffer (Ambion), 1 μL of 25X reverse transcrip-

tase (RT), 1.0 μL of 10 μM each primer, 1.0 μL of 5 μM TaqMan probe, and 3.5 μL of nuclease

free water. The following cycling conditions were used: 10 min at 45˚C for reverse transcrip-

tion, 10 min at 95˚C for inactivation of RT, followed by 45 cycles of 95˚C for 15 s, 60˚C for 45

s using a 7500 Real-time PCR system (Applied Biosystems). Ct values less than 40 were consid-

ered positive.

At PWLM, RNA was extracted from each sample of brain homogenate following a column-

based extraction protocol (Roche High Pure Viral Nucleic Acid Kit) with final elution volume

of 60 μL. Diagnostic real-time RT-qPCR testing was performed using two JEV specific RT-

qPCR assays based on the methods of [34] and [35]. The assay based on [34] was performed as

a multiplex tandem PCR assay targeting the non-structural protein 5 gene (NS5) region to

detect Murray Valley encephalitis virus (MVEV), Kunjin virus (KUNV), JEV and 3’ untrans-

lated region (3’UTR) to detect West Nile virus (WNV). This assay utilised a two-step PCR sys-

tem consisting of a limited multiplex RT-qPCR followed by a single target real-time PCR with

specific probes in the second step of the assay. The second-round individual real-time PCRs of

the assay include the same primers as the first-round with the addition of hydrolysis probes for

each virus. Briefly, 20 μL volume consisting of 1x reaction buffer (ThermoFisher Scientific), 10

U RNAsin (ThermoFisher Scientific), 0.3 μL One-step SS RT enzyme (ThermoFisher Scien-

tific), 0.5 U iSTAR Taq (Scientifix Australia), 0.2 μM of each primer (MVE-F, MVE-R, WN-

10533, WN-10606, KUN-F, KUN-R, JE-F, JE-R, MS2-F and MS2-R), 2.5% DMSO and 8 μL of

RNA sample. Amplification was performed in a Kyratec (Kyratec) thermal cycler under the

following conditions: 50˚C for 30 min, 95˚C for 5 min, followed by 20 cycles of 94˚C for 30 s,

50˚C for 30 s and 68˚C for 45 s. Following amplification, the first-round PCR products were

diluted 1:10 with molecular biology grade water to reduce the transfer of possible non-specific

products into the second-round mixes. The second-round individual real-time TaqMan PCRs

were performed in 20 μL volumes consisting of 1x PCR buffer (ThermoFisher Scientific), 4

mM MgCl2, 0.2 mM dNTPs (Fisher Biotec Australia), 0.75 U DNA polymerase (ThermoFisher

Scientific), 0.2 μM of forward primer (MVE-F or WN-10533 or KUN-F or JE-F, and MS2-F),

0.2 μM of reverse primer (MVE-R or WN-10606 or KUN-R or JE-R, and MS2-R), 0.2 μM of

TaqMan probe (MVE-Probe or WN-10560-Probe or KUN-Probe or JE-Probe, and

MS2-Probe), 0.01% BSA, and 1 μL of diluted first-round PCR product. Amplification was per-

formed using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) thermal cycler

under the following conditions: 95˚C for 10 min, followed by 35 cycles of 94˚C for 10 s, 55˚C

for 90 s and 72˚C for 15 s. Fluorescence was measured at the end of the 72˚C extension step.

Ct values less than 35 were considered positive.

The assay based on the methods of [35] was performed as a one-step RT-qPCR in a 96-well

plate format. The 20 μL reaction volume comprised 8 μL of extracted nucleic acid, 10 μL

Quanta qScript XLT One-Step RT-qPCR Tough Mix (Quantabio, USA), 0.02 μL of 500 μM of

each primer and 0.04 μL of 100 μM TaqMan probe. Thermocycling conditions were as follows:

10 min at 50˚C, 1 min incubation at 95˚C then 40 cycles of 20 s at 95˚C and 80 s at 60˚C using
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a CFX96 Touch Real-Time PCR Detection System (Bio-Rad). All tests comprised duplicate

positive control samples as well as a non-template control sample interspersed every 5 samples.

Fluorescence data was automatically collected in the annealing–extension phase of the of each

PCR cycle, Ct values less than 40 were considered positive.

Virus isolation

Virus isolation from brain homogenate was attempted using both cell culture and embryo-

nated chicken egg (ECE) culture. At ACDP, cell culture isolation was performed by inocula-

tion of a sample of brain homogenate onto Aedes albopictus C6/36 cell monolayers (ATCC

CRL-1660) followed by passage onto C6/36 cells and Vero cells (ATCC CCL-81) and a third

and final pass from the second C6/36 passage supernatant onto Vero cells and BHK-21 cells

(ATCC CCL-10). All cell lines were cultured in 25 cm2 flasks, either at 37˚C (Vero, BHK-21)

or 28˚C (C6/36). Vero cells were cultured in EMEM (Gibco, ThermoFisher Scientific) contain-

ing 10% foetal calf serum (FCS; Gibco, ThermoFisher Scientific), supplemented with 1% v/v L-

glutamine (Sigma-Aldrich), 10 mM HEPES, 0.25% v/v penicillin–streptomycin (Sigma-

Aldrich) and 0.5% v/v amphotericin B (Sigma-Aldrich). BHK-21 and C6/36 cells were cultured

in BME and M199 media, respectively (Gibco, ThermoFisher Scientific), and supplemented as

for Vero cells, except for C6/36 cells which also contained 1% v/v non-essential amino acids

(Gibco, ThermoFisher Scientific). For virus isolation, growth media was removed from C6/36

cell monolayers followed by washing with PBS and inoculation with 200 μl of brain homoge-

nate. Following incubation for 45 min to allow virus adsorption, inoculum was removed, and

cells were washed with PBS, then overlaid with culture media containing supplements and 1%

(v/v) FCS. Following 10 days incubation (pass 1), cells were frozen and thawed, and the cell

suspension was centrifuged at 1000×g at 4˚C to remove debris. Clarified supernatant (1 ml)

was then passaged onto a fresh cell monolayer of either C6/36 or Vero cells and incubated for

10 or 7 days, respectively (pass 2). C6/36 cells were then processed as before, and supernatant

was passaged onto fresh Vero and BHK-21 cell monolayer for the third and final passage. Cells

were incubated at 37˚C for 7 days and observed regularly for signs of cytopathic effect (CPE)

by light microscopy. Clarified passage 3 samples were tested by real-time RT-qPCR [33] for

JEV RNA detection.

The chorioallantoic membrane (CAM) of triplicate 9–11 day old specific-pathogen free

ECEs were inoculated with 200 uL brain homogenate and incubated for 3 days at 37˚C. ECEs

were chilled or frozen, prior to harvesting CAMs, which were visually inspected for the pres-

ence of plaques and then processed as described above for cell monolayers before the next

pass. A total of 3 passages were performed and clarified supernatant from processed CAMs

was tested by RT-qPCR [33] following each passage.

At PWLM, virus isolation was attempted on brain homogenate samples by inoculation of

Vero cells as described above and monitored daily for CPE. Following 7 days of incubation,

each culture was passed onto freshly prepared Vero cell monolayers, and this was repeated for

a total of three passages. Passage three samples were extracted and tested by real-time RT-

qPCR [35] to detect the presence of JEV RNA.

Virus discovery using next generation sequencing

At ACDP, total RNA was extracted from a homogenate sample of the right thalamus of the

brain using the MagMAX extraction protocol (ThermoFisher). Ribosomal RNA was depleted

from the extract using the NEBNext rRNA Depletion Kit (Human/Mouse/Rat) (New England

Biolabs), according to the manufacturer’s instructions. A TruSeq RNA Library Prep Kit v2

(Illumina) was then used to construct libraries, which were sequenced using a P2 Reagent
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Cartridge (300 cycles) on an NextSeq2000 Instrument (Illumina). Base calling and demulti-

plexing of the reads were performed directly on the NextSeq2000 instrument. Human

sequences were removed from the raw reads by mapping to the human reference genome,

build 38 (NCBI Accession GCF_000001405.39) using the bbduk.sh command in BBMap

v.38.84 (sourceforge.net/projects/bbmap). The remaining reads were then processed by

removing TruSeq adapter sequences, trimming sequence with a quality score less than 20 and

finally discarding reads shorter than 50 bp with Trimmomatic v.0.38 [36]. The resultant reads

were then assembled with Trinity v.2.8.5 [37] using the default parameters. Assembled tran-

scripts were annotated using DIAMOND blastx v.0.9.24.125 [38] with the NCBI non-redun-

dant database (accessed 2021-07-18) and a transcript matching to the JEV genome was

extracted for further analysis. To ensure an accurate assembly, the cleaned reads were mapped

to the assembled JEV genome using Bowtie v.2.3.4 [39] and checked for inconsistencies in

Geneious v.10.2.3.

At PWLM, a previously published method was used for the preparation of metagenomic

sequencing libraries [40]. Briefly, 8 μL of nucleic acid extract was DNAse treated using 1 μL

ezDNase, 1 μL 10X ezDNAse buffer (ThermoFisher Scientific) at 37˚C for 10 minutes. Deple-

tion of host and bacterial ribosomal RNA was performed by spiking 1 μL of QIAseq FastSelect

probes (Qiagen) and incubating for 14 minutes in a step-down incubation from 75˚C– 25˚C,

as per manufacturer’s instructions. Complimentary DNA (cDNA) was reverse transcribed

from treated RNA by adding 1 μL of SuperScript IV VILO Master mix (ThermoFisher Scien-

tific), 4 μL of nuclease free water and incubating at 25˚C for 10 min, followed by 50˚C for 20

min, 85˚C for 2 min. Following cDNA synthesis, second-strand synthesis was performed by

adding 8 μL Sequenase buffer, 1 μL of (1:3 ratio) Sequenase enzyme and 11 μL nuclease free

water to the cDNA sample, followed by a slow 2 min ramp to 37˚C, an 8-min incubation and

then a 2 min inactivation step at 95˚C. A purification step was performed on the resulting dou-

ble-stranded cDNA using a 1X ratio of AMPure XP beads (Beckman Coulter), eluted in 12 μL

nuclease free water. Purified ds-cDNA was quantified using a Qubit fluorometer (Thermo-

Fisher Scientific). Libraries were constructed using the Nextera XT kit (Illumina) and

sequenced on an Illumina iSeq100 platform. Base calling and demultiplexing of reads were

performed automatically on the Illumina iSeq100 instrument and sequencing quality metrics

were assessed using FastQC v0.11. Human sequence read removal, adaptor and quality trim-

ming were performed as described above. The remaining reads were then de novo assembled

using Megahit (v.1.1.3) with default parameter settings. Assembled contigs were queried

against the entire NCBI non-redundant reference database (accessed 18-06-2021). Taxonomic

classification of assembled contigs and individual reads were performed and visualized using

MEGAN v.6.4.9. Contigs were indexed and all sequencing reads from the sample were re-

mapped using minimap2 (v.2.17). The generated genome was annotated using Geneious

Prime (v.2021.1) and manually inspected for accuracy.

Tiling amplicon-based JEV genome sequencing

Complementary DNA was synthesised from sample nucleic acid extract using the SuperScript

IV VILO Master Mix System (ThermoFisher Scientific) and used as input for the tiled ampli-

con PCR. Six microlitres of cDNA was added to each of eight singleplex PCRs, adhering to the

primer scheme described in S2 Table and PCR was performed using the Platinum SuperFi II

green master mix (ThermoFisher, Australia). The expected 1.5 Kb amplicon products from

each PCR was verified by 1% E-gel cartridge (ThermoFisher Scientific) and then pooled.

Amplicons were then purified using a 0.8X ratio of AMPure XP beads (Beckman Coulter) and

quantified using the Qubit 2.0 instrument prior to library preparation using Nextera XT DNA
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library preparation kit (Illumina, CA, USA). Size distribution assessment of the library was

performed using a Tape Station (Agilent). The pooled library was sequenced using an iSeq 100

Reagent v2 (300 cycles) on an iSeq 100 Instrument (Illumina). Base calling and demultiplexing

of reads were performed as described above and sequencing quality metrics was assessed using

FastQC v0.11.1 with only high-quality libraries used in the downstream analyses. Adaptor and

quality trimming were performed using the BBDuk.sh command (v38.84). Resulting paired-

trimmed reads were aligned to a JEV reference genome (LC461961.1), using minimap2

(v.2.17), and mapped alignment files were indexed and sorted using SAMtools (v.1.6). Primer

sequences were trimmed from the sorted read mapped alignment file using iVar (v.1.2.1).

Primer sequences were identified by comparing the mapped position of the input alignment

file to a reference position of primer sequences specified in a BED file. Primer-clipped align-

ment files were imported into Geneious Prime (v2021.1) for visual inspection prior to consen-

sus calling. Consensus sequences were generated in Geneious Prime with parameters set at 10

for minimum depth, 20 for minimum quality, and 25% for minimum frequency.

The final consensus whole genome sequence was deposited in the NCBI GenBank database

(Accession no. OM867669).

Phylogenetic analysis

The complete genome of JEV/Australia/NT_Tiwi Islands/2021 (10,949 nt) was aligned with all

complete JEV genomes available on NCBI’s GenBank using MAFFT v.7.301 [41], with the

auto flag to select the optimal alignment parameters. Maximum likelihood phylogenetic trees

were created using IQ-TREE v.2.0.6 [42] with 1,000 bootstrap replicates and an evolutionary

model selected by IQ-TREE. The phylogenetic tree was then visualised and rendered with the

R package ggtree v.1.14.6 [43].

An expanded phylogenetic tree was generated using complete envelope (E) gene (1,500 nt)

sequences, available in NCBI GenBank. The tree was generated as described above, except that

the transition model 2 (TIM2) with gamma rate heterogeneity was chosen as the most appro-

priate evolutionary model by IQ-TREE.

A maximum clade credibility (MCC) phylogeny was re-constructed from a dataset of 519

spatio-temporally defined complete E gene sequences. With the removal of temporal outlier

Genotype V (GV) sequences, the resultant dataset demonstrated sufficient temporal signal for

further Bayesian Markov chain Monte Carlo (MCMC) analysis, as defined in temporal regres-

sion analysis within TempEst v.1.5.3. MCMC analysis was conducted using the BEAST v1.10

package. An uncorrelated relaxed molecular clock was employed assuming a GTR+G+I nucle-

otide substitution model and a constant prior. Three independent chains of 5 x 108 generations

were assembled, and subsequently assessed for convergence. A 10% burn in was used when

reconstructing the MCC phylogeny. The resultant MCC phylogeny was illustrated using Fig-

Tree v1.4.3.

Selection analysis

A total of 361 whole genomes (including JEV/Australia/NT_Tiwi Islands/2021) were analysed

for evolutionary selection using the HyPhy package through the DataMonkey webserver

(http://www.datamonkey.org/). Several methods were used to test for positive (diversifying)

and episodic selection, including Single-Likelihood Ancestor Counting (SLAC), Fixed Effects

Likelihood (FEL), Fast Unconstrained Bayesian AppRoximation (FUBAR) and the Mixed

Effects Model of Evolution (MEME). SLAC and FEL use combinations of counting and

Maximum Likelihood (ML) approaches to infer non-synonymous (dN) and synonymous (dS)

substitution rates and assume that selection pressure is constant [44]. FUBAR employs a
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Bayesian approach to infer dN and dS substitution rates, while MEME uses a mixed-effects

ML approach to test for episodic positive or diversifying selection [45,46].

Results

Diagnostic virology

Samples from different locations of the brain were tested using a range of JEV- or flavivirus-

specific RT-qPCR tests at ACDP and PWLM. Of the five assays employed, only the Shao et al.

(2018) [33] and Bharucha et al. (2018) [35] assays detected JEV in the samples tested (Table 1).

Only the right thalamus sample was available for testing using the assay reported by Shao et al.

[33]. Virus isolation attempts using mammalian cells (Vero) and mosquito cells (C6/36) fol-

lowed by passage in mammalian cell lines (Vero, BHK-21) were unsuccessful. We also

attempted isolation from the right thalamus specimen via inoculation of the CAMs of ECEs, a

culture system that has previously been shown to be more sensitive than cell culture and suck-

ling mouse inoculation methods for isolating MVEV, a closely related flavivirus to JEV, from

human brain specimens [47,48]. Unfortunately, virus was also unable to be isolated using this

ECE culture system.

RNA-seq and amplicon-based sequencing

At ACDP, whole genome sequencing of the JEV genome was performed using nucleic extract

from the RT-qPCR-positive thalamus sample. An untargeted NGS approach was used to generate

16,613,558 reads following quality trimming and filtering. Most of these reads were non-viral

(99.92%); however, the sequencing depth achieved allowed the assembly of a complete 10,949 nt

JEV genome, with an average sequencing depth of 197x. At PWLM, the midbrain sample, return-

ing the lowest Ct value, was selected for unbiased RNA sequencing. The sample library generated

556,558 reads following quality trimming and filtering. While 99.96% of the homogenate sample

were non-viral reads, 0.03% reads mapped to 66% of a JEV reference genome at an average

sequencing depth of 2.5x (range:2-9x). To enrich the JEV genome and improve the likelihood of

generating a complete JEV genome sequence, a custom designed 1.5kb tiled amplicon workflow

was employed. This approach generated a total of 232,708 high quality reads mapping to 99.96%

of a JEV reference genome (LC461961) at an average read depth of 3211x. Pairwise sequence

alignment revealed that genomes derived from ACDP and PWLM were identical.

Phylogenetic and evolutionary analyses

A phylogenetic reconstruction of the full coding sequence of JEV was carried out to determine

the genotype of the Tiwi Islands strain (designated JEV/Australia/NT_Tiwi Islands/2021) and

Table 1. Results of JEV RT-qPCR testing of brain samples.

Sample RT-qPCR assay results (Ct values)a

Shao et al., 2018 [33] Pyke et al., 2004 [32] Harnett and Cattell, 2010 [34] Bharucha et al. 2018 [35]

Medulla NT NT Neg 28.4

Pons NT NT Neg 29.1

Right thalamus 24.4 Neg Neg 28.7

Midbrain NT NT Neg 28.2

Right cerebellum NT NT Neg 32.3

aRefer to the Methods section for details of each assay used
bNT, not tested

https://doi.org/10.1371/journal.pntd.0010754.t001
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its relatedness to previously reported strains belonging to JEV genotypes I to V (n = 369). This

analysis revealed that the JEV/Australia/NT_Tiwi Islands/2021 genome sequence was a diver-

gent member of JEV GIV with a basal phylogenetic position relative to the closest related

sequences (Fig 2). BLASTn analysis revealed that the Tiwi Islands genome was most closely

related (99.8% nucleotide identity) to a recent genome sequence derived from an aborted pig-

let at an Australian piggery in 2022 (ON624132). The Tiwi Islands genome shared next highest

levels of nucleotide identity with JEV strains of Indonesian origins derived from porcine

(LC461961; 96.8%) and human infections (MT253731; 96.7%) acquired in Bali in 2017 and

2019 [49], respectively.

To maximise spatiotemporal sampling of the JEV GIV viruses, this analysis was expanded

to include all publicly available JEV E gene sequences (n = 1181), which are more numerous

than published whole JEV genomes. This confirmed the placement of the Tiwi Islands strain

Fig 2. Maximum likelihood phylogenetic tree of complete JEV genomes available in GenBank. The TN model with gamma rate heterogeneity was chosen as

the most appropriate model by IQ-TREE v.2.0.6. The results from 1000 bootstrap replicates are given on the nodes and the scale represents the number of

nucleotide substitutions per site.

https://doi.org/10.1371/journal.pntd.0010754.g002
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within GIV as a divergent sub-lineage, sharing a common ancestral sequence with Balinese

isolates from 2017 and 2019 (S1 Fig).

A maximum clade credibility (MCC) phylogeny was reconstructed from a dataset of 519

spatio-temporally defined complete E gene sequences (Fig 3). Sequences clustering within

genotype 5GV were excluded from this analysis, as they were outliers in temporal regression

analysis of the initial JEV dataset. The evolutionary rate of the clade containing the JEV Tiwi

Islands sequence was estimated as 9.95 x 10−4 substitutions/site/year (95% highest probability

density (HPD): 5.31–14.9 x 10−4), with the most recent common ancestor (MRCA) emerging

approximately in the year 2007 (mean 2007, 95% HPD 1998–2014), or around 13 years prior

to the fatal case of JE on the Tiwi Islands.

Positive selection in the E and NS proteins

The ratio of non-synonymous (dN) to synonymous (dS) nucleotide substitutions (dN/dS) was

estimated to be 0.0635 in the SLAC DataMonkey analysis, pointing toward predominately neg-

ative (purifying) selection, as observed for other flaviviruses [50–52]. This was also seen in the

SLAC and FUBAR analyses, which both detected sites under negative selection but no sites

under positive (diversifying) selection. MEME and FEL detected positive selection at several

sites in the pre-membrane (prM), E, NS1, NS2a, NS3, NS4a and NS5 protein genes (S3 Table).

Notably, the S194N site of the E protein is unique to the Australian GIV viruses and is located

in the hinge region between domains I and II of the three-dimensional structure [53].

Discussion

The finding that the JEV from the Tiwi Islands belonged to genotype IV was unexpected. Phy-

logenetic analysis of the Tiwi Islands JEV genome revealed it to be a highly divergent strain of

JEV GIV, occupying a distinct lineage within this genotype, together with the 2022 Australian

outbreak strain (Figs 2, 3 and S1). Notably, the Tiwi Islands strain was found to have the next

closest phylogenetic relationship with a group of viruses originating from Bali, Indonesia,

comprising viruses derived from a 2019 human JE case [49], a pool of Cx. vishnui collected in

2019 [54], and from pig sera collected in 2017 [55]. Together with the known distribution of

genotype IV viruses, these findings support the ancestral origin of the Australian strain as

Indonesia. In our Bayesian analysis, the Tiwi Islands sequence occupied a basal position within

a clade that contained the 2017 and 2019 Indonesian JEV sequences (Fig 3). The estimated

emergence of this clade was 2007 (95% HPD: 1998–2014), suggesting that this lineage of GIV

viruses has been circulating for several years before detections in Bali and the Tiwi Islands.

The fine scale resolution required to more accurately estimate the time of emergence of the

ancestral strain of the Tiwi Islands virus is hindered by the scarcity of JEV GIV sequence data.

Regional surveillance for JEV will also be pivotal in understanding the origins of the Tiwi

Islands strain, and the extent of genetic diversity and geographic spread of JEV GIV. To date,

our knowledge of JEV activity in the countries neighbouring Australia’s northern borders has

been informed by case reports or through sporadic or opportunistic sampling and testing as

part of surveillance programs or discrete research studies [17–19,21]. Thus, there are no pub-

lished reports of the detection of JEV GIV from Timor-Leste, West Papua, or Papua New

Guinea, all of which lie to the north of Australia.

This is the third genotype of JEV to have been reported as acquired from virus circulating

in Australia. Previous incursions of JEV into the Torres Strait and Cape York of northern

Queensland had either been members of GII in 1995 and 1998 [12,15] or GI in 2000 and 2004

[23,56]. The Tiwi Islands case was the first definitive occurrence of the GIV lineage outside

Indonesia and only the second fatal case reported by a GIV virus; the first was a fatal case in a

PLOS NEGLECTED TROPICAL DISEASES Characterisation of Australian Japanese encephalitis virus genotype IV

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010754 November 21, 2022 11 / 20

https://doi.org/10.1371/journal.pntd.0010754


PLOS NEGLECTED TROPICAL DISEASES Characterisation of Australian Japanese encephalitis virus genotype IV

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010754 November 21, 2022 12 / 20

https://doi.org/10.1371/journal.pntd.0010754


tourist who had visited Bali in 2019 and was subsequently diagnosed after returning to

Queensland, Australia [49]. A third human case due to a GIV virus is believed to have

occurred in Hanoi, in 1979, but the details and outcome of this case are unknown (personal

communication from Dr K Plante; the virus isolate had been provided to the Arbovirus

Library at the University of Texas Medical Branch by Dr J Landinshy in 1979). All other

known GIV isolates had been obtained from Cx tritaeniorhynchus, Cx. vishnui or unidentified

mixed pools of mosquitoes trapped in Java, Bali or Flores, between 1980 and 1981, and more

recently from pigs in 2017 and Cx. vishnui in 2019 [54,55].

It is not yet clear whether the emergent GIV strain has displaced the previously circulating

genotypes in Australia. Such a phenomenon has been observed for the emergence of GI as the

dominant genotype in Southeast Asia in the mid-1990s [7,9]. The biological mechanism asso-

ciated with GI dominance has not been clearly established, but may involve enhanced replica-

tive fitness in mosquito vectors, based on studies of in vitro replication kinetics [9,57]. Since

no isolate has been available, the biological properties of the emergent Australian GIV strain

have not yet been able to be investigated, but future studies may reveal viral or host factors that

underly a fitness advantage of this GIV strain over pre-existing genotypes circulating in the

Australasian region. To investigate a genetic basis to the emergence of the Tiwi Islands JEV

strain, we performed selection analyses that detected positive selection using two methods

(MEME and FEL) at several sites in the gene sequences of prM, E and NS proteins (S3 Table).

Of potential importance is the single positively selected site in the E protein (S194N), which is

unique to the Australian GIV strains and encodes a non-conservative amino acid substitution

located in hinge 3 linking domains I and II of the E protein [53]. The DI-DII hinge plays an

important structural role during membrane fusion of the flavivirus particle and contains neu-

tralising epitopes [53,58] and may prove to contain important molecular determinants of repli-

cative fitness and virulence for vectors or vertebrate hosts.

It is not known how JEV GIV was introduced into the Tiwi Islands of northern Australia in

2021. There are several possible mechanisms by which the virus could have reached and poten-

tially established in the Islands, including by migratory or vagrant ardeid birds, by the trans-

port of infected mosquito vectors by air or ship, or by infected mosquito vectors being blown

by cyclonic winds from endemic areas in Indonesia. Ardeid birds, especially herons and egrets,

are major reservoir hosts of JEV. The Nankeen night heron (Nycticorax caledonicus) is one

such species that may play an important role in the introduction and spread of JEV into new

areas. Populations of this species may be partially migratory or nomadic with a range extend-

ing from Australia to Papua New Guinea and parts of Indonesia [59,60], and have been shown

to develop viraemia following experimental infection [61]. Infected mosquitoes are also

known to be transported occasionally by aircraft, and this may have been the means by which

JEV reached Angola [62] and Saipan [63] and Italy [64,65]. No regular movement of aircraft

are known to occur between the Tiwi Islands and either Indonesia or Papua New Guinea,

making this mechanism unlikely. Similarly, commercial international shipping into the Tiwi

Islands no longer occurs. However, introduction via unregulated or illegal shipping or private

boats cannot be discounted.

The most likely source of wind-blown infected mosquitoes into the Tiwi Islands is Indone-

sia or Timor Leste, although Papua New Guinea cannot be ruled out as a potential source. JEV

Fig 3. Maximum clade credibility phylogenetic tree of complete JEV envelope gene sequences, sourced from

GenBank. The phylogeny was reconstructed under a GTR+G+I nucleotide substitution assumption and an

uncorrelated relaxed molecular clock model. Genotype V sequences of JEV were excluded from this phylogeny as they

were deemed temporal outliers in regression analysis. Posterior probability values of>0.70 are presented adjacent to

nodes as indicated by asterisks. The mean time to most recent common ancestor (tMRCA) is presented above major

nodes, with error reported as the 95% highest probability density (95% HPD).

https://doi.org/10.1371/journal.pntd.0010754.g003
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is believed to be enzootic in Indonesia, with virus isolations from mosquitoes or serological

evidence of infection in pigs found in parts of Java, Bali, Lombok, Flores, West Timor and

Papua Province (reviewed in [10,11,66]). A clinical case of JE from Irian Jaya (West Papua)

was reported from Timika in 1996 [21], supported by serological evidence of human infection

[67]. JEV has also been shown to be relatively widespread in Papua New Guinea since the mid-

to late-1980s from serological investigations [18], and from virus isolations and human cases

reported from Western Province [17] and Port Moresby, National Capital District [10,19,20].

Tropical depressions and cyclonic events were suggested to have been the probable route of

introduction of JEV from Papua New Guinea into the Torres Strait in 1995, 1998 and 2000

[12,15,23] and western Cape York Peninsula in 1998 [22]. Modelling of the possible movement

suggested that mosquitoes could be carried in monsoonal winds at a height of 300 m for more

than 650 km between Papua New Guinea and the areas of the western Cape York Peninsula.

In support of this, Kay and Farrow reported circumstantial evidence that Cx. annulirostris
mosquitoes, the main vector of JEV in the Torres Strait and Australia, had a flight range of

between 594–648 km under suitable conditions based on aerial collections [68]. Other studies

had also reported migratory Cx. tritaeniorhynchus, the major vector of JEV, carried by mon-

soonal winds over significant distances [69,70]. The recent introduction of Culex tritaenior-
hynchus mosquitoes into the Northern Territory was believed to have been carried by wind

from Timor Leste, approximately 620km north of Australia [71], although harbourage in aero-

planes and importation into Darwin from Bali or other northern locations is also possible [72].

In response to the Tiwi Islands case of JE, laboratory testing of samples collected from feral

pigs and buffalo on the Tiwi Islands was undertaken by the Northern Australian Quarantine

Strategy (NAQS) program in June 2021. No evidence of specific JEV infection was found from

RT-qPCR and serological testing of these samples. However, sentinel cattle located at Beatrice

Hill, near Darwin, that were sampled between November 2020 and April 2021 were positive

for JEV-specific antibodies, as well as a single feral pig sampled from Croker Island, approxi-

mately 100 km east of the Tiwi Islands, as part of a routine NAQS survey in November 2020

(Dr S. Fruean [NAQS] and Dr. V. Bhardwaj [Berrimah Veterinary Laboratory], personal com-

munication). Thus, although evidence of prior or active infection with JEV in animals sampled

from Tiwi Islands was not found in the months after the human case, the limited serological

evidence in animals at other locations in the Northern Territory suggests low level transmis-

sion of JEV during the 2020/21 wet season.

Initial rounds of molecular testing of post-mortem brain homogenate samples at PWLM

and ACDP revealed that two of the RT-qPCR assays in routine use failed to detect the novel

Tiwi Islands strain of JEV (Table 1). In silico analysis demonstrated multiple target mismatches

in each of the forward, reverse and probe binding regions of these assays (S2 Fig). The findings

from this study emphasise the utility of unbiased metagenomic next generation sequencing for

detecting and characterising genetically distinct viruses that may be missed by PCR-based

approaches. In addition, metagenomics can serve as an important tool to help guide the design

of new molecular tests and confirm the specificity of existing tests. In this study the metage-

nomic sequencing approach facilitated the design of the amplicon-based sequence methodol-

ogy and informed the choice of RT-qPCR screening assay. These findings also highlight the

importance of ongoing in silico assessment of molecular assays, especially for pathogens that

may not be present locally but are circulating in neighbouring regions.

The Tiwi Islands case of JE in 2021 and the subsequent large multi-state outbreak in 2022

highlights the risk of incursions of vector-borne diseases into Australia’s northern regions and

underscores the importance of ongoing surveillance for both endemic and exotic arboviruses

and the need to ensure that state and territory public and animal health laboratories have the

capability to identify emerging viruses. Further knowledge is urgently needed to better
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understand the ecology of JEV and other flaviviruses in northern Australia and the pathways

by which they are introduced and subsequently spread. In particular, there are major knowl-

edge gaps for the range of avian species that play a role as maintenance hosts and in spreading

the virus over long distances, the role of other species in transmission cycles, such as megachir-

opteran and microchiropteran bats, and the identification of competent vector species. With

respect to the latter, two mosquito species that are well-established as major vectors of JEV in

Asia, Cx. tritaeniorhynchus and Cx. gelidus, have both been found as exotic mosquitoes that

have entered and become established in northern Australia [24,71], but there is little informa-

tion on their incidence and geographic occurrence. Other than Cx. annulirostris, few studies

have been undertaken on the competence of other mosquito species to transmit the different

JEV genotypes [73].
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