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Human behavior and cognitive function correlate with complex patterns of spatio-temporal brain dynamics, which can be simulated
using computational models with different degrees of biophysical realism. We used a data-driven optimization algorithm to determine
and classify the types of local dynamics that enable the reproduction of different observables derived from functional magnetic
resonance recordings. The phase space analysis of the resulting equations revealed a predominance of stable spiral attractors, which
optimized the similarity to the empirical data in terms of the synchronization, metastability, and functional connectivity dynamics. For
stable limit cycles, departures from harmonic oscillations improved the fit in terms of functional connectivity dynamics. Eigenvalue
analyses showed that proximity to a bifurcation improved the accuracy of the simulation for wakefulness, whereas deep sleep was
associated with increased stability. Our results provide testable predictions that constrain the landscape of suitable biophysical models,
while supporting noise-driven dynamics close to a bifurcation as a canonical mechanism underlying the complex fluctuations that
characterize endogenous brain activity.
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Introduction
Brain dynamics are often described as complex, displaying
properties that are interposed between order and disorder
(Tononi and Edelman 1998; Chialvo 2010; Bassett and Gazzaniga
2011). These complex dynamics arise from 2 main factors: The
properties of local population activity within each brain region
and the mutual influences that these populations exert on each
other (Bullmore and Sporns 2009; Sporns 2013). Over the last
few years, multiple kinds of models have been introduced to
disentangle the different contributions to whole-brain dynamics
and their relationship with cognition and behavior (Deco et al.
2008; Cofre et al. 2020). By combining empirical data with
simulated local dynamics, models of whole-brain activity have
been applied to describe multiple physiological and pathological
states, allowing to explore the landscape of potential mechanisms
underlying different neurobiological phenomena, and offering
the possibility of in silico assessment of external perturbations

(Deco and Kringelbach 2014; Jirsa et al. 2017; Murray et al. 2018;
Sanz Perl et al. 2021). Importantly, whole-brain models are capable
of furnishing concrete falsifiable hypotheses by virtue of their
grounding in individualized empirical data (Falcon et al. 2016).

What properties should a computational model possess to
accurately represent large-scale brain activity dynamics? A suffi-
cient degree of biophysical detail is necessary to link the outcomes
of the model with neurobiological variables of interest, such as
axonal conduction delays, stimulation of neurotransmitter recep-
tors, or changes in synaptic gating, among others (Deco et al.
2009, 2018; Kringelbach et al. 2020). However, biophysical realism
does not guarantee that simulated brain activity will display the
statistical properties measured in empirical data. For this purpose,
it is important that models exhibit certain stereotyped behav-
iors capable of generating dynamics of sufficient complexity. In
other words, the equations of the model should display certain
dynamical behaviors that can be better understood in terms of the
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topology of the phase space (i.e. the space of possible solutions)
than in terms of the biophysical details of the model. One exam-
ple is noise-driven multistability, where stochastic fluctuations
displace the state across a bifurcation, switching between 2 or
more qualitatively different solutions, e.g. stable vs. dampened
oscillations (Deco et al. 2011). Thus, the core capacity of a model
to capture whole-brain dynamics could be characterized by its
repertoire of bifurcations and their classification. For instance,
noise-driven models (such as the Stuart–Landau oscillator) have
been extensively explored in recent publications (Deco et al. 2017;
Jobst et al. 2017; Ipina et al. 2020; Perl et al. 2020; Sanz Perl et al.
2021). Even though more realistic models offer advantages in
terms of interpretability, they cannot escape the fact that most of
the time, if not always, the model parameters must be posed next
to a bifurcation to adequately reproduce empirical observables
(Schirner et al. 2022).

The process of building and validating a whole-brain activity
model usually begins with the hypothesis-driven proposal for the
equations governing the local dynamics, followed by the explo-
ration of parameter space to maximize the goodness of fit to the
empirical neuroimaging data (Cofre et al. 2020). However, focusing
on a particular set of equations might be too constraining, since
the appropriateness of a model should be judged at a different
level, namely by its capacity to reproduce certain stereotyped
dynamics present in the empirical data (Schirner et al. 2022). Here,
we tackled this problem by following the inverse procedure: We
first proposed very general equations, and then we fitted these
equations to observables derived from functional magnetic reso-
nance imaging (fMRI) data, characterizing the resulting equations
in terms of their attractors and their proximity to bifurcations.
This procedure is data-driven and independent of specific model
details, and its outcome can be interpreted as the canonical
dynamics that are desirable to include in whole-brain activity
models of fMRI recordings.

Materials and methods
Participants and EEG-fMRI data acquisitions
A cohort of 63 healthy subjects participated in the data acquisi-
tion protocol (36 females, mean ± SD age of 23.4 ± 3.3 years). Writ-
ten informed consent was obtained from all subjects. The experi-
mental protocol was approved by the ethics committee of Goethe-
Universität Frankfurt, Germany (protocol number: 305/07). The
subjects were reimbursed for their participation. All experiments
were conducted in accordance with the relevant guidelines and
regulations, and the Declaration of Helsinki. Participants were
scanned for 50 min using previously published acquisition param-
eters. For the analysis of awake subjects, we selected a subgroup
of 9 participants who did not fall asleep throughout the complete
duration of the scan (confirmed by assessment of the simulta-
neous electroencephalography (EEG) according to standard sleep
staging rules). In this way, we obtained long fMRI recordings with
the purpose of robustly estimating observables related to the
dynamics of functional connectivity (FC).

fMRI data processing
Using Statistical Parametric Mapping (SPM8, www.fil.ion.ucl.ac.
uk/spm), raw fMRI data were realigned, normalized, and spatially
smoothed using a Gaussian kernel with 8-mm3 full width at half
maximum. Data were then re-sampled to 4 × 4 × 4-mm resolu-
tion. Note that re-sampling introduced local averaging of blood
oxygen level-dependent (BOLD) signals, which were eventually
averaged over larger cortical and subcortical regions of interest

as determined by the automatic anatomic labeling (AAL) atlas
(Tzourio-Mazoyer et al. 2002). Data were denoised by regressing
out cardiac, respiratory and residual motion time series estimated
with the RETROICOR method, and then band-pass filtered in the
0.01–0.1 Hz range using a sixth order Butterworth filter (Glover
et al. 2000; Cordes et al. 2001).

Anatomical connectivity matrix
The anatomical connectivity matrix was obtained applying dif-
fusion tensor imaging (DTI) to diffusion-weighted imaging (DWI)
recordings from 16 healthy right-handed participants (11 men and
5 women, mean age: 24.75 ± 2.54 years) recruited online at Aarhus
University, Denmark. We note a mismatch between the gender
balance of the subjects contributing to the functional and struc-
tural imaging datasets, highlighting the value of extending the
current research to identify potential gender-related differences,
which could add further support to the present results. Subjects
with psychiatric or neurological disorders (or a history thereof)
were excluded from participation. DWI data were collected using
the following parameters: repetition time (TR) = 9,000 ms, echo
time (TE) = 84 ms, flip angle = 90◦, reconstructed matrix size of
106 × 106, voxel size of 1.98 mm3 with slice thickness of 2 mm
and a bandwidth of 1,745 Hz/Px. Data were recorded with 62
optimal nonlinear diffusion gradient directions at b = 1,500 s/mm2

with approximately one non-diffusion-weighted image (b = 0) per
10 diffusion-weighted images. The DTI images were recorded
with different phase encoding directions: One set was collected
applying anterior to posterior phase encoding direction, whereas
the second one was acquired in the opposite direction.

Anatomical connectivity networks were constructed follow-
ing a 3-step process. First, the regions of the whole-brain net-
work were defined using the AAL atlas. Second, the connections
between nodes in the whole-brain network (edges) were estimated
applying probabilistic tractography to the DTI data obtained for
each participant. Third, results were averaged across participants.
DTI preprocessing was performed using the probtrackx tool of the
FSL diffusion imaging toolbox (Fdt; www.fsl.fmrib.ox.ac.uk/fsl/
fslwiki/FDT) with default parameters. Next, the local probability
distributions of fiber directions were estimated at each voxel. The
connectivity probability from a seed voxel i to another voxel j was
defined as the proportion of fibers passing through voxel i that
reached voxel j, sampling a total of 5,000 streamlines per voxel.
This was extended from the voxel to the region level, with each
region of interest consisting of n voxels, so that 5,000 × n fibers
were sampled. The connectivity probability from region i to region
j was calculated as the number of sampled fibers in region i that
connected the 2 regions, divided by 5,000 × n, where n represents
the number of voxels in region i. The resulting anatomical con-
nectivity matrices were thresholded at 0.1% (i.e. a minimum of
5 streamlines), resulting in the anatomical connectivity matrices
used as coupling in the whole-brain models.

Whole-brain model construction
Following previous work (Ipina et al. 2020), we constructed
computational models of whole-brain activity by assigning local
dynamical rules to 90 nodes spanning the whole cortical and
subcortical gray matter. These nodes were coupled using an
anatomical connectivity matrix Cn,s which contained in its n, s
entry an estimate of the number of white matter tracts connecting
nodes n and s (see previous section). We introduced a parameter
G to globally scale the Cn,s matrix, thus modeling changes in the
overall strength of inter-areal coupling.

www.fil.ion.ucl.ac.uk/spm
www.fil.ion.ucl.ac.uk/spm
www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
www.fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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The fMRI signal corresponding to node n was simulated by
the variable xn, obtained from the differential equation model-
ing the local dynamics of that node, integrated using a Euler–
Maruyama algorithm with a time step of 0.1. For each parameter
combination, we computed observables (see below) by averaging
a total of 30 independent simulations. Simulated time series were
downsampled to match the sampling frequency of the fMRI data.

Local dynamics ansatz
We consider a general ansatz for the noise-driven local dynamics
of node n, given by polynomial equations on variables x and y up
to degree 5,

dxn

dt
=

∑
i+j≤5

αijxi
nyj

n + G
∑N

s
Cns (xn − xs) + κηn

dyn

dt
=

∑
i+j≤5

βijxi
nyj

n + G
∑N

s
Cns

(
yn − ys

) + κηn

here, ηn
(
t
)

corresponds to additive Gaussian node at node n scaled
by parameter κ, Cns is the anatomical coupling matrix scaled by
parameter G, and αij, βij are the coefficients of the polynomial
terms, which determine the nature of the local dynamics. The
choice of polynomial terms follows from the objective of deter-
mining the optimal canonical local dynamics, since it is known
that systems close to a bifurcation are topologically equivalent to
a normal form, which can be written as a polynomial (Murdock
2006).

Genetic algorithm for parameters optimization
The genetic algorithm started with a generation of 10 sets of
parameters (“individuals”) chosen randomly in the range [−0.15,
0.15] for each of the 42 parameters. A score proportional to the
target function was assigned to each individual. Afterwards, a
group of individuals (“parents”) was chosen based on their score.
Operations of crossover between “parents” generate new possi-
ble solutions, the “offspring.” Mutation and elite selection were
applied to create the next generation of solutions. These opera-
tions can be briefly described as follows: (i) elite selection occurs
when an individual of a generation shows an extraordinarily low
target function (i.e. high goodness of fit) in comparison with the
other individuals, thus this solution is replicated without changes
in the next generation; (ii) the crossover operator consists of com-
bining 2 selected parents to obtain a new individual that carries
information from each parent to the next generation; (iii) the
mutation operator can change an individual of the offspring set
to induce a random alteration in any of its parameters. Following
previous work (Ipina et al. 2020), 20% of each new generation was
created by elite selection and 80% by crossover of the parents,
with a 5% chance of possible mutations of the “offspring” group.
A new population was thus generated being an exact mixture
of elite “parents” and mutated “offspring.” Each generation was
used iteratively as the seed for the next generation until 125
generations were created, which in this case guarantees conver-
gence of all solutions. After applying the optimization algorithm,
the parameter values corresponding to the best fit were used to
explore the phase space (see section “Fixed-point analysis and
classification”).

Target fMRI observables and goodness of fit
metrics
We obtained the FC matrix by computing the Pearson correlation
coefficient between fMRI signals (empirical or simulated) at all

pairs of regions in the parcellation. This resulted in a symmet-
ric matrix whose entries contained the correlation between the
signal extracted from regions i and j. To measure the similarity
between the simulated FC matrices and the empirical grand
average FC (empirical FC matrices averaged over the 15 sub-
jects) we used the structural similarity index (SSIM). This metric
combines the similarity in terms of the Euclidean and correla-
tion distances (for further details see previous implementations;
Ipina et al. 2020; Sanz Perl et al. 2021). Fitting the model to
single subject FC data is likely to require individualized data
(e.g. structural connectivity), and will be investigated in future
work.

To characterize the time-dependent structure of resting state
fluctuations we computed the functional connectivity dynamics
(FCD) matrix (Deco et al. 2017). Using 148 sliding 60 s sliding
windows with 40 s overlap, we calculated the temporal evolution
of the FC, and then obtained the t1, t2 entry of the 148 × 148
symmetric FCD matrix by computing the Pearson correlation
coefficient between the upper triangular part of FC matrices at
times t1 and t2. The similarity between empirical and simulated
FCD matrices was given by the Kolmogorov–Smirnov distance
(maximum difference between the cumulative distribution func-
tions of the 2 samples) between the upper diagonal part of the
corresponding matrices.

To compute the synchronization and metastability (Acebrón
et al. 2005), we first extracted the phases of the band-pass filtered
fMRI signals from each of the 90 regions and for each subject,
and then obtained the analytic narrowband signal, a

(
t
) = x

(
t
) +

iH[x
(
t
)
], where i is the imaginary unit, x

(
t
)

the original signal, and
H[x

(
t
)
] its Hilbert transform. The instantaneous phase was then

obtained as φ
(
t
) = arg

(
a
(
t
))

. We computed the Kuramoto order
parameter, R

(
t
)
, as:

R (t) = 1
N

∣∣∣∣∑N

j=1
eiφj(t)

∣∣∣∣

In this equation, N is the total number of nodes and φj
(
t
)

represents the instantaneous phase of node j. The order param-
eter R

(
t
)

measures the instantaneous global phase synchrony
of the system, ranging from 0 (absence of synchrony) to 1 (full
synchronization). The temporal average and standard deviation of
R
(
t
)

represent the synchronization and metastability, respectively.
The first of these 2 metrics indicates the global and temporally
averaged degree of synchronization between all the nodes in the
system, whereas the second gives information about temporal
variability in the level of synchronization. Given that both the
SSIM and KS distance measure the similarity to an empirical
observable, we normalized the “synchronization” and metastabil-
ity so that the resulting metrics have a comparable range of values
that can be interpreted in a similar way. For this, we subtracted
the empirical from the simulated values and divided by the value
obtained for the empirical data.

Parameter optimization
We used a stochastic optimization method (genetic algorithm)
to determine the optimal 42 parameters (αij, βij, i + j ≤ 5) of
the local dynamics to maximize the SSIM between empirical and
simulated FC matrices. The global coupling scaling parameter was
fixed at G = 0.5, as determined previously elsewhere (Ipina et al.
2020). After optimization, we computed multiple observables to
compare the empirical and simulated time series.
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Fixed-point analysis and classification
The parameter optimization procedure was repeated 1,000 times,
and for each set of optimal parameters we investigated the
asymptotic behavior of the resulting equations for the local
dynamics. First, we determined the fixed-points, i.e. the points
of invariance of the dynamics, by introducing a grid in the range
x, y ∈ [ − 100, 100] and searching the roots of the equations for
dx
dt and dy

dt . Once the fixed-points were found, we classified them
according to the following criteria.

Let J be the Jacobian matrix of the optimal model parameters:

J
(
x, y

) =
(

δfx
δx

δfx
δy

δfy

δx
δfy

δy

)

where fx, fy are the equations for dx
dt and dy

dt , respectively. We
obtain one 2×2 matrix by computing J

(
x, y

)
at each fixed-point.

The stability at each of these points follow from the eigenvalues
of the Jacobian. In the 2-dimensional case, stability can also be
computed from the trace (τ) and determinant (�), and the results
can be classified as follows (Shnol 2007):

(i) If � ≤ 0, the fixed-point is a saddle (attracts the dynamics
along one direction, while repelling it along another);

(ii) If � > 0, τ <0 and 4� − τ2 > 0, the fixed-point is a stable
spiral (damped oscillations);

(iii) If � > 0, τ < 0 and 4� − τ2 < 0, the fixed-point is a stable
node (attracts the dynamics from all directions);

(iv) If � > 0, τ > 0 and 4�− τ2 > 0, the fixed-point is an unstable
spiral (oscillations with increasing amplitude);

(v) If � > 0, τ > 0 and 4�− τ2 < 0, the fixed-point is an unstable
node (repels the dynamics from all directions).

After all fixed-points and their stability was computed, we
re-simulated the dynamics with initial conditions close to each
fixed-points and computed the target fMRI observables and their
associated goodness of fit (see “Target fMRI observables and good-
ness of fit metrics” subsection). This procedure was repeated
30 times for each fixed-point and the resulting goodness of fit
metrics were averaged across all iterations.

Effect size and bootstrapping
We obtained effect size estimates between 2 groups of values by
computing the difference between the medians of both groups,
since the values do not necessarily follow a normal distribution.
We used bootstrapping to obtain a distribution of effect size
estimates, allowing us to determine confidence intervals (CI) of
the effect size distributions and thus whether an overlap exists
at 95% confidence level. All bootstrap procedures were done by
randomly drawing samples (with replacement) from the distribu-
tion of values under assessment. The size of the sampled subset
was equal to that of the original distribution. This procedure was
repeated 20,000 times, generating a bootstrap distribution of the
desired statistic, which was then used to estimate the confidence
intervals.

Results
An overview of the procedure is presented in Fig. 1, with further
details provided in the methods section. Briefly, we proposed local
dynamics given by 2 equations, corresponding to variables x

(
t
)

and y
(
t
)
, which were combined to form all possible polynomial

terms with degree less or equal than C. Only variable x
(
t
)

repre-
sented the simulated brain activity signal; the other was a hidden

variable necessary to endow the system with non-trivial dynam-
ics. These equations were coupled by the connectome scaled
by parameter G and included additive noise scaled by factor
κ (following previous research, G is sufficiently small to adopt
a weak coupling approximation; Deco et al. 2017). Polynomial
equations were chosen based on their generality, since it is known
that other functions can be replaced by their low order polynomial
approximation when investigating the normal form of different
bifurcations (Murdock 2006).

We performed 1,000 iterations of the model, setting C = 5,
resulting in 42 free parameters to be determined by a stochastic
optimization algorithm (a genetic algorithm; Ipina et al. 2020) with
the purpose of maximizing a metric of similarity computed both
for the simulated and empirical data (structural similarity index
(SSIM) of the corresponding FC matrices; Zhou et al. 2004). After
optimization, the resulting local dynamics were visualized in
phase space, and numerical methods (i.e. analysis of the Jacobian
matrix) were used to infer the presence of different attractors
and the proximity to bifurcations (see the methods section for an
overview of the classification criteria).

Considering the introduction of noise in the dynamics, we did
not expect the optimization algorithm to converge to the exact
same set of coefficients αij across all iterations (the variability of
the optimal model parameters is shown in Supplementary Fig. 1,
see online supplementary material for a color version of this
figure). Instead, we focused on the statistical characterization of
the optimal dynamics and their properties. Figure 2A presents
the number of solutions with 1, 3, and 5 fixed-points in the
phase space, with parameters optimized to match the FC matrix
of awake individuals. A fixed-point corresponds to a pair x, y
where the derivatives dx

dt and dy
dt are both zero, so that dynamics

starting at that point cannot change over time. We found that the
most likely outcome consisted of a single fixed-point, followed
by 3 fixed-points, with a comparatively small number of opti-
mal equations presenting 5 fixed-points. Next, we asked whether
the number of fixed-points impacted on the similarity to the
empirical data, assessed by 4 independent fMRI observables and
their associated goodness of fit metrics: 1-SSIM between empirical
and simulated FC matrices, synchronization, metastability (Ace-
brón et al. 2005) and the Kolmogorov–Smirnov distance between
the empirical and simulated distributions of FCD values (Deco
et al. 2017; see the methods section for a definition of these
observables). The results shown in Fig. 2B indicate that these
metrics did not depend on the number of fixed-points in the local
dynamics.

Next, we classified the isolated fixed-points based on the anal-
ysis of the Jacobian matrix, among the following possibilities
(see Fig. 1, “attractor classification”): stable node (SN), unstable
node (UN), saddle node (S), stable spiral (SS), and unstable spi-
ral (US). We found that all isolated fixed-points were spirals,
with a predominance of stable spirals (i.e. damped oscillations;
Fig. 3A, left). In the case of unstable spirals, all instances were
surrounded by limit cycles, asymptotically leading to bounded
oscillating solutions. Only a small percentage (2%) of the optimal
equations resulted in stable spirals surrounded by limit cycles,
which have potential to display bistable oscillatory dynamics.
Even though unstable spirals appeared more frequently in the
local dynamics, the goodness of fit metric 1-SSIM was comparable
for both types of spirals (Fig. 3A, right). Both types of fixed-points
are exemplified in the phase portraits shown in Fig. 3B. Finally,
panel C of Fig. 3 contains a scatter plot of the imaginary vs. real
eigenvalues for each iteration, illustrating the separation between
stable and unstable solutions given by the vertical line of null

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac045#supplementary-data
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Fig. 1. Procedure followed for the data-driven discovery of canonical whole-brain dynamics. Each iteration of the model consisted in local dynamics
given by the 2 variables x, y combined in polynomial terms up to degree C with coefficients α_ij, coupling by the connectome scaled by G, and noise
scaled by κ. After the initial selection of G, the parameters α_ij were optimized to reproduce the fMRI functional connectivity (FC) between all pairs of
nodes. The optimal local dynamics can be characterized in terms of the 2D phase space of variables x, y, where different attractors can be identified
and used to characterize the resulting dynamics.

Fig. 2. Local dynamics tend to exhibit a single fixed-point, and the similarity between simulated and empirical dynamics is independent of the number
of fixed-points. A) Number of iterations resulting in 1, 3, and 5 fixed-points. B) Four different metrics computed after separating the solutions by the
number of fixed-points in the phase space. No differences were encountered when comparing local dynamics with different numbers of fixed-points.

real eigenvalues. Supplementary Fig. 2 (see online supplementary
material for a color version of this figure) presents an analysis of
the goodness of fit of the unstable spirals with real eigenvalues

that are close and apart from zero. As can be observed in the
histograms on the y-axis of this figure, the imaginary parts of the
eigenvalues are not uniformly distributed but present a normal

https://academic.oup.com/cercorcomms/article-lookup/doi/10.1093/cercorcomms/tgac045#supplementary-data
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Fig. 3. Stable spirals are most prevalent for local dynamics with one isolated fixed-point. A) Left panel: Number of iterations resulting in local
dynamics with stable and unstable spirals. Right panel: 1-SSIM for both types of local dynamics. B) Examples of phase spaces with each type of local
dynamics. Note that the unstable spiral is surrounded by a limit cycle (attractor consisting of a periodic trajectory). C) Scatter plot of the imaginary vs.
real eigenvalues of the fixed-point, where each point corresponds to an independent iteration of the model. The vertical line of null real eigenvalues
determines the stability of the spiraling solution.

distribution with a mean close to 0.3. These values correspond to
the oscillatory frequency ω, which in this case is similar to the
empirical value obtained from fMRI time series, even though this
information was not included in the model equations and thus
inferred from the data in the process of fitting the functional
connectivity.

Local dynamics with 3 fixed-points were the second most
probable outcome (Fig. 2A). We coded each possible combination
using the above introduced abbreviations; for example, S–SN–SS
identified local dynamics with a saddle node, a stable node and a
stable spiral. The statistics for the case of 3 fixed-points are shown
in Fig. 4. Here, the entries of the matrix indicate the number
of times each possible type of fixed-point labeled in the rows
appeared in the optimal local dynamics specify in the columns.
For example, the value 51 in the third row and third column
indicates a total of 51 stable spirals within the combination S–SS–
US, whereas the sum of all column values indicates the number of
times the combination S–SS–US was found throughout the 1,000
iterations. We note that several solutions were possible, yet these
tended to be dominated by stable spirals and saddle nodes, with
S–SN–SS being the most frequent combination, followed by S–SS–
SS and S–SS–US. This suggests that dynamics still find their way
to stable spiral attractors after being repelled by saddle nodes
or unstable spirals. Overall, local dynamics where stable spirals
appeared as part of the phase space were much more likely to
be found than those containing other fixed-points, in agreement
with the findings obtained for isolated fixed-points. Examples of
trajectories for different combinations of attractors are shown in
Fig. 4B.

Next, we explored whether the reproduction of empirical
observables depended on the different combinations of fixed-
points in the local dynamics. Figure 5 presents all pairs of
local dynamics that significantly differed in the goodness of fit
according to multiple metrics (synchronization, metastability,
and Kolmogorov–Smirnov distance between distributions of FCD
values). For each pair, we computed a distribution of effect size

estimates (difference between the medians of both groups, Fig. 5,
bottom panels) following a bootstrap procedure (see methods
section), and selected as significant those pairs of dynamics for
which the confidence interval (CI) of the effect size distribution
did not include zero (i.e. equal medians) with a 95% confidence
level. Furthermore, we only featured in the figure the comparisons
where the lower (upper) bound of the CI was at least at distance of
0.05 from zero. From these results, it is clear that local dynamics
including stable spirals systematically outperformed unstable
spirals.

In the case of local dynamics with more than one stable spiral,
except for a small percentage of the solutions, the dynamics
were asymptotically attracted to one of the spirals. Taking the
combination S–SS–SS as an example, we found that the stable
spiral with the best goodness of fit in terms of 1-SSIM was the one
with the lowest absolute value of the real eigenvalue, i.e. the stable
spiral with eigenvalue closest to zero outperformed all other
fixed-points. This was a general result valid for all combinations
of fixed-points and all goodness of fit metrics (Fig. 6), indicating
that the best local dynamics were close to a change in stability,
from unstable to stable spirals and vice versa.

Whenever unstable spirals were present, local dynamics
always were attracted to a stable limit cycle, corresponding to
a periodic oscillatory behavior. It is important to note that these
oscillations were not necessarily harmonic, due to the presence
of nonlinearities in the equations. We investigated whether
departures from harmonic oscillations improved the fit to the
experimental data using the same metrics as in the previous
analyses. To obtain a measure of harmonicity, we obtained the
time series for the optimal solutions, which included a stable
limit cycle; next, we converted these time series to the Fourier
space and computed the spectral content relative to the dominant
frequency; i.e. the whole spectrum was divided by the power of the
dominant frequency. Afterwards we summed the power of all the
spectrum. Thus, a highly harmonic time series concentrates most
of the spectral power in the dominant frequency, resulting in total
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Fig. 4. Saddle nodes and stable spirals are the most predominant for local dynamics with 3 fixed-points. A) Matrix entries indicate the total number of
fixed-points (rows) that are present in a specific combination (columns). The bar plot in the upper panel shows the number of solutions found for each
combination of 3 fixed-points, whereas the bars of the right count the number of individual fixed-points, regardless of their combinations. B) Phase
space plots of the 4 most predominant combinations of fixed-points. The black points indicate the random values used for initializing the simulation.

Fig. 5. Local dynamics with stable spirals resulted in better reproduction of the empirical data in terms of synchronization, metastability, and
Kolmogorov–Smirnov distance between distributions of FCD values. Violin plots present the distribution of performance metrics for all solutions with
the local dynamics indicated by the labels. The bottom panels show the distribution of effect sizes obtained using bootstrap. The vertical line indicates
zero, i.e. null effect size, whereas the 95% confidence intervals are indicated using thick black lines in the x-axis.

power near one; conversely, high values of the sum corresponds
to anharmonic time series where the spectral power is spread
across multiple frequencies. We considered oscillatory solutions
corresponding to the top and bottom quartile of the harmonicity
distribution and computed all goodness of fit metrics, with
results presented in Fig. 7. Examples of harmonic and anharmonic
oscillatory local dynamics are shown in Fig. 7A. The violin plots
in Fig. 7B summarize the distribution of the performance metrics
for all solutions presenting stable limit cycles of low and high
anharmonicity. Using a bootstrap procedure (Fig. 7C) we showed
that harmonic and anharmonic oscillatory were comparable
in terms of 1-SSIM; however, harmonic solutions improved the
goodness of fit with respect to synchronization and metastability,
whereas anharmonic solutions improved the reproduction of
the FCD.

As a final analysis, we tested whether the optimal local dynam-
ics inferred using our method depended on the global brain state
of the participants. For this purpose, we used fMRI data acquired
in the same scanner and conditions as: the wakefulness data, but
with participants undergoing deep sleep (n3 sleep). In previous
work, a simple phenomenological model (Stuart–Landau oscilla-
tors, corresponding to the normal mode of a Hopf bifurcation) was
fitted to data during deep sleep, showing increased stability (i.e.
distance from the bifurcation) compared with wakefulness (Jobst
et al. 2017). Thus, we hypothesized that the optimal canonical
dynamics inferred from deep sleep would consist of stable spirals

with real eigenvalues larger in absolute value than those found
for wakefulness.

The results of this analysis are shown in Fig. 8. Panel A shows
that, as for wakefulness, local dynamics predominantly presented
one fixed-point. Moreover, the most likely fixed-point consisted
of stable spirals, with a larger preference for these dynamics
relative to wakefulness (Fig. 8B), tested for significance using a
chi-squared test (P < 0.001). Also, the distance to the empirical
data (1-SSIM) was larger for n3 sleep compared with wakefulness,
indicating more difficulty to properly capture the FC matrix. This
result is consistent with previous publications applying whole-
brain computational models to the same dataset (Sanz Perl et al.
2021). Finally, to compute a confidence interval of the mean
value of the real eigenvalues, a bootstrap procedure was followed.
The mean values of stable spiral real eigenvalues obtained for
both conditions were compared following this procedure (Fig. 8D).
We found that the real eigenvalues were within 95% confidence
level in the range [−0.017, −0.013] and [−0.0149, −0.0089] for
n3 sleep and wakefulness respectively, indicating a significant
shift towards more negative real eigenvalues for wakefulness,
consistent with previous research (Jobst et al. 2017).

Discussion
We addressed a central problem in computational neuroscience:
What kind of dynamics suffice to capture the emergent
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Fig. 6. Spiral fixed-points with real eigenvalues closer to zero resulted in a better reproduction of the empirical observables regardless of the type of
fixed-point. Comparison of the goodness of fit in terms of 4 different metrics for the spirals with maximum vs. minimum real eigenvalue. The black
dashed lines denote the median of each distribution.

macroscopic brain activity fluctuations? A long-standing line of
research has attacked this problem from a bottom-up perspective,
assembling detailed biophysical descriptions of individual
neurons and then characterizing the dynamical repertoire of
the resulting neural mass equations (Deco et al. 2008). Although
fruitful, this approach depends on the particular details of
how each model is constructed and implemented, and thus
leaves the possibility open that different dynamics may improve
the characterization of empirical observables. We adopted the
novel yet complementary top-bottom approach of exhaustively
exploring a large space of possible local dynamics, focusing
afterwards on characterizing the most frequently represented
dynamical behaviors. We identified these as canonical, in
the sense that computational models of large-scale activity
should be capable of reproducing them to adequately capture
empirical observables, regardless of their level of biophysical
realism. Thus, our approach is useful to delineate the dynamics
that should be included in whole-brain models, and thus
to constraint the process of developing models grounded on
neurobiology.

A corollary of our results is that neurobiological realism can
only improve the fit to empirical neuroimaging observables inso-
far certain types of local dynamics are included in the model. Also,
our analysis revealed that neither the number of fixed-points nor
the precise combination of fixed-points appearing in the phase
space are important factors to determine the performance of a
whole-brain model. Instead, local dynamics should unfold in the
proximity of a specific type of attractor and also near a qualitative
change in the space near that attractor (known as a bifurcation).
Even though the inclusion of additive noise introduced variability
in the local dynamics found by the optimization algorithm, we
found that stable spirals were overrepresented in the optimal
solutions. Moreover, as shown in Fig. 3, the imaginary eigenvalues
of the stable spirals could take a wide range of positive values,

whereas the real eigenvalues were predominantly negative and
close to zero. This result not only indicates that the local dynamics
preferentially consist of damped oscillations (stable spiral attrac-
tor), but also that the system is posed close to a bifurcation
(change in the sign of the real eigenvalue). This observation is
supported by the findings shown in Fig. 6, when there are multiple
spirals in the solutions the best values of multiple goodness of
fit metrics are obtained for spirals with real eigenvalues closer to
zero. When noise-driven dynamics are close to a Hopf bifurcation,
a phenomenon known as noise-induced multistability can result
in the intermittent displacement between dynamical regimes (i.e.
across the bifurcation; Ghosh et al. 2008; Deco et al. 2011). Thus,
even if dynamics unfold in the proximity of a stable spiral attrac-
tor, the amplitude of the oscillations might not steadily decrease.
Instead, the presence of additive noise is capable of changing the
nature of the solutions, giving rise to complex modulations in the
amplitude of the oscillations (Juel et al. 1997).

Some behaviors are a priori ruled out by considerations of
biological plausibility; for instance, dynamics should unfold
within a bounded region of phase space. Yet within these
constraints, many possible scenarios were also ruled out by our
analysis. Even though noise-driven linear dynamics (multivariate
Ornstein–Uhlenbeck processes) are included within the space of
possible models we explored (Saggio et al. 2016), our results point
towards the relevance of nonlinearities in the local dynamics
of whole-brain models. Bistable dynamics (or other solutions
given by connected saddle nodes) were also ruled out by our
analysis (Freyer et al. 2011, 2012; Buendía et al. 2020). However, it
is pertinent to mention that these papers addressed dynamics
measured using a different modality (EEG), whose bistability
cannot be ruled by the present analysis.

Oscillations are ubiquitous in the emergent macroscopic activ-
ity of the brain, yet only those in the damped regime predomi-
nated among the optimal equations for the local dynamics. This
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Fig. 7. The anharmonicity of stable limit cycles in the local dynamics influenced the goodness of fit according to different metrics. A) Examples of
stable limit cycles and time series of high (right) and low (left) anharmonicity. B) Violin plots summarizing the distribution of the performance metrics
for all solutions presenting stable limit cycles of low and high anharmonicity. C. Distribution of effect sizes for the difference in the performance
metrics obtained using bootstrap. The vertical line indicates zero, i.e. null effect size, whereas the 95% confidence intervals are indicated using thick
black lines in the x-axis.

result agrees with empirical results as well as with the dynam-
ical repertoire of multiple models of large-scale brain activity,
which feature transitions towards stable spirals through different
bifurcations (Hutcheon and Yarom 2000; Galinsky and Frank 2020;
Schirner et al. 2022; Spyropoulos et al. 2022). Finally, in the case
of oscillatory dynamics (stable limit cycle), the presence of anhar-
monicities influenced the goodness of fit metrics, with departures
from sinusoidal waveforms benefiting the reproduction of empir-
ical FCD.

The improved performance of local dynamics with small real
eigenvalues highlights the importance of the proximity to a bifur-
cation. Also, this suggests that the presence of a Hopf bifurca-
tion (i.e. transition between noisy and oscillatory dynamics) is
required to capture multiple independent observables derived
from fMRI data, regardless of the biophysical sophistication of
the model. Accordingly, phenomenological whole-brain models
including this type of bifurcation have been used in recent years
to simulate different physiological and pathological brain states,
as well as to study in silico their behavior under multiple forms
of external perturbations (Deco et al. 2017; Jobst et al. 2017;
Ipina et al. 2020; Perl et al. 2020; Sanz Perl et al. 2021). Thus,
our results can be interpreted as a hypothesis-free validation
of the Hopf model (also known as Stuart–Landau oscillator),
although in our case the oscillations were not always harmonic.

Future research should explore whether certain deviations from
harmonic oscillations are required to improve the description
of macroscopic brain activity, as has already been supported by
experiments.

It is important to note that we only explored local dynamics
described by 2 variables, one interpreted as a direct readout
of the recorded signal and the other necessary as an auxiliary
variable to increase the diversity of behaviors displayed by the
model. Including a third variable would open the possibility of
deterministic chaos in the equations, which could represent an
alternative to noise-induced metastability to generate complex
modulations of the oscillatory dynamics. Recently, we showed
that deterministic chaos can favor the simultaneous reproduction
of multiple neuroimaging observables at the same time, as it
“stretches” the range where complex oscillations are produced,
in contrast to the fine tuning of parameters necessary for noise-
induced metastability (Piccinini et al. 2021). Moreover, chaos and
noise can be complementary, as their combination can enhance
the dynamical repertoire of whole-brain models, endowing them
with desirable properties for the reproduction of empirical data
(Orio et al. 2018). Future research should incorporate a third
variable to the analysis, thus allowing to investigate the relative
importance of chaos and noise-driven metastability in a data-
driven way.
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Fig. 8. Deep sleep resulted in the stabilization of fMRI dynamics. A) Number of fixed-points in the optimal local dynamics, for wakefulness and n3.
B) Relative prevalence of stable spirals vs. unstable spirals for both brain states. C) Distance to the empirical data (1-SSIM) for wakefulness and n3
sleep. D) Histogram of the real eigenvalues of the stable spiral fixed-points computed using a bootstrap procedure and for both brain states. The shift
towards left for n3 indicates increased stability of the local dynamics relative to wakefulness.

Our results also corroborated that the optimal local dynamics
depend on the global brain state. We investigated differences
in the parameters found for wakefulness and n3 (deep) sleep.
Although the optimal number of fixed-points did not change
between conditions, we found that stable spirals became more
predominant during sleep. Consistently, we also found a shift
towards negative real eigenvalues, indicative of the stabilization
of the local dynamics during unconsciousness, as suggested by
multiple experimental reports (Massimini et al. 2005; Solovey
et al. 2015). In particular, this is consistent with a previous study
showing the same result for a model based on Stuart–Landau
oscillators (Jobst et al. 2017), however, our result should be consid-
ered more general as it was found by analyzing a much larger set
of possible dynamics, without a priori constraining the solutions
to be near a Hopf bifurcation.

In summary, we developed a top-bottom characterization of the
canonical dynamics that should be included in whole-brain activ-
ity models to adequately capture empirical observables. Future
work should address the implications of these dynamics in terms
of large-scale information processing associated with behavior
and cognitive function, extending our results towards other model
organisms and imaging modalities, and incorporating our findings

to the process of constructing and validating biophysically realis-
tic models of macroscopic brain activity.

Supplementary material
Supplementary material is available at Cerebral Cortex Communica-
tion online.
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