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Purpose. To evaluate whether changes in genomic expression that occur beginning with breast cancer (BC) diagnosis and through
to tumor resection after neoadjuvant chemotherapy (NCT) reveal biomarkers that can help predict therapeutic response and
survival. Materials and Methods. We determined gene expression profles based on microarrays in tumor samples from 39 BC
patients who showed pathologic complete response (pCR) or therapeutic failure (non-pCR) after NCT (cyclophosphamide-
doxorubicin/epirubicin). Based on unsupervised clustering of gene expression, together with functional enrichment analyses of
diferentially expressed genes, we selected NUSAP1, PCLAF,MME, and DST. We evaluated the NCTresponse and the expression
of these four genes in BC histologic subtypes. In addition, we study the presence of tumor-infltrating lymphocytes. Finally, we
analyze the correlation between NUSAP1 and PCLAF against disease-free survival (DFS) and overall survival (OS). Results. A
signature of 43 diferentially expressed genes discriminated pCR from non-pCR patients (|fold change >2|, false discovery rate
<0.05) only in biopsies taken after surgery. Patients achieving pCR showed downregulation of NUSAP1 and PCLAF in tumor
tissues and increased DFS and OS, while overexpression of these genes correlated with poor therapeutic response and OS. Tese
genes are involved in the regulation of mitotic division. Conclusions. Te downregulation of NUSAP1 and PCLAF after NCT is
associated with the tumor response to chemotherapy and patient survival.
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1. Introduction

Terapeutic response and prognosis in breast cancer (BC)
are afected by such factors as patient age [1], clinical stage
[2], tumor histopathology, and molecular subtypes [3].
Gene expression signatures performed before therapy can
provide additional information on tumor biology, and
algorithms have been developed to predict the risk of
relapse and survival and defne the best treatment options
[4–6]. A program of genomic testing may allow for
identifying low-risk tumors associated with a favorable
prognosis. Also, it would facilitate therapeutic decision-
making for aggressive tumors that respond poorly to
conventional therapies. In this regard, transcriptional
signatures can identify gene expression patterns related to
chemotherapy resistance, immune system response, and
tumor invasion [7–10].

Comparisons of gene expression analyses of biopsy
specimens taken before and after neoadjuvant chemo-
therapy treatment (NCT) may help defne tumor mo-
lecular adaptations to a specifc chemotherapeutic agent
or regime [7–10]. Te pathologic complete response
(pCR) in BC is defned as the absence of all invasive tumor
tissue in the breast and axillary lymph nodes after the
completion of NCT cycles [11, 12]. Te achievement of
pCR after NCT correlates with patient survival [12]. Al-
ternative treatment regimens may improve survival when
pCR is not achieved [13]. Comparisons of the changing
patterns of transcriptional signatures in response to
chemotherapy may enable predictions of clinical response
and prognosis and, sometimes, recognize new response
biomarkers of specifc canonical pathways related to
treatment resistance and recurrence.

No genomic signature defnes therapeutic alternatives in
patients with incomplete pathologic response (non-pCR).
Terefore, the identifcation of gene expression profles in
tumor tissue after NCT that are associated with a good or an
inadequate pathological response or with survival could
facilitate the identifcation of patients who could beneft
from second-line adjuvant treatment or improve clinical
follow-up, as has been shown in some studies assessing
pathologic response [14]. In addition, a review of the ca-
nonical pathways in which these genes are involved could
also provide potential therapeutic targets or identify markers
for high-risk patients who require closer follow-up.

Tis work aimed to analyze changes in genomic ex-
pression in primary BC tumors in patients undergoing NCT
and to identify genes associated with prognosis in non-
responding patients.Tese potential biomarkers could guide
new pharmaceutical interventions for the second line of
treatment. After validation, our studies showed that
downregulation of NUSAP1 and PCLAF (Previous Symbol
HGNC: KIAA0101) and overexpression ofMME and DST in
tumor biopsies of patients signifcantly correlated with pCR
after NCT disease-free survival (DFS) and overall survival
(OS). NUSAP1 is involved in cell proliferation and migra-
tion, and PCLAF participates in cell cycle control and ap-
optosis [15, 16]. Overexpression of these genes has each been
correlated with tumor progression and metastasis [17, 18].

Downregulation of MME is associated with tumor re-
currence and metastasis [19]. Underexpression of DST,
which produces a cytoskeletal protein, promotes breast
cancer progression independently of tumor hormonal
status [20].

2. Materials and Methods

2.1. Patient Population. Patients with BC were enrolled in
the study at the Centro de Cancer de Mama (Breast Cancer
Center) Hospital San Jose TecSalud in Monterrey, Mexico.
Te Institutional Review Board of the School of Medicine of
Tecnologico de Monterrey (CONBIOETICA 19 CEI 011-
2016-10-17) authorized the research protocol with the
number: P000088-Altru-Pro-CI-CR002. Following the
Declaration of Helsinki, informed written consent was
obtained from all patients participating in this study. Tissue
samples were collected from 54 patients with clinical and or
radiologic diagnoses of BC (tumor size >2 cm and palpable
lymph nodes) from July 2011 to October 2014.

2.2. Neoadjuvant Chemotherapeutic Regimens. Regimens
were established according to the clinical stage and the
immunohistochemistry of the breast tumors by medical
oncologists. Tey consisted of 4 cycles every three weeks of
either intravenous cyclophosphamide (500–1500mg/m2)
and doxorubicin (≥40mg/m2) or intravenous cyclophos-
phamide (500–1500mg/m2) and epirubicin (≥60mg/m2).
After receiving either of these regimens, patients received 12
weekly cycles of intravenous paclitaxel (80mg/m2) admin-
istered over 1 hr [21]. In patients who demonstrated drug
toxicity, cycles of carboplatin replaced the drug responsible
for the toxicity [22]. Subsequently, surgical resection of the
breast was performed on each patient. Some patients re-
ceived selected adjuvant therapy after NCT (46% tamoxifen
and 15% trastuzumab), as recommended by the attending
oncologist. In such cases, the chemotherapeutic drug was
chosen according to individual patient characteristics and
clinical guidelines (e.g., trastuzumab and tamoxifen).

2.3. Tumor Sample Collection. Two tissue samples were
collected from each patient: a biopsy sample (BS) before
NCT and a surgery sample (SS) collected after completing
the cycles of NCT. Tick needle puncture biopsies were
obtained using a Bard Magnum 12 Fr gauge needle. Tumor
location was marked at diagnosis using the carbon tracking
technique [23]. Six to eight tissue cylinders were obtained
from each patient. Four samples were used for histopath-
ologic analysis, and three pieces were preserved in RNAlater
solution (Sigma-Aldrich; Burlington, MA) for genomic
analysis. Te SS were obtained from surgeries for local-
regional control (modifed radical mastectomy in most
cases). Tissues were sent to pathology for histopathologic
and immunohistochemistry analysis. In addition, a 2×1 cm
piece, marked by the carbon track used during the diagnostic
biopsy procedure, was preserved in RNAlater solution for
the gene expression analysis.
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2.4. Immunohistochemistry Analysis and Assessment of
Tumor-Infltrating Lymphocytes in BC Samples. Samples
were obtained from each patient for hematoxylin-eosin
staining and immunohistochemistry for estrogen receptor
(ER), progesterone receptor (PR), and HER2/neu. Te
histologic grade of the core needle biopsies was obtained
before neoadjuvant therapy using the Bloom-Richardson
scores [24]. Te stage of breast cancer was determined
according to the American Joint Committee on Cancer [25].
Te percentage of tumor-infltrating lymphocytes (TILs) was
assessed following the International TILs Working Group
2014 in breast cancer [26]. A complete methodology for TIL
assessment has been previously described [27]. Immuno-
histochemistry for CD3+, CD4+, and CD8+ was also per-
formed on the core needle biopsies before NCT to defne
lymphocyte immunophenotypes, following the American
Society of Clinical Oncology/College of American Pathol-
ogists guidelines [28].

2.5. Treatment Response. One pathologist evaluated surgical
specimens and assessed tumor response to NCT using the
Miller–Payne grading system. For this study, a Miller-Payne
grade 5 score was pCR, and the remaining scores (including
partial pathologic response) were classifed as non-pCR [29].

2.6. RNA Isolation and Microarray Hybridization. RNA
isolation from BS and SS was prepared using RNeasy Fibrous
Tissue Mini Kit (Qiagen; Germantown, MA) following the
manufacturer’s instructions. RNA quality was assessed by
capillary electrophoresis using the Experion Automated
Electrophoresis Station (Bio-Rad; Hercules, CA). Processing
and microarray hybridization from the selected RNA
samples were conducted using the GeneChip 3’ IVT Express
Kit (Termo Fisher Scientifc; Waltham,MA) and GeneChip
Human Genome U133 Plus 2.0 Array (Applied Biosystems;
Santa Clara, CA), according to manufacturer’s instructions
and as previously described [30, 31].

2.7. Microarray Data Processing. Normalization was per-
formed using robust multiarray average (RMA) [32]. Probes
with a mean expression <3 (logarithmic scale derived from
RMA) were also removed from the further analysis. Te
diferential gene expression analysis was performed using
a t-test with multiple comparison corrections using the false
discovery rate (FDR) method [33]. We considered the
probes positive with an FDR <0.05. Te diferentially
expressed genes (DEGs) were those with |fold change (FC)
> 2| and FDR <0.05 in every contrast evaluated. Tese an-
alyses were completed using the free Applied Biosystems
Transcriptome Analysis Console (TAC) 4.0.1 software
(Termo Fisher Scientifc).

2.8. Functional Enrichment Analysis. Te functional en-
richment analysis was performed using g:Profler β (version
e106_e53_p16_12c39de) with the g:SCS multiple testing
correctionmethods, applying a signifcance threshold of 0.05
[34] and uploading the list of DEGs from every contrast

evaluated. Te nomenclature of molecular functions, bi-
ological processes, and cellular components used the terms
of the Gene Ontology Consortium [35]. In addition, the
enriched canonical pathways were identifed using KEGG
[36], Reactome [37], and WikiPathways [38].

2.9. Ingenuity PathwayAnalysis. Te core analysis generated
with QIAGEN IPA (QIAGEN Inc., https://digitalinsights.
qiagen.com/IPA, accessed on 17 September 2022) identifed
the enriched bio-functions and canonical pathways
(p − value< 0.01 using the right-tailed Fisher´s exact test)
defned by the Ingenuity Knowledge Base as well as the
networks with the highest number of molecules involved
[39] using the list of DEGs. Additionally, based on a hy-
pothesis-driven approach to DEGs´ efect on the regulation
of mitosis, a molecule activity predictor analysis (MAP) by
IPA was done.

2.10. Real-Time qPCR Validation. To validate microarray
data, we selected four genes based on the microarray dif-
ferential gene expression results and the functional en-
richment analysis with g:Profler β and IPA: two
overexpressed genes (MME and DST) and two underex-
pressed genes (NUSAP1 and PCLAF) in SS tissues. In ad-
dition, GRAMD1A was used as an endogenous gene control
due to a low variation between samples [30]. Expression
analyses were assessed using predesigned hydrolysis probes
(MME, Hs00153510_m1; DST, Hs00156137_m1; NUSAP1,
Hs01006195_m1; PCLAF, Hs00207134_m1; GRAMD1A,
Hs.PT.5840681431) (Termo Fisher Scientifc and IDT for
GRAMD1A). Total RNA aliquots used for microarray assays
were analyzed through qPCR using the Applied Biosystems
QuantStudio 3 Real-Time PCR System (Termo Fisher).
Cycle threshold (Ct) means for each gene were used to
calculate ΔCt (problem minus endogenous), and 2−ΔCt

analysis was done using calculated ΔCt for all genes. Te
gene expression of pCR and non-pCR groups was compared
based on the relative expression 2−ΔCt evaluated from qPCR
data from all genes after normalization with GRAMD1A. An
unpaired t-test withWelch’s correction was used to establish
diferences (p − value< 0.05).

2.11. Evaluation of theDiferences inDisease-free Survival and
Overall Survival. Te SS gene expression values with DFS
and OS were evaluated in 39 patients. In addition, the
diferences in OS were assessed based on a log-rank (Mantel-
Cox) test that compares Kaplan–Meier survival curves
[GraphPad Prism Windows version 6.01 (La Jolla, CA)]. A
p − value< 0.05 was statistically signifcant.

For external validation, Kaplan–Meier Plotter (https://
kmplot.com/analysis/) online database [40, 41] was used to
analyze the OS correlated to high vs. low gene mRNA ex-
pression levels. Te Kaplan–Meier Plotter split the BC pa-
tient (n= 1402) samples into two groups according to their
median mRNA levels.Te Afymetrix probe IDs used for the
Kaplan–Meier analysis were PCLAF 202503_s_at and
NUSAP1 219978_s_at.
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Table 1: Clinical characteristics of patients included in the study.

All patients (n� 39) pCR (n� 8) (20.5%) Non-pCR (n� 31)
(71.5%) p − value

Age at diagnosis (years) 48 26 to 63 47 38 to 57 48 26 to 63 0.73
BMI (body mass index, kg/m2) 28.20 20.80 to 39.70 28.4 20.80 to 39.70 28.20 24.80 to 33.10 0.88
<25 8 20.51% 1 12.50% 7 22.58%
>25 28 71.80% 6 75.00% 22 70.97%
No data 3 7.69% 1 12.50% 2 6.45%
Menopause status
Pre 21 53.85% 5 62.50% 16 51.61% 0.88
Post 18 46.15% 3 37.50% 15 48.39%
Family history
Yes 19 48.72% 3 37.50% 16 51.61% 0.75
No 20 51.28% 5 62.50% 15 48.39%
Diabetes mellitus
Yes 2 5.13% 0 0.00% 2 6.45% 0.87
No 37 94.87% 8 100.00% 29 93.55%
Number of children 3.6 3.2 0.44
Nulliparous 4 10.26% 0 0.00% 4 12.90% 0.22
1 or 2 12 30.77% 2 25.00% 10 32.26%
>3 23 58.97% 6 75.00% 17 54.84%
Lactation
Yes 16 41.03% 3 37.50% 13 41.94% 0.97
No 11 28.20% 2 25.00% 9 29.03%
No data 12 30.77% 3 37.50% 9 29.03%
Smoking
Yes 5 12.82% 2 25.0% 3 9.68% 0.25
No 34 87.18% 6 75.0% 28 90.32%
Clinical stage
I 1 2.56% 1 12.50% 0 0.00% 0.82
II 19 48.72% 2 25.00% 17 54.84%
III 19 48.72% 5 62.50% 14 45.16%
TNM classifcation
T1 1 2.56% 1 12.50% 0 0.00% 0.93
T2 18 46.15% 1 12.50% 17 54.84%
T3 11 28.21% 4 50.00% 7 22.58%
T4 9 23.08% 2 25.00% 7 22.58%
N0 7 17.95% 2 25.00% 5 16.13%
N1 23 58.97% 4 50.00% 19 61.29%
N2 9 23.08% 2 25.00% 7 22.58%
M0 39 100.00% 8 100.0% 31 100.00%
IHC markers
ER+ 16 41.03% 2 25.00% 14 45.16% 0.30
ER- 23 58.97% 6 75.00% 17 54.84%
PR + 17 43.59% 2 25.00% 15 48.39% 0.23
PR- 22 56.41% 6 75.00% 16 51.61%
HER2+ 7 17.95% 5 62.50% 2 6.45% 0.002
HER2 - 32 82.05% 3 37.50% 29 93.55%
ki67 15.40 5 to 70 17.14 5 to 50 14.92 2 to 70 0.76
Molecular subtype
Luminal A 10 25.64% 1 12.50% 9 29.03% 0.51
Luminal B 6 15.39% 0 0.00% 6 19.36%
HER2+ 7 17.95% 5 62.50% 2 6.45%
Triple-negative 16 41.02% 2 25.00% 14 45.16%
NUSAP1 (BS)a

Overexpressed 17 43.59% 2 25.00% 15 48.39% 0.43
Underexpressed 22 56.41% 6 75.00% 16 51.61%
PCLAF (BS)a

Overexpressed 18 46.15% 4 50.00% 14 45.16% >0.99
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3. Results

3.1. Patients. Fifty-four patients were enrolled in the study,
but only 44 paired (BS and SS) samples satisfed the RNA
quality and quantity standards needed for the microarray
analysis. In addition, fve samples were eliminated because
they failed to achieve quality standards after microarray
hybridization, leaving 39 patient sample sizes for the fnal
analyses. Te clinical characteristics of the patients are de-
scribed in Table 1. According to the Miller–Payne grading
system, only 8 (20.5%) of the 39 patients reached pCR.

3.2. Gene Expression Profle Analysis. Te following com-
parisons were made between SS and BS microarray data in
pCR and non-pCR patients to assess the gene expression
modifcations induced by NCT: pCR-SS vs. pCR-BS (Sup-
plementary Figure S1), non-pCR-SS vs. non-pCR-BS
(Supplementary Figure S2), pCR-BS vs. and non-pCR-BS,
and pCR-SS vs. non-pCR-SS (Figure 1).

3.3. Functional Enrichment Analysis. Te frst comparison
pCR-SS vs. pCR-BS identifed fourteen diferentially
expressed genes (|FC > 2|, FDR <0.05, DEGs) (Supple-
mentary File S1a). Te overrepresentation analysis using
this list of DEGs (Supplementary File S1b) included the
molecular functions (MFs): DNA-binding transcription
activator activity, RNA polymerase II-specifc and the
protein tyrosine/serine/threonine phosphatase activity.
Interestingly, the identifed enriched canonical pathway
Nuclear Events (kinase and transcription factor activation)
integrates the MFs overrepresented and highlight the ef-
fects of kinase and phosphatase activity on transcription
factors. Te second contrast non-pCR-SS vs. non-pCR-BS
identifed only four DEGs (Supplementary File S2a), and
the unique MF overrepresented was nicotinamide phos-
phoribosyltransferase activity (Supplementary File S2b).
No DEGs were identifed in the third comparison pCR-BS
vs. non-pCR-BS. Te most interesting contrast was pCR-SS
vs. non-pCR-SS, with a transcriptional signature of 43
DEGs (Supplementary File S3a). Te overrepresented bi-
ological process: regulation of the mitotic cell cycle
(Supplementary File S3b) suggests that this contrast could
help us identify potential biomarkers associated with the
clinical outcomes of breast cancer. So, we evaluated it by
ingenuity pathway analysis (IPA).

3.4. Ingenuity Pathway Analysis. Te core analysis by IPA
using the list of 43 diferentially expressed genes in the
contrast pCR-SS vs. non-pCR-SS identifed breast cancer
as an enriched bio-function (Supplementary File S3c). In
this regard, the most relevant enriched canonical path-
ways were cell Cycle: G2/M DNA damage checkpoint
regulation, breast cancer regulation by Stathmin1, and
molecular mechanisms of cancer (Supplementary File
S3d). Interestingly, the MAP analysis based on the dif-
ferential expression of some essential genes in the same
contrast predicted inhibited bio-functions involved in
breast cancer progression (Figure 2). For instance, the
downregulation of NUSAP1 and PCLAF inhibited mitosis
and synthesis of DNA, respectively. Te upregulation of
MME inhibited the migration of cells, and the upregu-
lation of DST activated the organization of the cytoskel-
eton. Furthermore, the MAP of mitosis bio-function
predicted it as inhibited because of the downregulation of
NUSAP1 and AURKA that directly modifed this critical
process in cancer development. Indeed, PCLAF also in-
fuences mitosis by inhibiting UBE2C (Figure 3). In
summary, the functional enrichment analysis identifed
NUSAP1, PCLAF, MME, and DST as potential biomarkers
to be validated by RT-qPCR and evaluated in survival
analyses.

3.5.RT-qPCRValidation. Four genes (DST,MME,NUSAP1,
and PCLAF) were selected to validate themicroarrays by RT-
qPCR. Unfortunately, the remaining DNA from the tissue
sample was scarce; therefore, only 31 (pCR= 5, non-
pCR= 26) of 39 samples had enough quality and quantity of
total RNA to perform this analysis. Supplementary Figure S3
shows the box plot of NUSAP1 and PCLAF (Figures S3a and
S3b, respectively) and DST and MME expression
(Figures S3c and S3d, respectively). Tis analysis confrmed
the expression patterns of these DEGs in the microarray.

3.6. NUSAP1 and PCLAF Gene Expression. In the subset of
patients achieving pCR, NUSAP1 and PCLAF gene ex-
pressions were higher in the BS than in the SS samples
(two-way ANOVA, F= 22.12, p − value � 0.0053)
(Figures 4(a) and 4(c). In contrast, there was no signifcant
diference in the expression values in the non-pCR groups
(two-way ANOVA, F= 1.246, p − value � 0.27)
(Figures 4(b) and 4(d)). It is important to note that the

Table 1: Continued.

All patients (n� 39) pCR (n� 8) (20.5%) Non-pCR (n� 31)
(71.5%) p − value

Underexpressed 21 53.85% 4 50.00% 17 54.84%
NUSAP1 (SS)a

Overexpressed 12 30.77% 0 0.00% 12 38.71% 0.04
Underexpressed 27 69.23% 8 100.00% 19 61.29%
PCLAF (SS)a

Overexpressed 28 71.80% 1 12.50% 29 93.55% 0.0001
Underexpressed 11 28.20% 7 87.50% 2 6.45%
a NUSAP1 or PCLAF were identifed as overexpressed or underexpressed based on the contrast pCR vs. non-pCR in BS or SS samples as specifed.
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Figure 1: Unsupervised clustering of gene expression data in SS samples: pCR (n� 8) vs. non-pCR (n� 31). In the top row, pCR samples are
denoted by the red header, and the blue title indicates non-pCR samples. Te heatmap shows one sample for each column and one gene or
probe for each horizontal line. Te color indicates gene expression value intensities, where the gradient pink-red represents overexpression,
and the gradient light blue-dark blue represents underexpression.
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Figure 2: Molecule activity prediction of bio-functions associated with breast cancer using diferentially expressed genes identifed in the
contrast pCR vs. non-pCR from SS samples. Colors indicated the predicted relationship between gene expression levels and bio-functions:
green: down-regulated genes; red: up-regulated genes. Blue: bio-function inhibited; orange: bio-function activated. Te blue line leads to
inhibition; the orange line leads to activation. Te fold change of every diferentially expressed gene appears below from its gene symbol.
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expression of NUSAP1 after NCTwas signifcantly higher in
luminal B tumors than in the rest of the histologic subtypes
(F test = 4.88, p − value � 0.006) (Supplementary Figure S4).

3.7. Expression of NUSAP1 and PCLAF1 and Response to
Treatment. tResponse to NCT was considered the primary
response variable and was evaluated using the Miller–Payne
grading system. Te association between the NUSAP1 and
PCLAF genes with response to treatment was tested. Te
expression of NUSAP1 and PCLAF after NCT were inversely
associated with pCR, implying that the downregulation of
these genes had a favorable efect on the patient, as shown in
Table 2 (NUSAP1: OR=0.00, CI95%=0.00–0.99, p � 0.0417;

PCLAF: OR=0.01, CI 95%=0.0009–0.1383, p � 0.0001).

3.8. Tumor-Infltrating Lymphocytes (TILs) in BC Samples.
A correlation between TILs and gene expression levels of
NUSAP1 or PCLAF before NCT was not observed (r= 0.10,
p � 0.65, 95% CI −0.39–0.25) or PCLAF (r=−0.07, p � 0.54,
95% CI −0.22–0.40). Representative images of TILs evalu-
ation are shown in Supplementary Figure S5.

3.9. Disease-free Survival andOverall Survival. Patients were
followed up for 46.5 months on average (SD= 20.34;
range = 5.1–79.2 months). Supplementary Figure S6 shows
that HER2+ patients have better overall survival, although
signifcance levels were not reached (p − value � 0.07).
NUSAP1 and PCLAF expression patterns were compared
against tumor relapse for disease-free survival and death due
to BC for OS. Regarding DFS, the number of relapses was
signifcantly higher in patients with overexpression of
NUSAP1 in the SS (38%, log-rankMantel-Cox test, χ2 = 4.67,
p − value � 0.03) (Figure 5(a)). Likewise, higher levels of
NUSAP1 gene expression in the SS were also associated with
decreased OS, with a reduction from 84% to 50% (log-rank
Mantel-Cox test), χ2 = 5.198, p − value � 0.02) (Figure 5(c)).
Similarly, PCLAF overexpression negatively afected OS, with
a reduction from 80% to 71% (log-rank Mantel-Cox test),
χ2 = 0.40, p − value � 0.53 (Figures 5(b) and 5(d)). Com-
parisons of gene expression patterns from BS failed to classify
responders and no responders. OS results were replicated by
analyzing public data on 1402 patients from the
Kaplan–Meier Plotter website (https://kmplot.com) [40, 41].
Low levels of NUSAP1 and PCLAF were associated with
greater OS (log-rank HR=1.82, CI95%=1.46–2.26,
p − value � 6.2 × 10− 8 and log-rank HR=1.47, CI95%
=1.19–1.82, p-value = 0.0004, respectively; Figures 5(e) and
5(f), respectively).

4. Discussion

Omics technologies, global gene expression analyses, in
particular, have had a signifcant impact on the un-
derstanding of BC biology, the classifcation of pathologic
subtypes, the design of predictive algorithms, and, most
importantly, the discovery and implementation of new and
more efective therapies to control this disease [42]. All these
advances have positioned BC as one of the archetypal entities
in precision medicine. Improvements in the selection of
therapies based on the diferent molecular subtypes of BC
have yielded higher DFS and prolonged OS. However, a high
proportion of patients who do not fully respond to the
assigned therapy has been observed after a particular
treatment time. Terefore, choosing the appropriate ther-
apeutic regimen at the beginning of treatment is crucial.
Indeed, defning the most appropriate therapies beyond the
frst line is challenging, especially in pretreated patients [43].
Consequently, analysis of the molecular response to NCT
may ofer an opportunity to defne prognoses and alternative
therapies in patients with a BC diagnosis [12].

In this work, we studied gene expression profles ob-
tained through unsupervised cluster analysis of BS and SS
tissues in patients with pCR and non-pCR after NCT. After
evaluating the functional enrichment analysis of the dif-
ferent transcriptional signatures, the contrast pCR vs. non-
pCR in SS tissues was the most attractive based on a hy-
pothesis-driven approach to identify potential biomarkers
associated with clinical outcomes. Tis analysis unveiled 30
overexpressed and 13 underexpressed genes in treated tu-
mors (Supplementary File S3a). Seven of these genes
enriched the regulation of the mitotic cell cycle (AURKA,

PCLAF
-5.750

UBE2C
-5.960

CCDC8
3.210

Mitosis CCNB1
-5.110

NUSAP1
-6.010

AURKA
-4.060

Figure 3: Molecule activity prediction of the mitosis biofunction
using diferentially expressed genes identifed in the contrast pCR
vs. non-pCR from SS samples. Colors indicated the predicted
relationship between gene expression levels and biofunctions.
Green: down-regulated genes; red: up-regulated genes. Blue: bio-
function inhibited. Te blue line leads to inhibition; the gray line
indicates an efect not predicted. Te fold change of every dif-
ferentially expressed gene appears below from its gene symbol.
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CCDC8, CCNB1, FHL1, NUSAP1, RRM2, and UBE2C).
Interestingly, CCNB1, NUSAP1, RRM2, and UBE2C, in-
cluding PCLAF and UBE2T, are part of a transcriptional
signature identifed in BC from the Middle East young

women [44]. Moreover, CCNB1, RRM2, and UBE2C are
included in the PAM50 signature for the molecular classi-
fcation of BC lesions [45]. However, as far as we know, there
are no reports of a genetic signature predicting BC response
after NCT.

Some studies evaluating gene expression profles and
their association with a pCR have been already reported. For
example, in Kolacinska’s study in 2012, they analyzed bi-
opsies from 42 patients before NCT (anthracyclines and
taxanes) and identifed seven diferentially expressed genes
(BAX, CYP2D6, ERCC1, FOXC1, IRF1, MAP2, and MKI67)
in patients with pCR. We should note that this study per-
formed target gene analysis rather than global expression
analysis. Te authors selected 23 genes according to their
inclusion criteria and did not include prognostic value data
or in-depth analysis of enriched signaling pathways in the
comparisons [45].

On the other hand, an 80-Gene Molecular Subtyping
Profle (BluePrint) was evaluated as a predictor of response
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Figure 4: NUSAP1 and PCLAF/KIAA0101 gene expression based on microarray data. (a) NUSAP1 gene expression in BS and SS in pCR and
(b) non-pCR patients, respectively. (c) PCLAF (Previous symbol KIAA0101) gene expression in BS and SS in pCR and (d) non-pCR
(d) patients, respectively. Blue lines and triangles, triple-negative molecular subtype; red lines and squares, luminal A/B molecular subtype;
green lines and circles, HER2 molecular subtypes. Two-way ANOVA was performed, and a p − value< 0.05 was considered signifcant.

Table 2: NUSAP1 and PCLAF and response to treatment.

NUSAP1 PCLAF
OR 0.00 0.01
CI95% 0.000 to 0.991 0.0009 to 0.1383
p-value 0.0417 0.0001
Sensitivity 0.00 0.13
CI95% 0.000 to 0.324 0.006412 to 0.4709
Specifcity 0.61 0.06452
CI95% 0.438 to 0.763 0.01146 to 0.2072
Positive predictive value 0.00 0.03
CI95% 0.000 to 0.243 0.001710 to 0.1667
Negative predictive value 0.70 0.22
CI95% 0.515 to 0.842 0.03948 to 0.5474
Likelihood ratio 0.00 0.1336
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Figure 5: Disease-free survival and overall survival against NUSAP1 and PCLAF/KIAA0101 gene expression profles in surgical samples
(SS). (a-b) DFS curves considering NUSAP1 and PCLAF/KIAA0101 gene expression profles after NCT (SS), respectively. Blue lines,
underexpression; red lines, overexpression. (c-d) OS curves consideringNUSAP1 and PCLAF/KIAA0101 gene expression profles after NCT
(SS), respectively. Blue lines, underexpression; red lines, overexpression. (e-f) OS curves considering NUSAP1 and PCLAF/KIAA0101
expression profles from the Kaplan–Meier plotter website (https://kmplot.com), respectively. Black lines, underexpression; red lines,
overexpression.
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to chemotherapy in 133 patients treated with neoadjuvant
chemotherapy (anthracyclines and taxanes). Te results
showed that the majority of patients with pCR were basal-
type or Her2-enriched breast tumors. Of the 80 genes that
make up BluePrint, 48 have coincidences with those de-
scribed in the PAM50 gene set, in addition, Luminal-type
tumors show gene enrichment in the estrogen receptor
pathway [46]. In addition to these clinical approaches,
computational reanalysis studies have been also carried out,
such as the work reported by Zhao in 2020 where the re-
sponse to NCT in patients, mostly with TNBC, is evaluated.
In this work, response probability scores (RPS) were cal-
culated to predict response to chemotherapy for TNBC and
whose accuracy is higher than other previously reported
signatures.Tese results are similar to those reported for ER-
positive tumors using MammaPrint and Oncotype DX and
refect the activities of pathways, including cell cycle path-
ways, related to the immune system and ECM [46].

We selected four genes for RT-qPCR validation analyses
based on the diferential gene expression results in the
microarray and the functional enrichment analysis using
these DEGs identifed in SS biopsies. Two chosen genes were
overexpressed (MME and DST) and two more were
underexpressed (NUSAP1 and PCLAF). Tese validation
studies corroborated the expression patterns observed in the
microarray analyses. Interestingly, the gene expression levels
ofNUSAP1 and PCLAFweremore discriminating in the RT-
qPCR analyses, so they were chosen to perform the DSF and
OS studies (Supplementary Figure S3).

DSF and OS studies based on expression levels in SS
demonstrated that low NUSAP1 expression was associated
with better DFS. Similarly, NUSAP1 and PCLAF under-
expression were associated with increased OS (Figures 5(a)–
5(f)).

Te most important observation of this study is that the
pCR achieved with the NCT regimens (cyclophosphamide/
doxorubicin or cyclophosphamide/epirubicin) is associated
with a signifcant decrease in the gene expression levels of
NUSAP1 and PCLAF. Te association between clinical
outcomes and transcriptional profle is consistent with the
fact that the expression of these genes is involved in mitosis
and DNA replication, respectively (Figure 2), fundamental
processes involved in cancer progression, as will be dis-
cussed later. As reported, this clinical response presupposes
better DFS and OS [11]. Furthermore, higher expression
levels of these same genes in the tumor biopsy before
treatment (BS) were associated with poorer survival, in-
dicating that these genes are potential predictors of survival
in diagnostic biopsies.

Our study suggests that the HER2+ subtype responds
favorably to NCT (p − value � 0.02) and that the luminal B
subtype responds poorly, with no observed signifcant dif-
ference. Gene expression patterns ofNUSAP1 and PCLAF in
diferent molecular subtypes of BC after NCT showed that
NUSAP1 was overexpressed in luminal B tumors compared
to luminal A, HER2+, and triple-negative subtypes (Figure 4
and Supplementary Figure S4). Colak et al. reported over-
expression of NUSAP1 and PCLAF in ductal in situ and
invasive ductal carcinoma compared to normal age-matched

controls [44]. Tumor-infltrating lymphocytes have been
reported to modulate the NCT response in breast cancer
[47]. Furthermore, in the same study, no correlations were
observed between TIL counts and gene expression (NUSAP1
and PCLAF) in BS tissues from patients with and
without PCR.

Te protein PCNA-associated factor encoded by PCLAF
binds the PCNA protein, acts as a regulator of the number of
centrosomes, and is involved in DNA repair during DNA
replication [15]. Overexpressed PCLAF has also been as-
sociated with decreased survival in BC patients [15] but not
the pathologic response to NCT. Similarly, NUSAP1 gene
expression levels showed a remarkable inverse correlation
with survival (Figures 5(a), 5(c), and 5(e)).Tis gene encodes
for nucleolar and spindle-associated protein 1, which binds
to chromatin and microtubules and is critical for the cy-
tokinesis spindle assembly during mitosis [16]. NUSAP1
overexpression has been reported in bladder, cervical, colon,
liver, lung, prostate, kidney, and breast cancers, glioblas-
toma, and oral squamous cell carcinoma [48–52]; multiple
studies have correlated its overexpression with poor prog-
nosis [15, 49, 50, 53–57]. Zhang et al. demonstrated that the
downregulation of NUSAP1 suppressed proliferation, mi-
gration, and invasion of MCF-7 cells by disturbing the
regulation of CDK1 and DLGAP5 and increasing suscepti-
bility to epirubicin [50]. Our fndings are like those of Qiu
et al. Tey reported higher NUSAP1 expression in tumors
than in adjacent healthy tissue and an inverse correlation
between NUSAP1 expression and OS in BC patients. Tese
fndings were corroborated in a BALB/c-nu mouse model in
which they determined the involvement of NUSAP1 in
tumor proliferation, migration, and invasion [18]. Finally,
NUSAP1 has been proposed as a carcinogenic element
whose overexpression would help tumor progression in
triple-negative BC cells, participating in the epithelial-
mesenchymal transition and the Wnt/β-catenin
pathways [17].

Our fndings, together with those previously reported,
indicate that these two genes may be prognostic genetic
markers in BC but, at the same time, potential therapeutic
targets. Te proteins encoded by NUSAP1 and PCLAF are
involved in BCRA1-mediated DNA repair. NUSAP1 in-
creases BRCA1 expression [58], whereas PCLAF regulates
the number of centrosomes by interacting with BRCA1 [15].
Since the biological roles of theNUSAP1 and PCLAF involve
cell cycle pathways, patients with elevated transcription
levels of these genes may beneft from chemotherapeutic
drugs interfering with BRCA1, such as platinum derivatives.
NUSAP1 overexpression could also be treated with galiel-
lalactone, a fungal metabolite with antitumor and anti-
infammatory properties. Galiellalactone downregulates
NUSAP1 in DU 145 cells by targeting the NF-κB and STAT3
pathways, inducing cell cycle arrest [59]. Another option to
target NUSAP1 overexpression is the antitumor compound
isopicrinine, isolated from Rhazya stricta, an inhibitor of the
microtubule assembly [60].

Finally, decreased expression of NUSAP1 seems to
sensitize osteosarcoma cells to paclitaxel, as NUSAP1 in-
teracts with the RanBP2-RanGAP1-UBC9 SUMO E3 ligase
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complex, allowing for accurate chromosomal segregation
[61]. In addition, NUSAP1 knockdown has been observed to
potentiate paclitaxel-induced apoptosis in oral squamous
cell carcinoma [62].

Our studies show signifcant results of the down-
regulation of NUSAP1 and PCLAF and overexpression of
MME and DST in SS, predicting pCR. BS data do not reach
signifcance, but this correlation is also registered. On the
contrary, the data suggest that overexpression of NUSAP1
and PCLAF are associated with decreased DFS. Tis in-
formation could be useful to implement second-line treat-
ment or more aggressive regimens in nonresponders.

It is essential to highlight some limitations of this study.
Te frst is the small sample size; however, the NCTschemes
and sampling were standardized for most study participants.
Te selection also has an overrepresentation of triple-
negative BC because the NCT program prioritizes patients
with this tumor subtype.

5. Conclusions

Downregulation of NUSAP1 and PCLAF in SS after NCT
was associated with favorable therapeutic response and
prognosis in BC. Tese two genes represent potential bio-
markers for personalized therapies for patients who do not
respond adequately to NCT.
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Supplementary Materials

Supplementary Figure S1. Heatmap of pCR samples: SS
(n= 16) vs. BS (n= 16). In the top row, SS samples are
denoted by the blue header, and the red title indicates BS
samples. Te heatmap shows one sample for each column
and one gene or probe for each horizontal line. Te color
indicates gene expression value intensities, where the pink-
red gradient represents overexpression, and the light blue-
–dark blue gradient represents underexpression. Supple-
mentary Figure S2. Heatmap of non-pCR samples: SS
(n= 31) vs. BS (n= 31). In the top row, BS samples are
denoted by the blue header, and the red title indicates SS
samples. Te heatmap shows one sample for each column
and one gene or probe for each horizontal line. Te color
indicates gene expression value intensities, where the pink-red
gradient represents overexpression, and the light blue–dark
blue gradient represents underexpression. Supplementary
Figure S3. Box plots showing microarray selected genes
validation by RT-qPCR (NUSAP1, PCLAF1,DST, andMME).
a and b represent expression levels of NUSAP1 and PCLAF1,
respectively. c and d represent the expression of DST and
MME, respectively. An unpaired t-test with Welch’s cor-
rection was used for comparisons. Supplementary Figure S4.
Expression levels of NUSAP1 according to the molecular
subtype after NCT (SS). LA, luminal A; LB, luminal B;
TN= triple negative. One-way ANOVA and the Holm–Sidak
multiple comparisons test were used for comparisons. Sup-
plementary Figure S5. Microscopic evaluation of tumor-
infltrating lymphocytes (TILs). (a) Low TILs, 10×. Fibrous
stroma is observed between the tumor cells, with little lym-
phoplasmacytic infltration at 5%. (b) Moderate TILs, 10×.
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Moderate lymphoplasmacytic infltrate is seen in the tumoral
stroma at 30%. (c) High TILs, 10×. A dense lympho-
plasmacytic infltrate was observed in the stroma between the
neoplastic cells in the upper left area at 80%. Supplementary
Figure S6. Overall survival according to the molecular subtype
after NCT only in surgical samples. LA= luminal A,
LB= luminal B, TN= triple negative. Log-rank (Mantel-Cox)
test was used for comparisons. Supplementary Figure S7.
Graphic abstract: Gene expression profles based on micro-
arrays were carried out in Breast Cancer (BC) tumor samples
from Biopsy (BS) at the diagnostic time and from Surgery (SS)
after neoadjuvant chemotherapy treatment (NCT) with cy-
clophosphamide-doxorubicin/epirubicin, to defne tumor
molecular adaptations to chemotherapy in patients who
showed pathologic complete response (pCR) or therapeutic
failure (non-pCR) after NCT. A signature of 43 diferentially
expressed genes discriminated pCR from non-pCR patients (|
fold change >2|, false discovery rate <0.05) only in biopsies
taken from surgery. Based on unsupervised clustering of gene
expression, together with functional enrichment analyses of
diferentially expressed genes, we selected NUSAP1, PCLAF.
We also analyze the correlation betweenNUSAP1 and PCLAF
against disease-free survival (DFS) and overall survival (OS).
Patients achieving pCR showed downregulation of NUSAP1
and PCLAF in tumor tissues and increased DFS and OS, while
overexpression of these genes correlated with poor thera-
peutic response and OS. Tese genes are involved in the
regulation of mitotic division. Conclusions: the down-
regulation of NUSAP1 and PCLAF after NCT is associated
with the tumor response to chemotherapy and patient sur-
vival. Supplementary File S1. (a) List of fourteen diferentially
expressed genes (DEGs) in the comparison of pCR-SS vs.
pCR-BS. (b) Functional enrichment analysis of this contrast
using 14 DEGs. Supplementary File S2. (a) List of four dif-
ferentially expressed genes in the contrast non-pCR-SS vs.
non-pCR-BS. (b) Functional enrichment analysis of this
comparison using 4 DEGs. Supplementary File S3. (a) List of
forty-three diferentially expressed genes in the comparison of
pCR-SS vs. non-pCR-SS. (b) Functional enrichment analysis
of this contrast using 43 DEGs. (c) Enriched bio-functions
defned by the Ingenuity Knowledge Base. (d) Enriched ca-
nonical pathways defned by the Ingenuity Knowledge Base.
(Supplementary Materials)
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