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As one of the typical emerging contaminants, microplastics exist widely in the environment because of
their small size and recalcitrance, which has caused various ecological problems. This paper summarizes
current adsorption and removal technologies of microplastics in typical aquatic environments, including
natural freshwater, marine, drinking water treatment plants (DWTPs), and wastewater treatment plants
(WWTPs), and includes abiotic and biotic degradation technologies as one of the removal technologies.
Recently, numerous studies have shown that enrichment technologies have been widely used to remove
microplastics in natural freshwater environments, DWTPs, and WWTPs. Efficient removal of micro-
plastics via WWTPs is critical to reduce the release to the natural environment as a key connection point
to prevent the transfer of microplastics from society to natural water systems. Photocatalytic technology
has outstanding pre-degradation effects on microplastics, and the isolated microbial strains or enriched
communities can degrade up to 50% or more of pre-processed microplastics. Thus, more research
focusing on microplastic degradation could be carried out by combining physical and chemical pre-
treatment with subsequent microbial biodegradation. In addition, the current recovery technologies of
microplastics are introduced in this review. This is incredibly challenging because of the small size and
dispersibility of microplastics, and the related technologies still need further development. This paper
will provide theoretical support and advice for preventing and controlling the ecological risks mediated
by microplastics in the aquatic environment and share recommendations for future research on the
removal and recovery of microplastics in various aquatic environments, including natural aquatic en-
vironments, DWTPs, and WWTPs.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The mass production of plastics began around 1950 because of
its superior properties [1], and society has been using plastics for
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about a hundred years. Over these decades, the world's plastic
production increased from two million tons in 1950 to 370 million
tons in 2019 [2] and will continue to increase in the future. Studies
predict that the output of plastics will double again in 20 years and
almost quadruple by 2050 [3]. With the mass production and
widespread use of plastics, it is estimated that more than 400
million tons of plastic waste will be produced each year after 2020
[4]. Approximately 76% of the total plastic production is treated as
waste of which 12% is burned, 79% is buried or released into the
environment, and only 9% is recycled [5]. The incineration of
plastics releases carbon monoxide, dioxins and dioxin-related
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compounds, and nitrogen oxides into the atmosphere [6], resulting
in air pollution and the inability to completely remove plastic waste
[7].

Plastics with different sources, shapes, and types decomposed
into microplastics (MPs) with diameters less than 5 mm through
photodegradation, thermal oxidation, thermal degradation, and
possible biodegradation [8,9]. MPs have the characteristics of small
size, large specific surface area, and remarkable chemical stability
[10]. When MPs enter the food chain, the pollutants and toxic
substances attached to the surface of MPs which will be ingested by
animals. These MPs are toxic and ultimately threaten animal and
human health [11e15].

Studies have focused on the sources, abundance, degradation,
and interaction of MPs with their surface organisms in aquatic
environments [16e19]. MPs particles and plastic fibers produced in
the process of human life enter the wastewater treatment plants
(WWTPs) through domestic wastewater, but they are difficult to be
effectively captured and removed completely by conventional
WWTPs processes because of their small sizes [20]. MPs enter
rivers or accumulate into river sediments with the effluent of the
WWTPs, and finally enter the marine environment which will exist
in the environment for decades [21e24]. MPs can be transported far
away by ocean currents, so MPs are widely distributed in the ocean,
sediments, and even in the deep sea [25,26].

MPs pollution has gradually spread from aquatic environments
to the rest of the environment and has caused adverse effects.
Therefore, it is important to develop removal, recycling, and
degradation technologies for MPs and prevent the potential
ecological risks.

This paper takes natural aquatic environments, drinking water
treatment plants (DWTPs), and WWTPs as typical aquatic sce-
narios, and comprehensively summarizes and discusses the
research progress of MPs enrichment, removal and degradation
technologies in various aquatic environments. In this review, we
compared and analyzed the existing removal and degradation
technologies of MPs to offer valuable scientific strategies for the
development of new MPs removal, degradation, and recycling
technologies to achieve efficient MPs pollution remediation.

2. Enrichment and removal technologies of microplastics in
aquatic environments

2.1. Natural aquatic environments

2.1.1. Adsorption
Different removal technologies based on adsorption mecha-

nisms have been proven to be effective approaches to remove MPs
and nanoplastics (NPs) in aquatic environments. The chemically
synthesized sponge materials [27e30], graphene materials [31],
and biochar materials [32] can be used to remove MPs and NPs in
natural waters. Sponge materials can effectively remove various
pollutants in water. Currently, some studies have used natural
organic compounds as raw materials to produce sponge materials
to adsorb MPs in the aquatic environment. A natural and biode-
gradable green sponge material with high mechanical properties
was prepared by chemically crosslinking plant proteins. The
abundant active side chains on the amino acid residues of the
sponge allows for the protein sponge to have excellent adsorption
capacity for MPs (the removal efficiency is as high as 81.2%) as well
as reusability and biodegradability properties [29]. Sponge mate-
rials with chitin and graphene oxide (ChGO), chitin-based sponges
combined with OeC3N4, chitosan were prepared, and all of them
had acceptable performance and reusability. Each material had
more than 70% removal efficiency for pure polystyrene (PS),
carboxylate-modified polystyrene (PSeCOOH) and amine-modified
2

polystyrene (PSeNH2) MPs [27,30]. Yuan et al. used the chemical
action of three-dimensional reduced graphene oxide (3D RGO) in
water to complete the adsorption of PS�MPs. The analysis showed
that under the optimal conditions (pH 6, ion concentration
600 mg L�1, adsorption time 120 min, and temperature 26 �C), the
3D RGO reached the maximal adsorption (617.28 mg g�1) on
PS�MPs [31]. MPs would re-enter the environment by desorption
from the adsorbents when rinsed, Mg/Zn modified magnetic bio-
char (Mg/Zn�MBCs) could degrade MPs by thermal treatment in
situ, thus achievingMg/Zn�MBC recycling, which can avoid the risk
of MPs desorption [32].

Somemetals combinedwith other chemical substances ormetal
compounds have also been reported for adsorption and removal of
MPs. Micro/nanomotors (MNMs) are nano or micro-scale sub-
stances that move in a way similar to biological motor proteins,
which can transport other objects and/or catalyze [33,34]. There is a
broad application potential in the field of environment and some
articles have reviewed the use of MNMs to remove MPs in the
environment [35]. Self-propelled micromotors have certain aca-
demic value and application potential in microenvironmental
remediation, such as the ability to overcome the diffusion limita-
tion in the catalytic process and the ability to closely interact with
the environment. For example, photocatalytic TiO2-based micro-
motors (Au@mag@TiO2, mag ¼ Ni, Fe) could effectively move in
peroxides and water under UV light irradiation and be used to
remove MPs in aquatic environments [36]. The Fe2O3eMnO2
micromotor exhibits efficient removal of both aquatic organics and
suspended MPs via the synergetic effect of catalytic degradation,
surface adsorption, and adsorptive bubbles separationmechanisms
[37]. A series of zirconium metaleorganic framework-based foam
materials have been successfully fabricated and applied in simu-
lated MPs removal in water or seawater conditions [38]. In-
teractions between NPs and ZneAl layered double hydroxide (LDH)
confirmed that ZneAl LDH can be considered as a potential
adsorbent for NPs removal in freshwater systems [39].

Because of the surface charge between substances, some com-
mon organic substances in the environment can also adsorb MPs in
ultrapure water, such as granular activated carbon (GAC) [40].
Except activated carbon, untreated coffee grounds can also effec-
tively remove NPs from aquatic solutions [41]. In addition, there are
some studies on magnetic adsorption of MPs in aquatic environ-
ments. For example, hydrophobic Fe nanoparticles modified with
hexadecyltrimethoxysilane (HDTMS) could remove MPs due to
hydrophobic interactions [42]. Based on the characteristics that
magnetic carbon nanotubes (M�CNTs) could be adsorbed on MPs,
such as polyethylene (PE), polyethylene terephthalate (PET), and
polyamide (PA), in aquatic environments, all the MPs/M�CNTs
composites could be readily separated from aquatic solutions by
magnetic force [43].

The adsorption mechanisms of MPs by chemically synthesized
sponge materials with larger sizes are based on hydrogen bonds,
electrostatic between MPs and sponge materials are p�p in-
teractions [27,30]. MPs in aquatic environments generally have a
negative charge and can easily interact electrostatically with posi-
tively charged substances and be adsorbed on the surface. In
comparison, the adsorption mechanisms of MPs via micromotors
with smaller sizes are generally based on the phoretic interactions
and shoveling, noncontact shoveling, and adsorptive bubble sepa-
ration. Previous studies have reported that the synergetic adsorp-
tion mechanisms of surface and bubble separations also played a
critical role in MPs adsorption [35e37,44,45].

Many factors can also affect the MPs removal efficiency
including pH, temperature, adsorbents types, dissolved organic
matter (DOM), and ions, but pH and temperature are the two most
important factors. pH affects the adsorption efficiency mainly by
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influencing the charge on the surface of MPs and the adsorbent.
Temperature can affect the adsorbate diffusion rate and equilib-
rium capacity, and higher temperatures achieve more MPs
adsorption [29]. Different adsorbents types have different electro-
static and hydrogen bonding interactions with MPs, thereby
altering the adsorption capacity. DOM changes the interaction of
absorbents with MPs [30]. On top of this, ions can influence the
electrostatic attraction between MPs and the adsorbent, which in
turn alters theMPs adsorption by adsorbent [31,46]. In other words,
the adsorption removal of MPs has the advantages of high
adsorption capacity, high removal efficiency, low energy con-
sumption and reusability. However, the adsorbents need to be
eluted from the adsorbed MPs after use, which allows for the po-
tential risk that the MPs would re-enter the environment. The ad-
vantages or disadvantages of other emerging technologies are yet
to be clarified as they are still in the early age of research.

2.1.2. Filtering
Filtration could also be applied to MPs removal in aquatic en-

vironments. The biofilter prepared by Kuoppam€aki et al. not only
removes nutrients and heavy metals in rainwater, but also remove
MPs [47]. Cost-effective guinea cornhusk ash (GCHA) was fabri-
cated, which supports thin film composite (TFC) membranes via
interfacial polymerization, and can be used to remove MPs from
aqueous solutions and has good stability in seawater pretreatment
[48].

2.1.3. Other enrichment and removal technologies
In addition to adsorption and filtration, some other technologies

also show excellent application prospects in the removal of MPs in
the aquatic environment. Electrocoagulation (EC) removes MPs
through a series of physical-chemical reactions, which usually fol-
lows three consecutive steps. Firstly, the metal anode produces
metal cations and forms micro coagulants in the presence of an
electric field. Then, the charged micro coagulants trap and engulf
suspended particles, such MPs forming colliding flocs. Thirdly, the
microflocs size continues to build with more collisions and finally
achieve MPs removal via physical and/or chemical reactions
[49,50].

Lysozyme amyloid fibrils serves as a novel natural bio-flocculant
for removing dispersed MPs from water [51]. MPs can also be
enriched and removed fromwater by using adhesives. Chazovachii
et al. indicated that shaking zirconium silicate beads coated with
poly(2-ethylhexyl acrylate) in aqueous suspensions containing
PS�MPs (10 mm) could remove up to 99% of the MPs within 5 min
[52]. Solar energy was used to drive the removal of MPs in aquatic
environments, in which the sunlight was focused by high-density
glass spheres to induce convection and form microbubbles at the
interface. MPs were then driven to the bubbles through convection.
The temperature in the bubbles was much higher than in the so-
lution, so that the aggregated MPs were fused to form a large block.
This method could remove MPs in water without biological or
chemical energy which can cause secondary pollution [53].

In the natural aquatic environment, MPs removal technologies
based on the principle of adsorption has been widely studied and
showed obvious advantages. Enriched MPs can be combined with
recycling technology to achieve harmless treatment of MPs. Many
materials that can adsorb and enrich MPs in aquatic environments
are reusable, and they still have high adsorption efficiency after
repeated use. Adsorption materials are easy to separate from
environmental substances without introducing new pollutants.
Compared with other methods, the energy consumption of MPs
removal by adsorption enrichment is significantly lower. Among
various MPs removal methods, the sponge material prepared with
chitin not only had higher MPs removal efficiency, but can also be
3

reused. Moreover, chitin does not cause environmental pollution
and is an environmentally friendly and readily available material.
The sponge does not consume energy and causes no pollution. As a
green environmentally friendly and convenient MPs adsorption
method, it has broad and promising application prospects. In the
future, more attention should be paid to the adsorption and
enrichment of MPs by using materials easily available in the envi-
ronment or materials such as domestic waste. MPs removal devices
driven by low energy consumption or solar energy, will also help to
achieve material recycling under carbon constraints. The removal
technologies of MPs in natural freshwater environments in the last
five years were summarized in Tables 1 and 2.

2.2. Marine environment

Feasible and effective methods to enrich and remove MPs in the
marine environment are still lacking. Marine organisms have great
potential for the removal of marine MPs. From the perspective of
marine MPs removal, we believe that the adsorption and ingestion
behavior of marine organisms on MPs is an important way to
partially remove marine MPs.

The feeding and adsorption ability of marine organisms to MPs
has been investigated and confirmed recently. For example, corals
in the ocean remove MPs from the seawater through active
(ingestion) and passive (adhesion to the surface) mechanisms
[55,56]. Red Sea giant clam (Tridacna maxima) can ingest MPs on its
own and its shell has the ability to adsorb MPs [57]. MPs were
detected in the gut of gooseneck barnacles (Lepas spp.) in the North
Pacific Subtropical Gyre [58]. Although the ingestion and adsorp-
tion of MPs by marine organisms temporarily enriches MPs from
seawater, MPs enriched within the food chain could eventually
move up to the human body as the marine organisms that ingested
or adsorbed MPs were preyed on by higher trophic organisms or
released to the marine environment upon degradation by a
decomposer once they died. Therefore, the ingestion and adsorp-
tion of MPs by marine organisms can only migrate marine MPs
rather than effectively removal, which increases the potential risk
of MPs passing and accumulating along the food chain. Therefore,
the removal of MPs in the marine environment is important while
the relevant technologies are still lacking.

Compared with natural aquatic environments, MPs have
different fates in the marine environment. MPs in the ocean are
easily affected by ocean currents, as well as various small fouling
organisms adhering to the surface of MPs to facilitate their settle-
ment. Rius-Ayra et al. presented a superhydrophobic surface ob-
tained by combining anode oxidation and the liquid-phase
deposition of lauric acid which could remove MPs from simulated
marine water [59]. An MP concentrator (MPC) was designed and
optimized, which could balance inertial lift forces and Dean drag
forces in a fully enclosed system to concentrate MPs �19 mm. The
MPC achieved more than 90% recovery of MPs from seawater
samples and polypropylene (PP) food container extracts, and also
obtained MPs counts (per gram wet sediment) for environmental
ocean floor samples within the range (Polyurethane, Cis-poly-
isoprene, PS, PE, Nylon, Polyester, Ammonium polyacrylate, Alkyd
resin, Melamine-formaldehyde resin, Anionic polymer (Hydraid
771), Adhesive (Tuff-Bond®)) previously achieved by filtration [60].

Apart from large marine organisms, marine microbes such as
algae can also enrich MPs and NPs. The extracellular polymeric
substances (EPS) secreted by algae form aggregates with MPs par-
ticles, making MPs easy to be deposited and separated. Current
studies have found that EPS of two marine microalgae (Tetraselmis
sp. and Gloeocapsa sp.) have excellent effects on the aggregation of
MPs. EPS isolated from other algae in fresh water, such as Cyano-
thece sp.,Microcystis panniformis, and Scenedesmus sp., also exerted



Table 1
Adsorption removal technologies of MPs in natural water.

Removal
mechanism

Removal technologies Material Types of MPs Maximum adsorption
capacity

Removal efficiency Reference

Adsorption Oat protein sponges Oat protein isolate 1 mmPS (1mg per L suspension) 5.7 mg L�1 (25 �C,
MPs ¼ 15 mg L�1)

The highest rate was
81.2%

[29]

Sponge ChGO 1 mm PS (1 mg L�1) 8.461 mg L�1 (45 �C) The highest rate was
92.2%

[27]

1 mm PSeCOOH (1 mg L�1) N/A The highest rate was
74.9%

1 mm PSeNH2 (1 mg L�1) N/A The highest rate was
90.2%

Chitin-based sponge ChCN, ChGO, and
ChGO�CT

1 mm PS (1 mg L�1) 9.67 mg L�1 (ChGO,
45 �C)

89.6e92.1% [30]

1 mm PSeCOOH (1 mg L�1) 8.86 mg L�1 (ChGO,
45 �C)

80.4e81.3%

1 mm PSeNH2 (1 mg L�1) 12.9 mg L�1 (ChCN,
45 �C)

83.2e87.1%

Biochar and modified
biochar

MBCs 1 mm, 100 mg mL�1 PS 100.6 mg g�1 94.81% [32]
Mg�MBCs 98.52 mg g�1 98.75%
Zn�MBCs 99.21 mg g�1 99.46%

Three-dimensional
graphene

3D RGO 5 mm monodisperse PS
microspheres (0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, and 0.8 g L�1)

617.28 mg g�1 (pH ¼ 6,
26 �C, C0 ¼ 600 mg L�1,
t ¼ 120 min)

Tap water (56.08%,
448.60 mg g�1);
micropolluted water
(53.85%,
430.78 mg g�1);
distilled water (66.63%,
533.06 mg g�1)

[31]

Photocatalytic TiO2-
based Micromotor

Au@mag@TiO2,
mag ¼ Ni, Fe

Separated and extracted from
personal care products and
Baltic Sea and Warnow river

N/A 71% in 0.2% H2O2

solution
[36]

67% in Warnow river
Bubble-propelled iron
oxides�MnO2 core-
shell MNMs

Fe2O3eMnO2

MNMs
separated and extracted from
the facial cleanser

N/A Separated more than
10% of the suspended
MPs from the polluted
water in 2 h

[37]

Zirconium metal
eorganic framework-
based foam

UiO-66-OH@MF-3 PVDF (~260 nm),
PMMA (~325 nm), PS (~183 nm)

N/A The highest rate was
95.5 ± 1.2%

[38]

ZneAl LDH ZneAl LDH 55 nm PS (250 mg L�1) 164.49 mg g�1

(deionized water);
162.62 mg g�1

(synthetic freshwater);
53.27 mg g�1 (synthetic
hard water)

100% (pH 4); 37% (pH 9) [39]

GAC Granular coconut shell-
based Activated Carbon

PS latex NPs (90 ± 7 nm, 3 g L�1) 2.20 ± 0.06 mg g�1 in
ultrapure water

98% [40]

6.33 ± 0.20 mg g�1 in
natural surface water
from Lake Geneva

90%

Coffee grounds Coffee grounds
biowaste

Fluorescent-orange amine-
modified PS beads (fluo-NP,
100 nm, 25,000 mg L�1)

4 mg g�1 (t ¼ 40 min) The maximum
adsorption efficiency
74%

[41]

Magnetic
adsorption

Hydrophobic Fe
nanoparticles

Modified Fe
nanoparticles binding
MPs

MPs in three size ranges, large
(1e8 mm), medium (200 mme1
mm), and small (<20 mm)

N/A For the large size MPs:
74e105%, for the
medium size MPs: 59
e100% for RO water
and 49e90% for
sediment, for the small
MPs: ~90%

[42]

M�CNTs M�CNTs PE, PET, and PA (diameter
48 mm, 5 g L�1)

1650 mg M�CNTs per g
PE; 1400 mg M�CNTs
per g PET;
1100 mg M�CNTs per g
PA

100% [43]
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similar effects [61,62]. A bacterial biofilm with a “capture-release
mechanism” was designed, whose EPS could firstly cause bio-
aggregation of MPs, followed by an inducible biofilm dispersal
mechanism that releases trapped MPs for downstream resource
recovery [63].

Other organisms in marine environments can also share new
insights for MPs removal. Based on the basic characteristics of the
adhesive chemistry practiced by marine mussels, adhesive poly-
dopamine (PDA)@Fe3O4 magnetic microrobots (MagRobots) were
4

prepared by coating Fe3O4 nanoparticles with a polymeric layer of
dopamine via one-step self-polymerization. Such adhesive
MagRobots are promising to remove MPs from aquatic environ-
ments at a large scale [64]. Jellyfish is a common marine organism
that can produce a large amount of mucus, which could be as a new
type of biological flocculation material, and the jellyfish mucus has
been shown to be able to chelate PS�MPs in the aquatic environ-
ment [65]. Table 3 summarized the ocean MPs removal techniques
over the past three years.



Table 2
Enrichment and removal technologies of MPs in natural water.

Removal mechanism Removal
technologies

Material Types of MPs Removal efficiency Reference

Filtration Biofilter structures (a) Crushed light-expanded clay aggregates without
biochar or amended with biochar, (b) Filtralite P clay
aggregates, (c) Crushed concrete, or (d) Filter sand

Fluorescent PE MPs beads up to
10 mm in diameter, coated with
luminescence dye (0.02 g mL�1)

100% [47]

Silica-based ceramic
hollow fiber (HF)
microporous
membrane

guinea cornhusk ash (GCHA) PVC, polyvinylpyrrolidone (PVP),
polyacrylonitrile (PAN),
polymethylmethacrylate (PMMA)
(50 mg L�1)

88.8e97.2% [48]

Electrocoagulation Electrocoagulation Reactor, electrodes PE (Fluorescent green, spherical
microbeads of 300e355 mm
0.997 g cm�3, 0.1 g L�1)

The highest removal
efficiency being 90
e100%

[54]

Flocculation Natural bio-
flocculant

Lysozyme amyloid fibrils Carboxylated PS particles (500 nm,
50 mg mL�1)

Turbidity and TOC
decreased by 98.2
and 93.4%,
respectively

[51]

Noncovalent
interactions

Pressure-sensitive
adhesive

Zirconium silicate beads coated with poly (2-
ethylhexyl acrylate)

PS (10 mm, 2 mg mL�1) 99% [52]

Collect and fuse plastic
particles into large
bulks in the
microbubble

Solar energy Spherical K5 glass balls Monodisperse PS colloids (60 nm,
90 nm, 200 nm, 500 nm, 1 mm, and
3 mm PS)

Maximum collection
efficiency over 70%

[53]

Table 3
Removal technology of MPs in marine.

Removal technologies Material Removal mechanism Types of MPs Removal
efficiency

Reference

Non-fluorinated
superhydrophobic
aluminium surface

Combining anodisation and the
liquid-phase deposition of lauric
acid

Superhydrophobic/superoleophilic
wetting properties

53 ± 7MPmL�1 of PP�MPs (size¼ 262 ± 4 mm)
(the solvent is 3.5 wt% NaCl aqueous solution)

>99% [59]

MPC Patterned PDMS with inlet and
outlet holes bonded to a slide via
oxygen plasma

Concentrate particles of specific sizes
with the balance of inertial lift force and
Dean drag force in a fully enclosed
system

Blank NaCl solutions containing 20 mm green
PS beads, 5 mm red PS beads, and 1 mm green PS
beads (3 � 10�5 g mL�1)

�90% [60]

Tetraselmis sp.,
Gloeocapsa sp.,
Microcystis
panniformis,
Scenedesmus sp.

EPS EPS and MPs form hetero-aggregates PMMA, PS (<106 mm; 106e250 mm), density
(high and low) (12.5 and 125 mg L�1)

N/A [61]

Cyanothece sp. EPS EPS to aggregate NPs and MPs 0.1 mm PS�NPs and 10 mm PS�MPs (solution in
deionized water containing 0.1% Tween 20, 1
and 10 mg L�1)

N/A [62]

A bacterial biofilm with
a “capture-release
mechanism”

EPS EPS can cause bioaggregation of MPs MPs (106e300 mm) in seawater N/A [63]

PDA@Fe3O4

(MagRobots)
Coating Fe3O4 nanoparticles with
a polymeric layer of dopamine
via one-step self-polymerization.

Mimicking basic characteristics of the
adhesive chemistry practiced by marine
mussels

MPs solution (2 mg mL�1) N/A [64]

Jellyfish mucus C. tuberculata, A. aurita, and
R. pulmo jellyfish and M. leidyi

Jellyfish mucus can efficiently sequester
PS�MPs particles from the suspension

PS microspheres, dyed with Fluorescent Green
with the average particle size of 48 mm, particle
density of 1.05 g cm�3, refractive index 1.59

N/A [65]
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Most of MPs accumulated in the aquatic environment eventually
gathered in the marine environment. Compared with the fresh-
water environment, the marine environment is more complex and
larger, and many MPs removal methods are difficult to apply to the
marine environment broadly. Moreover, MPs can easily settle in the
ocean caused by the attachment of marine microbes and fouling
organisms. Nevertheless, all kinds of valuable marine organisms
can provide MPs removal methods potential and suggestions. The
removal technologies of MPs in the ocean are still being challenged
to be utilized in the field. Further in-depth investigations and
technical improvements are necessary, especially for the heavily
polluted coastlines and estuaries.

2.3. Drinking water treatment plants (DWTPs)

The fate and environmental behavior of MPs in DWTPs have
5

received increasing attention to ensure the safety of drinking water.
Recent studies indicated that removal efficiency of MPs in DWTPs
depends on raw water quality and treatment process in each
catchment [66e70]. The abundance of MPs in raw water and
treated water of two DWTPs with different treatment processes
varied significantly. The number of MPs ranges from less than 20 to
more than 1200 pieces per liter with sizes mainly less than 10 mm
[71].

2.3.1. Coagulation - flocculation - sedimentation (CFS) technology
Coagulation-flocculation-sedimentation (CFS) are used by many

DWTPs to remove particulates and colloidal substances, and this
process is also used to remove MPs and NPs. Under the action of
coagulants, the colloids and fine suspended matter in the water
coalesce into flocs and precipitate. During the removal by coagu-
lation/flocculation processes, particles are separated from the
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water phase, largely by the use of metallic salts (iron and
aluminium) and polymeric flocculant aids like polyacrylamide
(PAM) [72]. The previous work indicated that PS�MPs less than
90 mmweremore easily removed by alum CFS treatment [73]. Alum
flocculation was proposed to be the main mechanism for removing
MPs from drinking water, and it can remove MPs from solutions
with surfactants [74]. In addition, approximately 80% of MPs were
removed when using ferric and aluminium sulphate as coagulants.
Polyvinyl chloride (PVC) MPs less than 50 mm were coagulated by
ferric and aluminium sulphate, and MPs no less than 15 mm were
completely removed under optimized coagulation conditions
(ferric sulphate at 20 mg L�1 and pH 7 or aluminium sulphate at
40 mg L�1 and pH 7) [75]. When Fe-based salts worked as co-
agulants to remove PE�MPs, the removal efficiency was greatly
improved by the addition of PAM [76]. Coagulation and sedimen-
tation could also be combined with other technologies to remove
MPs in drinking water. For example, MPs with larger size were
better removed by coagulation and filtration, and the coagulation
with AlCl3 is better than that of FeCl3. When the dosage of coagu-
lant AlCl3 was 10 mg L�1 and the settling time was 1 h, the
maximum MPs removal rate (about 90%) was achieved under
slightly acidic conditions (pH 6). By filtration, the MPs more than
20 mm could be completely retained in sand, while the MPs <20 mm
were likely passed through the sand [77].

The removal efficiency of MPs by traditional drinking water
treatment processes varies in different DWTPs. For example, the
removal efficiencies of MPs by CFS and filtrationwere only 54% and
76%, respectively, in two DWTPs located in Indonesia [78]. This
difference could be explained based on the fact that different types
and sizes of MPs have different affinity to flocculants. The agedMPs
also increased the affinity to coagulants and flocculants because of
the changed chemical properties and increased roughness [79].
Although the CFS process has beenwidely applied in the removal of
MPs in DWTPs, the road ahead is still long and difficult to use CFS
process to completely remove all sizes of MPs since there is a
threshold for MPs size, that is, when the MPs size is about
10e20 mm, the removal efficiency of CFS process for MPs is lower
[80].

2.3.2. Other removal technologies
In addition to widely used CFS technology, other processes also

showed high MPs removal efficiency in DWTPs. Ultrafiltration/
reverse osmosis (advanced treatment) exhibited more effective
MPs removal than that of ozonation/carbon filtration stage
(upgraded conventional treatment) [70]. Moreover, DWTPs with
pulse cleaners achievedMPs removal efficiency of 85% in rawwater
[81]. Although different treatment processes of DWTPs can remove
most MPs in raw water, MPs can still be detected in the pipelines of
DWTPs and distribution system during transportation. Nylon and
PVC were predominant in the waterways and pipe scale samples in
all identified MPs [82].

MPs in drinking water are undoubtedly closely related to human
health, therefore it is particularly important to ensure its efficient
removal in rawwater by DWTPs. Currently, increasing attention has
been paid to the removal of MPs. The traditional CFS technology can
achieve high removal efficiency of MPs. The substrates of co-
agulants, abundance and properties of MPs in raw water, and the
CFS treatment process of different DWTPs would affect the removal
efficiency of MPs. In comparison with other processes such as ul-
trafiltration and reverse osmosis for MPs removal in DWTPs, the
CFS process is more widely used. The MPs removal technology and
treatment efficiency in DWTPs are outlined in Table 4. Different
treatment processes can be combined to ensure the efficient
removal of MPs when necessary. Moreover, whether the treated
drinking water would be polluted byMPs during the transportation
6

process or not, the avoidance of MPs pollution in the pipeline are
still a problem that needs to be further explored.

2.4. Wastewater treatment plants (WWTPs)

WWTPs is the main way for MPs to be transferred from
wastewater to the natural aquatic environment [83e86]. The
sludge from WWTPs and the sludge-based fertilizer used in agri-
culture would also introduce a large number of MPs into the soil
[87e90]. Sludge absorbed MPs is an important source of MPs to the
environment [91]. Therefore, it is essential to enrich and remove
MPs from sewage in WWTPs.

The occurrence and removal technologies of MPs in WWTPs
have been reviewed from different treatment processes including
physical, chemical and biological treatment technologies [92e94].
Currently, the environmental pollution and ecological risk caused
by MPs emissions in WWTPs have been highlighted, and research
on removal technologies have emerged rapidly. This paper goes
beyond previous reviews and mainly introduces the newly pub-
lished removal technologies of MPs in WWTPs in terms of waste-
water and sludge. A membrane bioreactor (MBR) is one of the most
widely used secondary treatment technologies in WWTPs. Many
studies have confirmed that MBR has a higher MPs removal effi-
ciency relative to other technologies. In this review, we focused on
the differences in MPs removal efficiency between MBR and other
biological treatment technologies.

2.4.1. Removal of MPs in wastewater
The abundance and characteristics of MPs in different WWTPs

are usually different, which is generally related to the regional and
surrounding industrial properties [95]. The shape of MPs as well as
the treatment processes of WWTPs affect the removal efficiency. In
general, primary treatment and secondary treatment are the main
processes to remove MPs. Moreover, the abundance and charac-
teristics of MPs in the sameWWTPs varies throughout the day. The
abundance and characteristics of MPs might also be affected by
different WWTPs [95], treatment stages [96] and influent periods
[97]. The efficiency of MPs removal in WWTPs is mainly influenced
by the applied treatment process, especially biological treatment
(e.g., MBR) [92].

Different membrane technologies, such as MBR, usually has a
higher removal efficiency [98e100], and widely used in WWTPs to
remove MPs. MBR could achieve ~99% of MPs removal efficiency
[101], which was significantly higher than an oxidation ditch (OD)
and conventional activated sludge (CAS) treatment. A higher MPs
removal efficiency using MBR combined with rapid sand filtration
(RSF) as a tertiary treatment technology [100] was accomplished
(99.5% of influent MPs were removed in MBR system vs. 97% in OD
system) [99]. Compared with CAS, the MBR process had a higher
retention rate for MPs than the secondary CAS process [98]. Talvitie
et al. investigated the removal of MPs from effluent in four different
municipal WWTPs utilizing different advanced final-stage treat-
ment technologies. The study included a MBR treating primary
effluent and different tertiary treatment technologies treating
secondary effluent (e.g., discfilter, RSF, and dissolved air flotation).
The MBR removed 99.9% of MPs during treatment [102]. However,
MPs can also change the performance of the MBR when removing
MPs efficiently. PP�MPs in the range of 0.14e0.30 g L�1 could
inhibit themicrobial growth in aMBR, but PP�MPs accumulation in
the range of 2.34e5.00 g L�1 improved the diversity and enrich-
ment of the microbial community [103]. The MBR technology
showed excellent MPs removal efficiency in wastewater treatment.
However, membrane contamination is an inevitable challenge,
which needs to be further investigated and solved.

Sedimentation technology was also utilized to remove MPs in



Table 4
MPs removal in drinking water treatment plants.

Removal technology Water source Types of MPs Removal efficiency Reference

Alum-based CFS Grand River water (Ontario, Canada)
and Lake Erie water (provided by the
Lake Huron and Elgin Area Water
Systems)

Fluoresbrite yellow-green (YG)
carboxylated PS microspheres (3, 6, 25, 45,
and 90 mm)

Approximately 60e100% [73]

Alum coagulation Tap water, ultrapure water a) PE; b) rayon; c) polyester; d)
Fluorescent red microspheres (1e5 mm
diameter)

N/A [74]

Ferric and aluminium
Sulphate coagulation

Model MP-containing water
(10 mg L�1 of PVC�MPs; alkalinity of
1 mmol L�1)

Pristine PVC�MPs (chlorine content of
57%, <50 mm)

Ferric sulphate: approximately 80% [75]
aluminium sulphate: not exceeded
approximately 80%

Fe-based coagulants (PAM)
coagulation

PE solution PE (<0.5 mm, 0.5 < d < 1 mm, 1 <
d < 2 mm, 2 < d < 5 mm)

PE (d < 0.5 mm) without PAM:
13.27 ± 2.19%

[76]

89.23 ± 3.22%, 87.66 ± 1.89%, 85.21 ± 2.12%,
89.32 ± 3.96%, and 90.91 ± 1.01% with 3, 6,
9, 12, 15 mg L�1 anionic PAM, respectively

Coagulation/sedimentation Han River in Yangpyeong, Korea PS microbeads with four different sizes
(10, 20, 45, and 90 mm) and amidine PS
microbeads (1 mm diameter)

20, 45, and 90 mm MPs: 77.4e95.3%;
10 mm MPs: 33.0e41.1%

[77]

Sand filtration 45 and 90 mm MPs: 100%;
10 mm MPs: 83.4%;
20 mm MPs: 98.8%;

UV-based oxidation N/A
Aeration, pre-sedimentation,

coagulation, flocculation-
sedimentation, filtration,
disinfection

Surabaya River MPs are separated from the raw water The total MPs removal efficiencies in Sub-
DWTPs I and II were 54 and 76%,
respectively.

[78]

Coagulants and flocculants Prairies River (Laval, Canada) PE microspheres (10e20, 125e150 mm);
PS microspheres (130e150 mm); PEST
fibers (width: 12e16 mm, length: 105
e1325 mm)

PE microspheres: 82%;
PEST fibers: 99%;
PS microspheres: 84%

[79]

CFS Lake Huron and the Great Lakes
tributary

PE: 10e20 mm, 45e53 mm, and 106
e125 mm; PS: 180 nm and 1.2 mm

1 mm: < 0.1% [80]
10e20 mm: 1.8 ± 1.2%
45e53 mm: 0.3 ± 0.3%
106e125 mm: 1.4 ± 1.2%

Granular filtration 180 nm: 98.9 ± 0.7%
1 mm: 94.9 ± 0.4%
10e20 mm: 86.9 ± 4.9%
45e54 mm: 97.0 ± 3.0%
106e125 mm: 99.9 ± 0.1%

Sand filtration Llobregat river (NE Spain) MPs are separated from the raw water 78 ± 9% [70]
GAC filtration 18 ± 46%
Reverse osmosis 54 ± 27%
Finished water Overall removal efficiency of 93 ± 5%
Pre-disinfection Ganga river MPs are separated from the raw water 2.0% [81]
Flocculation 2.4%
Pulse clarification 63%
Sand filtration 85%
Finished water 84.6%
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wastewater. A study on the MPs removal by flotation vs. sedi-
mentation processes showed that steady flow conditions of settling
tanks favored MPs removal and sedimentation outperformed
flotation in capturing MPs of all shapes and sizes. Despite this
removal efficiency, small size fibers (<1 mm) were the most chal-
lenging MPs emissions from WWTPs [104]. The efficiency of
different treatment processes for MPs in WWTPs were reviewed in
this paper and summarized in Table 5.

Research on MPs removal in WWTPs is still in its infancy, and
there are no targeted MPs removal processes applied in real
WWTPs. Although the current processes in WWTPs could removal
most of the MPs via being adsorbed to sludge, the emissions of MPs
would still be considerable an impact because of the high daily
treatment volume. Most WWTPs are still on the way to develop
new removal processes for MPs, but currently use traditional
wastewater treatment processes to remove MPs. The traditional
wastewater treatment methods usually have high removal effi-
ciency for large size MPs, but there are still many smaller size MPs
in the effluent. In order to improve the removal efficiency, the
existing treatment processes could be advanced, such as adding a
7

targeted filtration section process for small-size MPs before
discharge, which can effectively reduce smaller MPs entering the
natural water environment.

Among all theways to prevent MPs from human exposure to the
natural environment system, the wastewater treatment process is
undoubtedly the most important point to reduce emissions. As the
critical connection node,WWTPs are of great importance to control
and avoid MPs emissions. It is of high research value to improve the
removal efficiency of MPs by advancing traditional treatment pro-
cesses, and thus reduce emissions. Most MPs intercepted by
WWTPs are retained in activated sludge and discharged into sub-
sequent sludge treatment process, which can be partially released
into the environment and causes further pollution. Therefore, more
attention should be paid to MPs in sludge and sludge treatment
processes, and new targeted technologies for MPs removal,
degradation or recycling should be further explored.
2.4.2. Removal of MPs in sludge
After different treatment processes in WWTPs, most MPs are

adsorbed in the sludge. Approximately 160 million MPs were



Table 5
MPs removal in wastewater treatment plants.

Removal technology MPs concentration in influent MPs concentration in effluent Removal efficiency Reference

Primary treatment 288.5 ± 32.8 n L�1 108.4 ± 15.2 n L�1 62.4% [96]
Secondary treatment 108.4 ± 15.2 n L�1 30.1 ± 8.2 n L�1 72.1%
Tertiary treatment 30.1 ± 8.2 n L�1 22.9 ± 7.2 n L�1 24.2%
MBR 4.40 ± 1.01 MP L�1 0.92 ± 0.21 MP L�1 79.01% [100]
RSF 1.08 ± 0.28 MP L�1 75.49%
MBR 5.6 ± 0.09 mg L�1 0.028 ± 0.01 mg L�1 99.5% [99]
OD 0.168 ± 0.02 mg L�1 97%
CAS 57.6 ± 12.4 MP L�1 1.0 ± 0.4 MP L�1 98.3% [98]
MBR 0.4 ± 0.1 MP L�1 99.4%
DF1 0.5 ± 0.2 MP L�1 0.3 ± 0.1 MP L�1 40.0% [102]
DF2 2.0 ± 1.3 MP L�1 0.03 ± 0.01 MP L�1 98.5%
RSF 0.7 ± 0.1 MP L�1 0.02 ± 0.007 MP L�1 97.1%
DAF 2.0 ± 0.07 MP L�1 0.1 ± 0.04 MP L�1 95.0%
MBR 6.9 ± 1.0 MP L�1 0.005 ± 0.004 MP L�1 99.9%

Y. Pan, S.-H. Gao, C. Ge et al. Environmental Science and Ecotechnology 13 (2023) 100222
released into the aquatic environment and 3.4 billion MPs were
accumulated into 30 tons of sludge daily by one WWTP in Italy
[105]. Of all the MPs entering the WWTPs, 2% were discharged
throughwastewater effluent, only 4%were detected in the sludge of
the biological treatment section, and about 94% of the other MPs
might exist in the excess sludge, but not detected by the currently
available analytical methods. Therefore, nearly 96% of the MPs are
released into the environment and whereabouts are unknown
[106]. Effective recycling or removal of MPs in sludge would facil-
itate further reducing MPs discharged into water and soil envi-
ronments [107]. MPs in sludge can be removed by in situ
degradation or by subsequent sludge treatment technologies.

Currently, the reported MPs removal methods in sludge are
mostly based on the degradation of MPs by bacteria in activated
sludge, but cannot be used as the mainstream technology because
of the lower efficiency. For example, the bacteria strain isolated
from activated sludge degraded 17% of PET�MPs of 2.63 g L�1,
which was incubated at 30 �C under a pH 7e7.5 with a reactor
residence time of 168 days [108]. Hyperthermophilic composting
(hTC) technology was used for in situ degradation of MPs in sludge,
hTC significantly enhanced biodegradation of sludge-based MPs
and after 45 days of hTC treatment, 43.7% of the MPs were removed
from the sewage sludge, which was the highest ever reported for
MPs biodegradation [109].

The physical and chemical properties of sludge make it difficult
to separate and remove MPs once trapped. Therefore, the removal
methods of MPs in sludge needs to be further development. Since
the removal of MPs in sludge is considerably challenging, there are
a few relevant published studies, thus the development of MPs
removal technologies in sludge is quite demanding but emerging.
We suggest that the starting point could be investigating the effect
of different sludge treatment technologies on MPs removal. Obvi-
ously, it is way better to prevent MPs pollution via exploring
methods to separate most of the MPs before being trapped in the
sludge.
2.5. Other aquatic related environments

According to previous published works, the MPs in the soil
environment is 4e23 times than that of in marine systems
[85,94,110]. Compared with the aquatic environment, the soil
environment is prone to absorb MPs because of its complex com-
ponents, including but not limited to, organic matter, sand, clay and
silt. These factors make it difficult to enrich and remove MPs. Many
studies demonstrated that plants could absorb MPs in soil through
rhizomes. Growing evidence indicated that many terrestrial plants
could potentially take upMPs/NPs via roots and translocate them to
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aboveground portions via the vascular system, primarily driven by
the transpiration stream [111,112]. Subsequently, MPs adsorbed by
plant roots are also easily absorbed by animals and enter the
aquatic food network [113]. Similar to the feeding and adsorption of
MPs by marine organisms, the adsorption of MPs by plant roots is
not only difficult to completely remove or degrade, but also can be
used as a carrier to make MPs enter the food web, and ultimately
cause harm to human health.

Recent research about removing the MPs were mainly focused
on various aquatic environments, drinking water treatment, and
wastewater treatment scenarios. Some studies have found that
there are also different shapes of MPs in marine sediments [114],
but there were few studies on MPs removal from river and marine
sediments. For MPs in marine sediments, they can be efficiently
separated and removed by adsorption. This method uses the lipo-
philic characteristics of MPs and has the advantage of low cost
[115]. The degree of MPs pollution in other natural aquatic eco-
systems has also been widely concerned, some natural aquatic
ecosystems also have the ability to remove MPs. Natural wetland
systems were capable of removing 50% of surface water MPs [116].
As a nature-based wastewater treatment system, vertical-flow
constructed wetlands (VFCWs) had the function of removing MPs
with porous media, where MPs were distributed throughout the
full height of gravel-filled VFCWs, and earthworms could transport
MPs to the bottom of VFCWs and ingest them [117].
2.6. Comparison of microplastic removal technologies in different
aquatic environments

MPs in different aquatic environments have different occur-
rence patterns, therefore different technologies applied to different
scenarios. Many enrichment and removal technologies based on
adsorptionwere applied in the natural water environment. Usually,
materials available in the aquatic environment were used as raw
materials for MPs adsorption to reduce the cost. The natural water
and the marine system are both an open and broad area, where
adsorption is more applicable than filtration. While in comparison
with natural water and marine environments, DWTPs and WWTPs
are both closed and controlled environments. MPs removal is easier
than that of an open area, although more attention should be paid
to thoroughly remove MPs in DWTPs and WWTPs. The traditional
treatment methods were used in DWTPs andWWTPs, in which the
CFS technology was the most widely used process in DWTPs, and
the removal effect of different coagulants on MPs varied. According
to previous studies, a MBR had better performance on MPs removal
in WWTPs. Additionally, current research on MPs are focusing on
sources, analytical methods, ecological risks of MPs in soil
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environment [110,118,119] and identification techniques and
transportable ecological risks in atmosphere [120e122]. In general,
it is difficult to recycle or extract MPs from the soil environment
and atmosphere artificially because of environmental differences
and complexities.

In summary, research on the removal of MPs in the aquatic
environment is still in the early stages, and most of the results have
not yet been really put into practice on a relatively large scale. In the
future, various treatment technologies need to be developed,
improved and applied to the environment. In particular, DWTPs
and WWTPs are inclined to improve the preexisting traditional
treatment processes, such as adding some treatment to enhance
MPs removal. For WWTPs, the removal of MPs in sludge is of great
importance. Fig. 1 summarized the removal techniques of MPs in
different aquatic environments.

3. MPs degradation

The degradation of MPs has been previously reviewed
[4,123,124], mostly focusing on biodegradation [125e128]. The
degradation of MPs in this paper mainly focuses on the newly
published work not summarized by other reviews yet, including
abiotic and biotic degradation. Abiotic degradation of MPs refers to
the degradation because of various abiotic factors such as ultravi-
olet radiation, temperature, air, water and mechanical force.
Different abiotic degradation pathways include mechanical, ther-
mal and chemical degradation [124,129]. Biodegradation is the
process of depolymerization of MPs through microbial digestion
until they are mineralized to carbon dioxide [124,130]. The sum-
mary of abiotic and biotic degradation technologies of MPs was
reviewed and shown in Tables 6 and 7.

3.1. Abiotic degradation

The spontaneous abiotic degradation of MPs in the natural
environment includes mechanical degradation of MPs by various
mechanical forces, which breaks large MPs into smaller MPs. In this
process, the relative molecular weight of the polymer will not
decrease, and the decrease in the relative molecular weight usually
occurs in the chemical degradation process [123,131].

The commonly used plastic degradation methods are not suit-
able for MPs degradation due to its small size. Among various
abiotic degradable methods for MPs degradation, photocatalytic
degradation has been extensively investigated. Visible light pho-
tocatalysis was considered as an environmental protection process.
It uses light irradiation to stimulate photocatalyst and generates a
pair of electrons and holes in the redox reaction [132e134], in
which organic pollutants could be degraded into water, CO2 and
inorganic acids [135]. When the semiconductor, such as TiO2, is
Fig. 1. Removal technologies of microplastics in different aquatic environments.
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bombarded with photons with E � Eg (band gap), electrons (e�) on
the valance band are transferred into the conduction band, leaving
behind positive holes (hþ). Holes react with water or hydroxyl
groups adsorbed on the surface of the semiconductor, generating
hydroxyl radicals (�OH). Electrons react with adsorbed oxygen to
form superoxide anion radicals (O2

��) [136]. Those ROS are
powerful oxidizing agents that are capable of mineralizing organic
pollutants adsorbed in the surface of the semiconductor into H2O
and CO2 [137]. Two metal-based catalysts, ZnO and BiOCl, were
currently used in the photocatalytic degradation of MPs [138]. The
novel hydroxy-rich ultrathin BiOCl (BiOCl�X) surface hydroxyl
could effectively enhance the generation of hydroxyl radicals,
thereby improving the photocatalytic degradation efficiency of MPs
[139]. Fragmented MPs, particularly low-density polyethylene
(LDPE) film, in water could be degraded through visible light-
induced plasmonic photocatalysts comprising of platinum nano-
particles deposited on zinc oxide (ZnO) nanorods (ZnOePt) [140].
Different p-type copper oxide film semiconductors were synthe-
sized in anode, with photocatalytic activity under visible-light for
the degradation of PS�NPs [141].

Ti or TiO2 were also widely used in the preparation of MPs
photodegradation catalysts. TiO2 nanoparticle films made with
Triton X�100 showed complete mineralization (98.40%) of
400 nm PS in 12 h [142]. The degradation of poly(methyl methac-
rylate) (PMMA) and PS nanoparticles by photocatalysis with
TiO2eP25/b�SiC foams under UV-A radiationwere tested and up to
50% of total organic carbon (TOC) conversion after 7 h were ach-
ieved [143]. A poly(styrene-block-acrylic acid) containing TiO2 gel
(PS�b�PAA/TiO2) polymer photocatalyst had the same density as
PS and could provoke photocatalytic activity to PS particles inwater
[144]. Two semiconductors based on NeTiO2 were synthesized by
extrapallial fluid of saltwater mussels and a conventional less
sustainable sol-gel route, respectively, and the photodegradation of
HDPE�MPs extracted from commercial facial grinding paste was
successfully realized [145]. The degradation of HDPE and
LDPE�MPs by mesoporous NeTiO2 coating under visible light
irradiation could be affected by the shape and size of the MPs. The
degradation rate of the MPs with a smaller size was higher than
that of MPs with thin film shape, which could be related to the light
intensity and oxygen-containing reaction medium [137]. Further-
more, it has also been confirmed that environmental factors such as
UV, temperature, pH and humidity can also affect the degradation
of MPs. Low temperatures (0 �C) cause fragmentation of MPs,
thereby increasing their surface area and interaction with NeTiO2.
Low pH introduces Hþ into the system, contributing to accelerated
interaction between TiO2 nanoparticles and MPs [146,147].

In addition, an electro-Fenton like (EF-like) technology based on
a TiO2/graphite (TiO2/C) cathode was used to degrade typical
PVC�MPs in water, and it exhibited a remarkable performance on
PVC degradation via cathodic reduction dichlorination and hy-
droxyl radical oxidation simultaneously [148]. A hydrothermal
coupled Fenton system was developed for the decomposition of
ultrahigh-molecular-weight polyethylene, achieving a 95.9%
weight loss in 16 h and 75.6% mineralization efficiency in 12 h. The
high effectiveness was attributed to the synergy of hydrothermal
hydrolysis, proton-rich environment, and massive production of
hydroxyl radicals [149].

Helical carbon nanotubes were engineered with high-level ni-
trogen dopants and encapsulated metal nanoparticles and applied
for peroxymonosulfate activation to generate highly oxidizing
radicals to decompose MPs under hydrothermal conditions [150].
In addition, heterogeneous ZnO photocatalyst excited by visible
light could also degrade MPs fragments and LDPE films in water
[151].



Table 6
Abiotic degradation of MPs.

Degradation technology Degradation mechanism Types of MPs Degradation efficiency Reference

Hydroxy-rich ultrathin BiOCl
(BiOCl�X) degrades MPs

Photocatalytic degradation 200e250 mm HDPE microspheres
(PE�S),
2.38 mm Nylon-66 MPs, 3 mm POM
microspheres, 2.6 mm white PP
microspheres, 3 mm red PP
microspheres, 5 mm black PP
microspheres, 4 mm recycled HDPE

PE-S mass loss 5.38% (BiOCl�1); PE�S
mass loss 0.22% (BiOCl)

[139]

ZnOePt nanocomposite
photocatalysts degrades MPs

Photocatalytic degradation LDPE film N/A [140]

visible light photocatalysis of NPs
using anodized CuxO

Visible-light photocatalytic degradation 9 mg mL�1 PS�NPs solutions The concentration of PS�NPs was
reduced by 23% after 50 h

[141]

TiO2 nanoparticle film made with
Triton X�100

Photocatalytic degradation 400 nm PS Mineralization 98.40% of 400 nm PS in
12 h

[142]

Photocatalysis with TiO2eP25/
b�SiC foams under UV-A
radiation

Photocatalytic degradation Three monodisperse suspensions of
nanobeads:105 nm PMMA nanobeads;
140 nm PS nanobeads; 508 nm PS
nanobeads

N/A [143]

Poly(styrene-block-acrylic acid)
containing TiO2 gel (PS�b�PAA/
TiO2) polymer could provoke
photocatalytic activity to PS
particles in water

Photocatalytic degradation PS containing a NeH type hindered
amine light stabilizer (PS/LA-77) in
water

The molecular weight decreases were
from 10% to 11%

[144]

Green photocatalysis using a
protein-based porous NeTiO2

semiconductor

Photocatalytic degradation Extracted from a commercially available
exfoliating scrub with diameters ranging
700e1000 mm

A total mass loss of 1.85% during the
first 16 h of irradiation

[145]

Mesoporous NeTiO2 coating Photocatalytic degradation Primary HDPE and LDPEMPs of two sizes
were obtained from two commercial
facial scrubs of different brand

Mass Loss (%): HDPE_A: 0.22 ± 0.02;
HDPE_B: 4.65 ± 0.35; (5 ± 0.01)
mm � (5 ± 0.01) mm LDPE:
0.97 ± 0.32; (3 ± 0.01) mm� (3 ± 0.01)
mm: 1.38 ± 0.13

[137]

Electro-Fenton like (EF-like)
technology based on TiO2/
graphite (TiO2/C) cathode

Cathodic reduction dechlorination and
hydroxyl radical (Oradical dotH)
oxidation simultaneously

100e200 mm PVC�MPs Degrade PVC�MPs with 56 wt %
removal after potentiostatic
electrolysis at �0.7 V vs. Ag/AgCl at
100 �C for 6 h

[148]

Hydrothermal coupled Fenton
system

Thermal fenton reaction 1 g L�1 certain types of MPs (UHMWPE,
LDPE, HDPE, PS, PVC, PP, or PET)
dispersed in 150 mL of ultrapure water

95.9% weight loss of MPs in 4e16 h [149]

Functionalized carbon nanosprings
(Mn@NCNTs/PMS) degrade MPs

The magnetic nanohybrids were applied
for peroxymonosulfate activation to
generate highly oxidizing radicals to
decompose MPs under hydrothermal
conditions

Extracted from facial cleanser paste The Mn@NCNTs/PMS system can
realize 50 wt % of MPs removal by
assisting with hydrolysis

[150]

ZnO nanorod photocatalysts Photocatalytic degradation Fragmented LDPE MPs residues N/A [151]
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3.2. Biotic degradation

MPs are cleaved into smaller molecules, such as monomers,
dimers, or oligomers, by the action of extracellular enzymes pro-
duced by microbes, and these smaller molecules pass through the
cell membrane to be used by bacteria as a source of energy or
carbon [152]. Therefore, the environmental conditions, such as
temperature and pH, can impact the biodegradation of MPs by
influencing the growth and metabolic processes of microbes.
Furthermore, aged MPs are more easily degraded by microbes
[146,153e155]. This paper has briefly introduced the research
progress of biodegradation of MPs by microbial strains or com-
munity, and reviews the biodegradation of MPs by strains or
community isolated from sediment environment, marine envi-
ronment and biological intestinal tract during the last three years.
We mainly introduced the degradation effects of MPs by microbes
in various environments from the perspective of strains or com-
munity in different environments.

Many studies have documented isolated bacteria or fungi
capable of degrading MPs isolated from the environment. For
example, Rhodococcus sp. and Bacillus sp. isolated from mangrove
sediments had the ability to degrade PP�MPs [156]; Bacillus cereus
and Bacillus gottheilii isolated from a mangrove sediment system in
10
Malaysia Peninsula could grow and degrade MPs on synthetic
medium containing PE, PET and PS�MPs as the sole carbon sources.
Both the these two strains showed the potential to repair MPs
pollution [157]. Zalerion maritimum, a fungus isolated from the
marine environment by Paço et al., was cultured in PE�MPs me-
dium and showed PE biodegradation potential [158]. LDPE�MPs
and PS�MPs were reported to be degraded by Bacillus lichen-
iformis, Lysinibacillus massiliensis, and mixed cultures of Delftia
acidovorans and Bacillus sp. [159]. Hyperthermophilic bacteria in
hTC accelerated PS�MPs biodegradation through excellent bio-
oxidation performance of Thermus, Bacillus, and Geobacillus,
which were the dominant bacteria responsible for the highly effi-
cient biodegradation [109]. Bacillus cereus SEHD031MH and Agro-
myces mediolanus PNP3were isolated from the activated sludge and
both of them thrived with PET as the sole carbon source [108]. A
mixed bacterial culture mainly consisting of Bacillus sp. and Pae-
nibacillus sp. isolated from a landfill site could also contribute
accelerating PE�MPs degradation [160].

Biodegradation of plastic polymers by insects, such as wax moth
(Galleria mellonella), might be a solution to reduce plastic pollution.
A PE-degrading fungus Aspergillus flavus named PEDX3, which was
isolated from the gut contents of G. mellonella, has two laccase-like
multicopper oxidases (LMCOs) genes, AFLA_006190 and



Table 7
Biodegradation of MPs.

MPs-degrading bacteria Source Degradation mechanism Types of MPs Degradation efficiency Reference

Rhodococcus sp. and Bacillus
sp.

Mangrove
sediment

The two bacterial isolates possibly
possessed the enzymatic
components needed to degrade PP

Isotactic PP�MPs granules (white,
spherical) with a density of
0.9 g ml�1 at 25 �C, molecular
weight of 250,000 Mw, average Mn
of 67,000

The weight loss of PP after 40 days:
Rhodococcus sp. 4.0% and Bacillus sp.
6.4%

[156]

B. cereus and B. gottheilii Mangrove
sediment

The bacterial isolates possess
functional groups that can attach to
the microplastic surfaces

PE powder (white/75 mm,
0.94 g mL�1), PP granules (white/
spherical, 0.9 g mL�1), PS granules
(white/spherical, 1.59 g mL�1), PET
granules (granular/milky white,
1.68 g mL�1)

After 40 days, the percentage
weight loss of PE, PET, and PS by
B. cereus was 1.6%, 6.6%, and 7.4%,
respectively; the percentage weight
loss of PE, PET, PP, and PS by
B. gottheiliiwas 6.6%, 3.0%, 3.6%, and
5.8%, respectively

[157]

Zalerion maritimum Maritime coastal
waters

Zalerion maritimum used PE-MPs as
a nutrient source

PE�MPs (250e1000 mm) The weight loss of PE�MPs in 14
days was 56.7 ± 2.9%

[158]

Pure bacterial strains, Bacillus
licheniformis and
Lysinibacillus massiliensis,
and a mixed bacterial
Culture of Delftia
acidovorans and Bacillus
sp.

Activated sludge
and sediment

There was a release of additives
from the surface of LDPE�MPs and
PS�MPs
and disruption of its structure

LDPE, PS�MPs (300e500 mm) N/A [159]

Aspergillus flavus named
PEDX3

The guts of wax
moth Galleria
mellonella

Two LMCOs that isolated from
Aspergillus flavus were considered
as the potential PE-degrading
enzymes after preliminary screen

LDPE with density of 0.921 g cm�3,
HDPE with density of 0.955 g cm�3

(＜200 mm)

The mass loss percentage (Dm/m0)
was 3.9025 ± 1.18% after 28 days

[161]

Greater wax moth (Galleria
mellonella) larvae

N/A Through the styrene oxide
ephenylacetaldehyde, and 4-
methylphenole4-
hydroxybenzaldehydee4-
hydroxybenzoate metabolic
pathways

PS microbead suspensions with and
without red fluorescence labeling
(25 mm, provided as mono-spheres
suspended in distilled water at a
concentration of 2.5% w/v)

27%, 56%, 66%, and 80%, respectively
after 3, 6, 12, and 18 h

[162]

Activated sludge and the
compost cell suspension

Activated sludge Hyperthermo-philic composting
(hTC) technology

Extracted from activated sludge
(<0.5 mm)

43.7% of the MPs was removed from
the sewage sludge after 45 d; the
hTC in-oculum degraded 7.3% of the
PS�MPs at 70 �C in 56 days in lab-
scale

[109]

Bacterial communities in
activated sludge

Activated sludge Two bacterial strains within the
consortium were isolated and
identified as B. cereus SEHD031MH
and A. mediolanus PNP3
demonstrated a great potential to
degrade PET

Polycaprolactone diol (PCL) (Mn
2000) and PET�MPs (>40%
crystallinity and inherent viscosity
0.80 dL g�1) (300e425 mm)

The consortium degraded 17% of
PET and 34% of PCL (at 30 �C, pH 7
e7.5, reactor residence time
168days, and PET concentration of
2.63 g L�1)

[108]

Mixed microbial consortium Landfill site A mixed bacterial culture mainly
consisting of Bacillus sp. and
Paenibacillus sp. isolated from a
landfill site could help accelerate
PE�MPs degradation

PE�MPs granules (white and
amorphous) with a density of
0.94 g mL�1 at 25 �C

The weight loss of PE microplastic
was 14.7% after 60 d

[160]

Bacterial community on
microplastics

Urban river
sediments

The plastic-degrading bacteria were
the crucial factor for the
degradation of MPs and the deeper
sediment conditions may promote
the biodegradation of MPs

Extracted from urban river
sediments (<1, 1e2, 2e3, 3e4, 4e5,
and >5 mm)

N/A [164]

Periphytic biofilm in various
backgrounds of carbon
sources (glucose, peptone,
and glucose and peptone)

Xuan Wu Lake,
Nanjing, to
obtain a natural
microbial entity
of complex
structure

Adding and/or changing a C-source
changes the density and diversity of
periphytic biofilms and influences
the biodegradation of MPs by
periphytic biofilms

PP, PE, PET�MPs (dimensions
<1000 mm)

9.52e18.02%, 5.95e14.02%, and
13.24e19.72% for PP, PE, and PET
respectively, after 60 d

[165]

Human colonic microbiota Human colonic Gastrointestinal digestion and
colonic fermentation

PET�MPs (160 ± 110 mm) N/A [167]
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AFLA_053930 with up-regulated expression during the degrada-
tion process, which might contribute to PE-degradation [161]. Two
potential metabolic pathways of PS in the intestine of G. mellonella
larvae was discovered, including the styrene
oxideephenylacetaldehyde and 4-methylphenole4-
hydroxybenzaldehydee4-hydroxybenzoate pathways [162].
Furthermore, a new enzyme FAST-PETase was discovered by using
artificial intelligence, showed great potential to promote PET
plastics degradation. It has been proved that untreated
postconsumer-PET from 51 different thermoformed products could
11
all be almost completely degraded by FAST-PETase in oneweek
[163].

The biofilm attached to the surface of MPs also plays a signifi-
cant role in MPs degradation. Take MPs in sediments for example,
according to the homologous theory, bacterial genera containing
plastic-degrading bacteria isolated from other literatures were
defined as potential plastic-degrading bacteria genera and bacterial
community on MPs has less stability than that of in sediments.
Compared with sediments, more potential plastic degrading bac-
teria were colonized in deeper layers [164]. The addition of other



Fig. 2. Abiotic degradation and biodegradation methods of microplastics.
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carbon sources could affect the bacterial community structure of
the biofilm during the degradation of MPs by biofilm attached to
MPs, which might lead to the change of biodegradation ability
[165]. In the marine environment, marine microbes have adapted
to plastic as a surface for colonization, when comparing the taxo-
nomic patterns of plastic-associated marine bacteria, recurring
groups and families included Erythrobacteraceae, and Rhodo-
bacteraceae (Alphaproteobacteria), Flavobacteriaceae (Bacteriodetes),
and the phylum of cyanobacteria (such as the Phormidium genus). A
new viewpoint proposed that some indicator bacteria could attach
to the surface of marineMPs and played a role in degradation [166].
A recent study on the effect of MPs on human enteric microbial
community showed that PET�MPs could change its structure, and
PET�MPs also showed aging evidence, potentially because of the
gastrointestinal digestion and enteric fermentation [167].

Biodegradation is a highly desirable and environmentally
friendly way to remove MPs. Firstly, it allows for complete miner-
alization. In addition, some microbes can convert MPs into other
valuable byproducts. However, MPs biodegradation also have
obvious limitations in degradation efficiency in natural conditions.
Nevertheless, the MPs biodegradation is promising, and how to
improve the MPs biodegradation efficiency is an issue of great
importance that deserves more attention. Depolymerization by
physical-chemical degradation techniques followed by possible
complete mineralization of MPs through biodegradation are highly
recommended to obtain more efficient MPs removal.
3.3. Existing problems and possible breakthroughs

Due to the difficulty in degradation and the large amount of
plastic used, the MPs produced during aging process easily accu-
mulate in the environment over time. Among various MPs removal
technologies, MPs mineralization are the technologies that can
completely eliminate MPs. We suggest that abiotic degradation
technology, such as physical and chemical degradation processes,
could be combined with biodegradation technologies to achieve a
higher efficiency or complete degradation. The pretreatment of
MPs by abiotic degradable technology reduces the particle size and
molecular weight of MPs, and increases the surface roughness of
MPs. In the subsequent biodegradation stage, plastic degrading
bacteria are more likely to attach to the surface of MPs to increase
its degradation efficiency. Finally, MPs are completely mineralized
to CO2 by plastic degrading bacteria using MPs as a carbon source
through metabolism. In comparison with abiotic degradable tech-
nology, the biodegradation of MPs is greener, and requires less
additional energy, which is in line with the current promotion of
sustainable development under low carbon constraints. However,
compared with abiotic degradable technologies, such as photo-
catalytic degradation, the degradation efficiency of MPs by plastic
degrading bacteria is much lower. Moreover, most of the abiotic
degradable technologies and biodegradation of MPs are still in the
laboratory stage. Further research and technical improvements are
still needed for the field applications. In the future, further sepa-
ration of plastic degrading bacteria/communities in the environ-
ment should be used to explore its degradation mechanisms, to
develop efficient degradation enzymes, to improve the biodegra-
dation efficiency, to advance MPs degradation technologies, and to
increase the possibility of practical environmental applications.
Meanwhile, biodegradable plastic production would also be high-
lighted and investigated in. We can pay more attention to the
efficient degradation and mineralization of MPs, and linking the
enrichment and degradation of MPs to develop a technical process
to remove the ecological risks of MPs. The abiotic degradable and
biodegradable methods of MPs are summarized in Fig. 2.
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4. Recycling of MPs

Many studies have focused on the resource utilization and
recycling of plastic wastes [168e170], but the research on MPs
recycling methods is still relatively scarce. According to statistics,
19e23million tons (11%) of plastic waste generated globally in 2016
entered the aquatic ecosystem. By 2030, the global annual emis-
sions of plastics may reach 53 million tons per year, of which more
than 10 million tons of plastics would enter the global ocean every
year. About 13.5% of the global marine plastics exist in the form of
MPs [1,171e174]. Compared with plastic waste, MPs in aquatic
environment have smaller size and potentially higher ecological
toxicity and risks, and should be removed or recycled. MPs can be
recycled as materials, mixed with other materials and reused, or
degraded to produce new energy sources.

Although there have been some studies on the recycling of
plastic waste, the recycling of MPs is still in the initial stage and
needs further research. A brand-new sustainable material, an eco-
friendly foam made of waste MPs was incorporated into a bio-
matrix and this novel open-cell material can be used as acoustic
and thermal insulation for industrial, civil and maritime applica-
tions [175]. In another study, small plastic fragments on the
northeast Brazilian coast were collected and recycled to prepare the
recycled materials [176]. A NiePd/TNPs nanocatalyst was prepared,
which could be used for catalytic cracking MPs-phenol and steam
reforming reaction to generate valuable liquid products and
hydrogen fuel [177]. A new study reported an electrocatalytic
upcycling strategy for PET waste to produce valuable H2, tereph-
thalic acid (PTA), and potassium diformate (KDF) [178].

Most of the research on MPs recycling was mainly focused on
the recycling technology and degradation method of MPs in the
environment. However, therewere few studies on the recycling and
reuse of MPs after recovery. Although MPs recycling is a means of
eliminating MPs ecological risks, it is also expected to takes into
account the economic benefits between recycling costs and utili-
zation of MPs.
5. Conclusions and future perspectives

Plastic products have undoubtedly brought great convenience to
human society since invented, and the environmental pollution
and ecological risks behind them have become increasingly
noticeable. MPs, which are broken from plastic waste in the envi-
ronment, have spread all over the world. Because of their difficult
degradation, recycling challenges, large specific surface area, and
the ability of adsorbing other pollutants, they can easily enter the
food chain and other environments, which cause more ecological
risks than plastics. One of the best ways to remove the ecological
risks caused by MPs is to enrich them from the environment and
recycle them, or the complete degradation and mineralization.

Many research have studied on the enrichment and removal of
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MPs in aquatic environment, such as the preparation of materials
with adsorption by using various natural products of animals and
plants to achieve efficient adsorption of MPs in water. DWTPs and
WWTPs are important ways for MPs to be transported to humans.
They both play an important role in controlling MPs pollution. The
main removal method of MPs by DWTPs is CFS technology, which
can remove most MPs in raw water. The traditional treatment
technology of WWTPs can also remove most of the MPs, but the
number of MPs entering the aquatic environment through WWTPs
is still very considerable due to the large amount of effluent from
WWTPs. In general, the MBR technology has the highest removal
efficiency of MPs relative to different secondary treatment tech-
nologies used in wastewater treatment processes. Therefore, it is
necessary to develop more innovative treatment technologies for
DWTPs and WWTPs in order to improve the removal efficiency of
MPs.

Photocatalytic degradation in abiotic degradation of MPs is a
widely studied degradation technology, which has relatively high
catalytic efficiency. Photocatalytic degradation and mineralization
of MPs have the advantages of low energy consumption. The
biodegradation of MPs was mainly focused on the degradation of
MPs by plastic degrading bacteria or microbial community isolated
from the environment. However, most of the biodegradation ofMPs
is still in the laboratory research stage. In the future, abiotic
degradation technology as a pretreatment and biodegradation
technology as subsequent mineralization can be combined to
achieve complete degradation in the field.

The previous work on MPs has been involved in many aspects
globally. The removal technologies of MPs in the environment have
become a research hotspot, but still needs further research in order
to achieve real application in the field. With the emergence and
maturity of new technologies, MPs may become a new type of
waste energy and attribute to sustainable development. With re-
gard to MPs removal, more research and technologies are required
in soil, atmosphere, and various sediments. DWTPs andWWTPs are
of paramount importance in MPs removal as the key point to
connect urban and social water cycling. Similarly, MPs removal in
sludge should be highlighted to prevent it from entering into the
soil environment. In addition, more research could be conducted on
how to recycle and reuse MPs in the environment under the low
carbon constraints. Plastic production processes should also be
improved to make plastics and the byproducts more environmen-
tally friendly. It is also important to increase the awareness of the
benefits of living a plastic-free life. Depolymerization by physical-
chemical degradation techniques followed by possible complete
mineralization of MPs through biodegradation are highly recom-
mended to obtain more efficient MPs removal.
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