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Differential diagnosis of common 
etiologies of left ventricular 
hypertrophy using a hybrid 
CNN‑LSTM model
In‑Chang Hwang 1,2,6*, Dongjun Choi 3,6, You‑Jung Choi 4, Lia Ju 1, Myeongju Kim 3, 
Ji‑Eun Hong 3, Hyun‑Jung Lee 2,5, Yeonyee E. Yoon 1,2, Jun‑Bean Park 2,5, Seung‑Pyo Lee 2,5, 
Hyung‑Kwan Kim 2,5, Yong‑Jin Kim 2,5 & Goo‑Yeong Cho 1,2

Differential diagnosis of left ventricular hypertrophy (LVH) is often obscure on echocardiography 
and requires numerous additional tests. We aimed to develop a deep learning algorithm to aid in the 
differentiation of common etiologies of LVH (i.e. hypertensive heart disease [HHD], hypertrophic 
cardiomyopathy [HCM], and light‑chain cardiac amyloidosis [ALCA]) on echocardiographic images. 
Echocardiograms in 5 standard views (parasternal long‑axis, parasternal short‑axis, apical 4‑chamber, 
apical 2‑chamber, and apical 3‑chamber) were obtained from 930 subjects: 112 with HHD, 191 with 
HCM, 81 with ALCA and 546 normal subjects. The study population was divided into training (n = 620), 
validation (n = 155), and test sets (n = 155). A convolutional neural network‑long short‑term memory 
(CNN‑LSTM) algorithm was constructed to independently classify the 3 diagnoses on each view, 
and the final diagnosis was made by an aggregate network based on the simultaneously predicted 
probabilities of HCM, HCM, and ALCA. Diagnostic performance of the algorithm was evaluated by 
the area under the receiver operating characteristic curve (AUC), and accuracy was evaluated by 
the confusion matrix. The deep learning algorithm was trained and verified using the training and 
validation sets, respectively. In the test set, the average AUC across the five standard views was 0.962, 
0.982 and 0.996 for HHD, HCM and CA, respectively. The overall diagnostic accuracy was significantly 
higher for the deep learning algorithm (92.3%) than for echocardiography specialists (80.0% and 
80.6%). In the present study, we developed a deep learning algorithm for the differential diagnosis of 3 
common LVH etiologies (HHD, HCM and ALCA) by applying a hybrid CNN‑LSTM model and aggregate 
network to standard echocardiographic images. The high diagnostic performance of our deep learning 
algorithm suggests that the use of deep learning can improve the diagnostic process in patients with 
LVH.

Echocardiography is widely accepted as an essential diagnostic tool for cardiovascular evaluation. Most meas-
urements on echocardiography can be automated using machine learning  techniques1–3. However, the value of 
echocardiography also includes differential diagnosis and clinical decision making. Echocardiography specialists 
make judgements based on the visual information from echocardiographic images, along with knowledge and 
experience. Because of complex and diverse medical situations, the interpretation of echocardiographic images 
and resulting decision still remain as dependent on the clinician’s expertise.

The differential diagnosis of “unexplained” left ventricular hypertrophy (LVH) on echocardiography is impor-
tant, but  challenging4. LVH is most commonly a physiologic consequence of increased afterload by hyperten-
sion (i.e. hypertensive heart disease [HHD])5. However, some patients demonstrate hypertrophied myocardium 
without an increased afterload; the differential diagnosis in such patients includes hypertrophic cardiomyopathy 
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(HCM) and infiltrative cardiomyopathy, such as light-chain cardiac amyloidosis (ALCA)4,6–9. The differential 
diagnosis of LVH requires a series of expensive, invasive, and time-consuming procedures, such as cardiac 
magnetic resonance imaging (CMR), endomyocardial biopsy (EMB), and genetic  testing4. In particular, CMR 
is useful in the differentiation of LVH of unknown etiology based on the well-established typical CMR features 
of HCM and ALCA, but is expensive and sometimes unavailable, and does not confirm the  diagnosis10,11. For 
confirmation of the diagnosis, EMB is useful, especially for ALCA. However, EMB has limitations such as inva-
siveness, lower diagnostic yield at the right ventricle (RV), difficulty in approaching to the LV myocardium, and 
a lack of specific histologic markers for  HHD12,13. Genetic testing can be useful for the detection of HCM, but 
the results are often inconclusive and sometimes do not provide confirmative diagnostic  information14. Due to 
these limitations, patients with LVH of unknown etiology require additional tests, which necessitate substan-
tial time and cost. More importantly, these tests often need to be performed simultaneously or sequentially, as 
the findings of each test might not provide confirmative results. If the echocardiographic findings can narrow 
the differential diagnosis of LVH of unknown etiology, then the time and cost required for diagnostic process 
can be reduced, and patients can avoid unnecessary tests. However, although echocardiography plays a role in 
screening for the suggestion of differential diagnosis of “unexplained” LVH, this imaging modality might not be 
correct, and may mislead or complicate the diagnostic  process15. Therefore, the presumptive diagnosis by expert 
cardiologists must be improved in terms of accuracy, and there is a clinical need for higher diagnostic accuracy 
on echocardiography for a more efficient diagnostic process.

Considering that machine learning can objectively evaluate imaging data without prejudice, and construct a 
decision from information that is difficult for human eyes to comprehend, it can be assumed that a machine learn-
ing approach would be helpful for the differential diagnosis of LVH on echocardiography. Therefore, in the present 
study, we aimed to differentiate common LVH etiologies (HHD, HCM, and ALCA) on standard echocardiographic 
images by using a hybrid convolutional neural network-long short-term memory (CNN-LSTM) algorithm.

Methods
The overall scheme of the study is depicted in Fig. 1 and more detailed methods are available in the Supplemen-
tary Methods.

Study design and cohort. This study conformed to the principles outlined in the Declaration of Helsinki 
and was approved by the Seoul National University Bundang Hospital Institutional Review Board (IRB No. 
B-2105-687-107) in May 2021. The requirement for informed consent was waived by the Seoul National Univer-
sity Bundang Hospital Institutional Review Board because of the retrospective nature of the study and minimal 
expected risk to the subjects. This study was conducted and described according to the Proposed Requirements 
for Cardiovascular Imaging-Related Machine Learning Evaluation, as suggested by the American College of 
Cardiology Healthcare Innovation  Council16.

From the echocardiography databases of Seoul National University Bundang Hospital (n = 755) and Seoul 
National University Hospital (n = 175), we retrospectively identified 930 subjects (112 patients with HHD, 191 
with HCM, 81 with ALCA, and 546 normal subjects). The diagnostic criteria for HHD, HCM and ALCA are 
described below.

HHD. Patients with a history of hypertension, who met the diagnostic criteria for LVH on echocardiography 
(LV mass index [LVMI] > 115 g/m2 in men, and > 95 g/m2 in women) were  included17,18. The following additional 
criteria were required for a specific diagnosis of HHD: (1) end-diastolic maximal LV wall thickness (LVWT-
max) ≥ 12 mm, (2) regression of LVH after appropriate blood pressure control, and (3) exclusion of other causes 
of LVH (such as HCM, infiltrative cardiomyopathy, metabolic cardiomyopathy, etc.).

HCM. Patients who met the diagnostic criteria of HCM (LVWTmax ≥ 15 mm on echocardiography, in the 
absence of abnormal loading conditions that could sufficiently explain the LVH) were  included19,20. For a spe-
cific and accurate diagnosis of HCM, definite evidence of HCM on CMR or a typical gene mutation on genetic 
analysis were required.

ALCA. According to clinical guidelines, ALCA on echocardiography was suggested when the LVWTmax 
was > 12   mm21. Other typical features on echocardiography, such as (1) symmetrical LV thickening; (2) right 
ventricular (RV) free wall thickening; (3) small pericardial effusion; (4) thickening of the atrioventricular valves 
and interatrial septum; (5) abnormal myocardial texture characterized as a speckled appearance; (6) voltage-
mass discrepancy; (7) base-to-apex strain gradient or relative apical sparing of longitudinal strain; and (8) typi-
cal findings on CMR (patchy, subendocardial circumferential, or diffuse fuzzy late gadolinium enhancement 
[LGE] of the LV), were used for clinical suspicion and detection of  ALCA21,22. For a specific and accurate labe-
ling, definite evidence of amyloid involvement on EMB was required. Due to the small number of patients with 
transthyretin amyloidosis and potential differences in myocardial texture, we included patients with ALCA, and 
excluded those with transthyretin amyloidosis.

Normal subjects. Inclusion criteria for normal subjects were as follows: (1) no clinical history of cardiovascular 
disease or diabetes; (2) normal blood pressure (≤ 130/80 mm Hg); (3) body mass index ≤ 30 kg/m2; (4) normal 
sinus rhythm at 50–85 beats/min without conduction abnormalities; (5) normal LV wall thickness, LV wall 
motion, and left atrial volume (< 27 mL/m2 using the biplane method of discs); (6) no mitral valve prolapse; and 
(7) no more than trivial valve regurgitation.
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Figure 1.  Development of the CNN-LSTM model and aggregate network. Schematic figure depicting the 
development of the deep learning algorithm. (A) Twelve DICOM images were extracted from 1 cardiac cycle 
at the same time-interval, for each of the 5 standard echocardiographic views. (B) In the first step of model 
development, a CNN-LSTM network was developed for each of the 5 standard echocardiographic views. The 
same CNN was applied to the 12 echocardiographic images, and a bi-directional convolutional LSTM layer 
was then applied to these 12 CNNs. A CNN-LSTM network was produced for each of the 5 echocardiographic 
views. (C) In the second step, an aggregate neural network was developed using the outputs obtained from the 
global average pooling of the multi-label classification block in each of 5 independent CNN-LSTM networks. 
A2C apical 2-chamber view, A3C apical 3-chamber view, A4C apical 4-chamber view, CNN convolutional neural 
network, DICOM digital imaging and communications in medicine, LSTM long short-term memory, PLAX 
parasternal long-axis view, PSAX parasternal short-axis view.
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Exclusion criteria. Patients were excluded if they had (1) significant LV dysfunction (LV ejection frac-
tion < 40%), (2) active malignancy (or receiving chemotherapy), (3) end-stage renal disease, (4) prior coronary 
revascularization, (5) significant valve disease, (6) regional wall motion abnormality, (7) no evidence of LVH 
or LVWTmax < 11 mm, or (8) other metabolic or infiltrative cardiomyopathies, such as Fabry disease, Danon 
disease, mitochondrial encephalopathy lactic acidosis and stroke-like episodes (MELAS), and PRKAG2 cardio-
myopathy.

Echocardiography. All images were obtained using a standard ultrasound device with a 2.5-MHz probe, in 
accordance with the guidelines of the American Society of  Echocardiography17. Echocardiograms comprised 1 
cardiac cycle, obtained in 5 standard views (parasternal long-axis [PLAX], parasternal short-axis [PSAX], apical 
4-chamber [A4C], apical 2-chamber [A2C], and apical 3-chamber [A3C]).

Image processing for the deep learning algorithm. Echocardiogram videos were downloaded as 
Digital Imaging and Communications in Medicine (DICOM) files from the picture archiving and communica-
tion system, and anonymized (Fig. 1). Because of differences in heart rate and echocardiographic frame rate, the 
number of images in the cardiac cycle differed among patients and views. Therefore, 12 images were extracted 
at the same interval for each view. The extracted images were cropped to 12 ×  12cm2 based on each center point 
to remove parts not related to the region of interest. The cropped images were resized to 256 × 256 pixels using 
bilinear interpolation. Pydicom (python package, version 2.1.0) was used to preprocess the DICOM files.

Deep learning model development. The development of the deep learning model is detailed in the 
Supplementary Methods. Briefly, the total study population (n = 930) was divided into training (n = 620), valida-
tion (n = 155), and test sets (n = 155). Using the training set, a deep learning algorithm based on a CNN-LSTM 
for the differential diagnosis of LVH was developed in two major steps (Fig. 1). The first step comprised the 
development of a CNN-LSTM  network23,24. The same CNN was applied to the 12 DICOM images extracted 
from each standard echocardiographic view. Because we aimed to combine the CNN’s feature extraction from 
the DICOM images and the LSTM’s temporal information, we opted to extract 12 images/cardiac cycle, in order 
to avoid exhaustive amount of computing time from various lengths of input videos, while maintaining clinical 
 relevance25. Then, in order to reflect the temporal and spatial connectivity between the 12 DICOM images, a 
bi-directional convolutional LSTM layer was applied. Finally, a multi-label classification block was applied to 
predict HHD, HCM, and ALCA independently, on each view. The second step comprised the development of 
a neural network that aggregated the results obtained in the first step. This neural network was developed to 
decide the final “most-likely” diagnosis among 4 categories (normal, HHD, HCM, and ALCA) from the 5 stand-
ard views of each patient; in real-world clinical practice, the evaluation of a patient’s echocardiographic images 
should lead to a single clinical diagnosis. The outputs obtained from the 5 independent CNN-LSTM networks 
were concatenated to compose the input. Binary cross entropy was used as an objective function to train the first 
and second steps, and He-initialization was used to initialize the  weights26. The region to which the deep learn-
ing algorithm reacted sensitively in images was detected using class activation  mapping27. Network development 
was implemented using the Tensorflow framework (version 2.3) and graphic processing unit (NVIDIA GeForce 
RTX 2080 Ti) in Linux (Ubuntu 16.04) with NVIDIA CUDA/cuDNN (versions 10.1 and 7.6, respectively).

Study outcomes. The study outcomes were the area under the receiver operating characteristic curve 
(AUC) for the differentiation of the 4 categories (normal, HHD, HCM, and ALCA) and the diagnostic accuracy 
as calculated by the confusion matrix. For the latter, the final diagnosis made by the deep learning algorithm 
was compared to the ground-truth labeling. Additionally, using the test set, the diagnostic performance of the 
CNN-LSTM model was evaluated by comparing the final diagnosis made by the deep learning algorithm to the 
visual interpretation of expert cardiologists (I-C Hwang and G-Y Cho, who have more than 10 and 25 years of 
experience in echocardiography, respectively).

Statistical analysis. The AUC was used to measure the classification performance. Sensitivity, specificity, 
positive and negative predictive values, and positive and negative likelihood ratios of the deep learning algo-
rithm were calculated for each disease. The optimal cutoff for each of the 3 diseases was calculated in advance 
using the Youden’s J statistic of the validation  set28. If the probabilities for HHD, HCM, or ALCA were smaller 
than the corresponding optimal cutoff, the diagnosis was “normal”. Otherwise, the highest value among the 
probabilities for HHD, HCM, and ALCA decided the final diagnosis. Cohen’s κ coefficient and the confusion 
matrix were calculated to compare the diagnostic performance between the deep learning algorithm and the 
expert  clinicians29. Diagnostic accuracy based on the confusion matrix was calculated as (true positives + true 
negatives)/(true positives + true negatives + false positives + false negatives). All statistical analyses were per-
formed using R statistical software version 4.1.1 (The R Foundation for Statistical Computing, Vienna, Austria). 
p-values < 0.05 were considered statistically significant.

Results
Baseline characteristics. In total, 4650 echocardiograms from 930 subjects (5 standard echocardiographic 
views for each subject) were analyzed. Baseline characteristics of the study population are summarized in Table 1. 
The LVWTmax and LVMI were significantly larger in patients with LVH than in normal subjects, but there were 
no significant differences between HHD, HCM, and CA subgroups. Details regarding the composition of the 
training, validation, and test sets are provided in Table 2.
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Diagnostic accuracy. The diagnostic accuracy of the developed algorithm was assessed at each step of the 
algorithm development. First, the AUCs for the differential diagnosis of HHD, HCM, and ALCA were obtained 
from the CNN models without LSTM network, and were compared with the AUCs obtained from the CNN-
LSTM model (Supplementary Table S1). In overall, the AUCs for the diagnosis of HHD, HCM and ALCA were 
higher with the combined CNN-LSTM model compared to the CNN models: the averaged AUCs of the CNN 
models were around 0.9, but further improved by the addition of LSTM network. Details regarding the diagnos-
tic performance for each view are provided in Supplementary Table S2, comparing the diagnosis made by the 
expert cardiologists and that by CNN-LSTM algorithm.

Table 1.  Baseline characteristics. Values are given as the median with interquartile range or as a number 
(percentage). AF atrial fibrillation, BMI body-mass index, ALCA light-chain cardiac amyloidosis, EDD end-
diastolic dimension, EDV end-diastolic volume, EF ejection fraction, ESD end-systolic dimension, ESV end-
systolic volume, HHD hypertensive heart disease, HCM hypertrophic cardiomyopathy, IVSd interventricular 
septum at end-diastole, LVPWd left ventricular posterior wall thickness at end-diastole, LVWTmax end-
diastolic maximal LV wall thickness, LA left atrium, LAVI left atrial volume index, LV left ventricular, MI mass 
index, N/A not applicable, PASP pulmonary artery systolic pressure, TR tricuspid regurgitation.

Normal subjects (n = 546) HHD (n = 112) HCM (n = 191) ALCA (n = 81) p-value

Age (years) 48.2 ± 12.0 49.5 ± 14.8 55.3 ± 13.3 68.3 ± 11.2  < 0.001

Male sex 260 (47.6%) 77 (68.8%) 121 (63.4%) 43 (53.1%)  < 0.001

Height (cm) 165.4 ± 9.0 167.8 ± 9.1 164.4 ± 10.0 160.1 ± 9.0  < 0.001

Weight (kg) 65.6 ± 11.9 75.9 ± 17.2 69.0 ± 12.3 57.5 ± 11.1  < 0.001

BMI (kg/m2) 23.9 ± 3.1 26.4 ± 5.3 25.4 ± 3.5 21.9 ± 4.5  < 0.001

Systolic blood pressure (mmHg) 124.2 ± 14.3 159.7 ± 26.4 127.6 ± 17.9 113.3 ± 18.8  < 0.001

Diastolic blood pressure (mmHg) 74.8 ± 9.2 96.5 ± 19.8 75.0 ± 11.1 69.0 ± 13.4  < 0.001

Echocardiographic parameters

LV-EDD (mm) 46.2 ± 3.8 49.7 ± 5.2 45.0 ± 5.2 43.5 ± 5.4  < 0.001

LV-ESD (mm) 29.5 ± 3.7 34.1 ± 7.2 26.7 ± 4.5 29.8 ± 5.7  < 0.001

LV-EDV (ml) 81.1 ± 19.3 105.7 ± 35.3 76.1 ± 20.8 64.7 ± 18.0  < 0.001

LV-ESV (ml) 29.6 ± 8.0 46.5 ± 23.1 26.4 ± 8.0 27.9 ± 11.8  < 0.001

LV-EF (%) 63.6 ± 4.1 57.6 ± 9.2 64.9 ± 6.7 57.5 ± 8.8  < 0.001

IVSd (mm) 8.8 ± 1.2 13.8 ± 2.5 17.2 ± 4.8 13.8 ± 2.5  < 0.001

LVPWd (mm) 8.5 ± 1.1 13.0 ± 2.2 11.6 ± 2.9 13.2 ± 2.3  < 0.001

LV-MI (gm/m2) 75.8 ± 13.7 146.8 ± 36.0 150.3 ± 46.6 138.1 ± 34.6  < 0.001

LA dimension (mm) 34.4 ± 4.3 40.6 ± 6.5 43.7 ± 6.6 41.7 ± 6.5  < 0.001

LAVI (mL/m2) 29.0 ± 5.5 40.8 ± 14.0 48.3 ± 19.4 55.8 ± 19.0  < 0.001

Mitral E/e’ ratio 7.7 ± 1.9 13.0 ± 4.7 16.3 ± 8.0 23.7 ± 10.7  < 0.001

TR Vmax (m/sec) 2.1 ± 0.3 2.3 ± 0.6 2.4 ± 0.5 2.6 ± 0.6  < 0.001

PASP (mmHg) 24.5 ± 4.4 29.4 ± 10.8 32.2 ± 7.8 36.4 ± 10.6  < 0.001

Table 2.  Splitting of the data into training, validation and test sets. Total study population was split into 
6 groups, of which 4 groups were designated as the training set, and remaining 2 groups designated as the 
validation and test sets, respectively. AF atrial fibrillation, BMI body-mass index, ALCA light-chain cardiac 
amyloidosis, EDD end-diastolic dimension, EDV end-diastolic volume, EF ejection fraction, ESD end-systolic 
dimension, ESV end-systolic volume, HHD hypertensive heart disease, HCM hypertrophic cardiomyopathy, 
IVSd interventricular septum at end-diastole, LVPWd left ventricular posterior wall thickness at end-diastole, 
LVWTmax end-diastolic maximal LV wall thickness, LA left atrium, LAVI left atrial volume index, LV left 
ventricular, MI mass index, N/A not applicable, PASP pulmonary artery systolic pressure, TR tricuspid 
regurgitation.

Groups Data split Normal HHD HCM ALCA

1

Training set

91 19 32 13

2 91 19 32 13

3 91 18 32 14

4 91 19 32 13

5 Validation set 91 19 31 14

6 Test set 91 18 32 14

Total (n = 930) 545 112 191 81
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Second, the AUCs obtained from the combined CNN-LSTM model of each echocardiographic views and 
those of the final AUCs from the final aggregate network of the 5 standard views were assessed in the validation 
and test sets (Table 3, Supplementary Fig. S1). In the validation set, the AUCs of the final aggregate network 
of the 5 standard echocardiographic views were 0.958, 0.988, and 0.993, for the diagnosis of HHD, HCM, and 
ALCA, respectively (Table 3, Fig. 2A). The AUCs were similar in the test set (0.962, 0.982 and 0.996, respec-
tively) (Table 3, Fig. 2B). The AUCs obtained from the final aggregate network were higher than those from 
each echocardiographic view. Details on the sensitivity, specificity, positive predictive value (PPV), and negative 
predictive value (NPV) for each LVH etiology, provided by the expert cardiologists and CNN-LSTM algorithm, 
are compared in Supplementary Table S3.

The diagnostic performance of the CNN-LSTM model and aggregate network was compared according to the 
number of echocardiographic images extracted from 1 cardiac cycle, which was one of the major hyperparam-
eters of our deep learning algorithm (Supplementary Methods and Supplementary Table S4). In the developed 
model, the number of images/cardiac cycle was determined empirically: 12 DICOM images were extracted from 
1 cardiac cycle, considering the various heart rates and frame rates of the included echocardiogram videos. The 
AUCs of the algorithm based on 12 images/cardiac cycle were comparable to the models based on 4, 8, or 16 
images/cardiac cycle. In order to reflect the entire cardiac cycle in echocardiogram videos of various heart rates 
and frame rates in routine clinical practice, the 12 images/cardiac cycle was maintained for the deep learning 
algorithm. Further, the AUCs were compared between the 2-dimensional (2D) image-based CNN-LSTM model 
with aggregate network and the 3-dimensional CNN (3D-CNN) model, which was suggested in a recent  study30. 
In this analysis, we extracted 12 images/cardiac cycle or 16 images/cardiac cycle for the 3D-CNN model for com-
parability with our 2D-CNN-LSTM model, and found that the AUCs of the 3D-CNN model are not significantly 
different compared to our algorithm (Supplementary Table S5).

Echocardiographic features used in the differential diagnosis. Class activation mapping dem-
onstrated that well-established typical echocardiographic findings for the differential diagnosis of LVH were 
utilized in the deep learning algorithm (Fig. 3 and Supplementary Table S6). In PLAX views, the highlighted 
regions comprised the anteroseptum, ascending aorta, and basal inferolateral segment with posterior mitral 
valve leaflet (Fig. 3A,F,K). In PSAX views, the septum and papillary muscle were highlighted in all 4 categories, 
and for the differentiation of ALCA, the pericardium at the LV posterior side was highlighted (Fig. 3B,G,L). The 
inferoseptum and papillary muscle were typically highlighted in A4C images (Fig. 3C,H,M); the LV inferior 
wall and LA wall were highlighted in A2C images (Fig. 3D,I,N); and the anteroseptum, inferolateral wall, and 
the pericardium at the LV posterior side were highlighted in A3C images (Fig. 3E,J,O). The frequencies of the 
highlighted regions in each echocardiographic view are summarized in Supplementary Table S6.

Comparison with expert interpretation. As shown in Supplementary Table S2, the diagnostic perfor-
mance of expert cardiologists on a single echocardiographic view was not satisfactory: the sensitivity ranged 
from 14 to 78% and the PPV from 26 to 77%. Although the diagnostic performance of expert cardiologists was 
improved when the 5 standard echocardiographic views were combined for decision, the sensitivity, specificity, 
PPV and NPV for each LVH etiology were lower than those provided by the deep learning algorithm using the 
hybrid CNN-LSTM model and aggregate network (Supplementary Table S3). The overall diagnostic accuracy of 
the deep learning algorithm was 92.3% and the Cohen’s κ was 0.869 (p < 0.001), which were significantly higher 
than those of the two expert cardiologists (expert 1: accuracy, 80%; Cohen’s κ , 0.674; p < 0.001; expert 2: accu-
racy, 80.6%; Cohen’s κ , 0.687; p < 0.001) (Fig. 4).

Table 3.  AUCs for the differential diagnosis of LVH. The AUC for each differential diagnosis (HHD, HCM 
and CA) was calculated in the validation (n = 155) and test sets (n = 155). A2C apical 2-chamber view, A3C 
apical 3-chamber view, A4C apical 4-chamber view, PLAX parasternal long-axis view, PSAX parasternal 
short-axis view, AF atrial fibrillation, BMI body-mass index, ALCA light-chain cardiac amyloidosis, EDD end-
diastolic dimension, EDV end-diastolic volume, EF ejection fraction, ESD end-systolic dimension, ESV end-
systolic volume, HHD hypertensive heart disease, HCM hypertrophic cardiomyopathy, IVSd interventricular 
septum at end-diastole, LVPWd left ventricular posterior wall thickness at end-diastole, LVWTmax end-
diastolic maximal LV wall thickness, LA left atrium, LAVI left atrial volume index, LV left ventricular, MI mass 
index, N/A not applicable, PASP pulmonary artery systolic pressure, TR tricuspid regurgitation.

Echocardiographic view

Validation set Test set

AUC for HHD AUC for HCM AUC for ALCA AUC for HHD AUC for HCM AUC for ALCA

PLAX 0.954 0.974 0.976 0.949 0.968 0.951

PSAX 0.894 0.97 0.871 0.892 0.959 0.929

A4C 0.931 0.954 0.953 0.908 0.973 0.989

A2C 0.905 0.925 0.916 0.917 0.974 0.978

A3C 0.908 0.983 0.924 0.907 0.937 0.986

Aggregate 0.958 0.988 0.993 0.962 0.982 0.996
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Figure 2.  ROC curve analysis of the deep learning algorithm for the differential diagnosis of LVH. The 
diagnostic accuracy of the deep learning algorithm was calculated using the AUC for the validation (A), and test 
sets (B). This figure was generated using R software v.4.1.1, R Core Team (2021). R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http:// www.r- proje 
ct. org/. AUC  area under the ROC curve, CI confidence interval, ALCA light-chain cardiac amyloidosis, HCM 
hypertrophic cardiomyopathy, HHD hypertensive heart disease, ROC receiver operating characteristic curve.

Figure 3.  Representative figures in the class activation mapping. Typical class activation maps of patients with 
HHD (A–E), HCM (F–J), or ALCA (K–O), are presented. AUC  area under the ROC curve, CI confidence 
interval, ALCA light-chain cardiac amyloidosis, HCM hypertrophic cardiomyopathy, HHD hypertensive heart 
disease, ROC receiver operating characteristic curve.

http://www.r-project.org/
http://www.r-project.org/
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Discussion
In the present study, we developed a deep learning algorithm based on 5 standard echocardiographic views from 
930 subjects to differentiate the common etiologies of LVH on echocardiography using a hybrid CNN-LSTM 
model and aggregate network. The deep learning algorithm showed excellent diagnostic performance in the 
differentiation of LVH, which was significantly greater than that based on expert cardiologists’ interpretations 
of the echocardiogram. These findings suggest that deep learning-assisted interpretation of the echocardiogram 
can improve the accuracy of the differential diagnosis of LVH, and improve the overall diagnostic process.

Etiologies of LVH and challenges for differential diagnosis. LVH is often a physiologic adaptation to 
an increased afterload, with a prevalence reaching 10% to 15% in the echocardiography  laboratory31. However, 
the etiology of LVH is not limited to hypertension, but includes a wide range of disease conditions. According to 
previous echocardiographic studies, the common causes of LVH other than HHD include HCM and  CA9. HCM 

Figure 4.  Diagnostic accuracy of the deep learning algorithm compared to that of expert cardiologists. The 
diagnostic accuracy of the deep learning algorithm was assessed using the confusion matrix for the validation 
(A), and test sets (B). The accuracy was also compared to that of two echocardiography specialists using 
the test set (C,D). This figure was generated using R software v.4.1.1, R Core Team (2021). R: A language 
and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL 
http:// www.r- proje ct. org/. AUC  area under the ROC curve, CI confidence interval, ALCA light-chain cardiac 
amyloidosis, HCM hypertrophic cardiomyopathy, HHD hypertensive heart disease, ROC receiver operating 
characteristic curve.

http://www.r-project.org/
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is a genetic disease with an approximate prevalence of 1:200–1:500, and the patients with HCM show significant 
LVH due to myocardial fiber disorganization/disarray19,20. Light-chain CA is a hematologic malignant disease, 
in which abnormally increased amyloid protein production leads to a profound infiltration of amyloid protein in 
the myocardium, resulting in significant  LVH32.

The differential diagnosis between these conditions is important because of differences in the treatment and 
prognosis. While the management of HHD mainly focuses on blood pressure control, the management of HCM 
and ALCA is much more complex and multifactorial. In patients with HCM, the treatment strategy includes sud-
den cardiac death risk assessment; primary or secondary prevention of sudden death; management of combined 
arrhythmia, heart failure, or LV outflow tract obstruction; and family counseling/screening19,20. The manage-
ment of ALCA includes cytotoxic chemotherapy and stem cell transplantation, along with the management of 
cardiovascular complications such as arrhythmia and heart  failure21. Furthermore, the overall life expectancy 
of patients with HCM is comparable to that of the general population, but 30–40% of patients will experience 
adverse  events19. In contrast, patients with light-chain ALCA have a very poor prognosis, with a median survival 
from the initial diagnosis of only 24  months22,32.

Although the underlying LVH pathophysiology differs between HHD (increased afterload), HCM (sarcomere 
mutation and myofibril disarray/disorganization), and ALCA (amyloid protein infiltration), the differential diag-
nosis is often difficult on echocardiography. This is because of morphologic similarities on echocardiography, 
and the high prevalence of hypertension in patients with HCM or  ALCA6,7,15. The differential diagnosis of HCM 
is especially problematic when patients show diffuse or mixed-type HCM. A comprehensive echocardiography 
examination can improve the diagnostic accuracy in the detection of ALCA, which paradoxically suggests that 
the visual assessment has limited use in the differential  diagnosis8,33,34. The difficulties in the differential diagnosis 
on echocardiography leads to the subsequent use of numerous noninvasive and invasive tests, such as CMR, 
EMB, and genetic testing. However, despite the limited diagnostic accuracy in many clinical situations, these 
tests often require additional cost, time, and  invasiveness10–14. Thus, improvements in the differential diagnosis 
of LVH etiologies by echocardiography can facilitate the efficient diagnostic process, and further lead to a timely 
application of disease-specific treatment.

Relevance of an artificial intelligence‑supported differential diagnosis. Our deep learning algo-
rithm showed excellent diagnostic accuracy for the differential diagnosis of LVH using 5 standard echocardio-
graphic views. It might be argued that the differences in the LV wall thickness might be the determinant of the 
differential diagnosis, given that the patients with ALCA may have less LVH than HHD or HCM. However, in 
the present study, the inclusion criterion of LVWTmax was > 12 mm for both HHD and ALCA, and the mean LV 
wall thickness did not differ between the two groups. Due to innate characteristics of the deep learning process, 
as well as relatively small study population, we cannot provide detailed reasons for this improvement or delicate 
sensitivity analyses; however, the class activation mapping results provided clues. For the diagnosis of HHD, the 
class activation map highlighted regions at the ascending aorta on PLAX views, RV insertion site on PSAX views, 
and RV apex and LV inferior/inferolateral wall on apical views (A4C, A2C and A3C) (Fig. 3 and Supplementary 
Table S6). Patients with HHD show concentric or eccentric LVH, but specific echocardiographic findings dif-
ferentiating HHD from other causes of LVH are largely unknown. However, a previous CMR study reported that 
patients with HHD demonstrate LGE at RV insertion points, and limited aortic distensibility, which might have 
been utilized in our deep learning  algorithm35. The diagnosis of HCM was mainly based on highlighted regions 
at the basal septum and basal inferolateral wall on PLAX views, and the LV septum and inferior wall on apical 
views, all of which are typically hypertrophied in patients with  HCM20,36. For the diagnosis of ALCA, highlighted 
regions typically included the anterior mitral valve leaflet, left atrial wall, and LV basal inferior/inferolateral seg-
ments with the adjacent pericardial space. Patients with ALCA often demonstrate thickened valve leaflets and 
atrial wall due to amyloid protein infiltration, and a small amount of pericardial  effusion37. Although not suf-
ficiently pathognomonic to exclude other possible differential diagnoses, these highlighted regions show typical 
features for the clinical suspicion and determination of LVH etiologies on echocardiography.

Furthermore, it can be assumed that different myocardial textures and motions were also utilized in the deep 
learning algorithm, as suggested in a recent study by Fei Yu et al.38. In particular, the microscopic features of LVH 
etiologies significantly differ, due to different underlying pathophysiology. Patients with HHD have hypertrophied 
cardiomyocytes with diffuse myocardial fibrosis, whereas patients with HCM typically have disorganized myocar-
dial fibers with marked fibrosis, and those with ALCA have infiltrated amyloid proteins. These pathophysiologic 
differences are also utilized in the visual assessment of echocardiographic images (e.g. increased echogenicity 
in HCM, and a granular sparkling appearance in ALCA). However, visual interpretation of these morphologic 
features is subjective to the observer’s discretion, and thus, is not specific. In the current class activation map-
ping results, a thickened LV myocardium was highlighted in most echocardiographic images, suggesting that 
the myocardial texture was utilized as an important indicator in the differential diagnosis.

In the present study, it was noted that the PPV values of the CNN-LSTM algorithms for each standard echo-
cardiographic view were low, ranging from 30 to 70% (Supplementary Table S2). Thus, we applied the aggregate 
network in order to concatenate the results obtained from the CNN-LSTM models of 5 echocardiographic views. 
The concatenated outputs from the aggregate network significantly improved the overall diagnostic performance, 
as well as the PPV values. The use of aggregate network resembles in part the clinical decision by human experts, 
in which a full series of echocardiographic images are integrated. Given that the highlighted regions on class 
activation mapping differed between the 5 echocardiographic views, it can be inferred that the aggregate network 
could improve diagnostic accuracy through integration of features from the 5 different views. In addition, the 
diagnostic accuracy of our deep learning algorithm was significantly higher than that for the echocardiography 
specialists. In real-world practice, the overall diagnostic process for unexplained LVH is guided by the decisions 
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of echocardiography specialists. Thus, the higher diagnostic accuracy, especially the excellent NPV and specificity, 
of our deep learning algorithm can contribute to a more efficient process, reducing the time and effort required 
for a final diagnosis of the LVH etiology. Although a deep learning algorithm-assisted diagnosis on echocardiog-
raphy cannot yet replace the current confirmative diagnostic tools, this approach can help attending physicians 
go straight to confirmative testing, avoiding inconclusive results and uncertain debates regarding the diagnosis.

Machine‑learning approaches for differential diagnosis of LVH etiologies. The application of 
deep learning in echocardiography has been considered as challenging, because of the various view orienta-
tions and inter-view differences as well as the variability within a single  view39. However, several landmark 
studies demonstrated accurate view classification with segmentation, cardiac structure identification, and car-
diac phase detection, all of which enabled the accurate automated measurement of cardiac structures and func-
tional  parameters2,3,40–42. These can contribute to the accurate measurement of echocardiographic parameters 
while reducing human errors. On top of these, the deep learning algorithms demonstrated promising results 
in the detection of certain echocardiographic features, such as the presence of LVH or regional wall motion 
 abnormalities39,43, and furthermore, differential diagnosis on echocardiographic images to aid clinical decision-
making, which was previously believed to require complex and sophisticated clinical reasoning by specialists. 
In particular, several studies focused on the differential diagnosis of LVH and demonstrated meaningful results.

A study by Xiang Yu et al. also developed a deep learning algorithm for detection of LVH and its differential 
diagnosis of HHD, HCM, and  ALCA44, but we found that the methodology is different compared to our study. 
The study by Xiang Yu et al. obtained 2 still images from PLAX and A4C views of each patient, utilized the 
ResNet and U-net ++ for the algorithm development, and performed manual delineation of LV myocardium as 
the ground truth. In contrast, we obtained 5 standard echocardiogram videos (PLAX, PSAX, A4C, A2C, and 
A3C) and extracted 12 images from 1 cardiac cycle, in order to reflect the motion of cardiac structures. Our deep 
learning algorithm did not require the manual delineation of cardiac structures, but provided excellent diagnostic 
accuracy and demonstrated that relevant echocardiographic features were utilized for the decision, as shown 
in the class activation map. In addition, we tried our best effort to improve the diagnostic accuracy of our deep 
learning algorithm, avoiding the use of images from repetitive echocardiograms from a same patient, which is 
another difference compared to the study by Xiang Yu et al.44. Furthermore, we confirmed that each step of the 
algorithm development, such as the application of LSTM network and the use of aggregate network, improved 
the diagnostic accuracy. Indeed, the combined CNN-LSTM algorithm was adopted to appropriately reflect the 
myocardial texture, along with myocardial systolic and diastolic motions. The LSTM algorithm is a novel and 
efficient type of recurrent neural network, and has strengths in time series prediction, such as in movie frames. 
Because the myocardial systolic and diastolic motions can differ between HHD, HCM, and ALCA, these features 
might have been utilized in our deep learning algorithm.

More recently, Duffy et al. developed a deep learning workflow for measurement of LV geometry and diagnosis 
of LVH etiologies, using a large-scale cohort of 23,745  patients30. In that landmark study, a deep learning model 
for measurement of LV dimensions and wall thickness was developed using PLAX videos, and a video-based 
CNN model for identification of the etiology was developed using A4C videos. One of the important differences 
of the study by Duffy et al. compared to our study is the use of 3D-CNN with spatiotemporal convolutions. In 
contrast, we designed 2D-based CNN for 12 images extracted from 1 cardiac cycle in order to extract echo-
cardiographic features for differential diagnosis. Then, an LSTM layer was applied to the 12 CNNs, to reflect 
the temporal and special changes of the heart during the cardiac cycle. Given the relevance of both methods 
(2D-CNN-LSTM and 3D-CNN) for acquisition of spatiotemporal data, we compared the diagnostic performance 
of these methods using our dataset (Supplementary Table S5), and found that the AUCs were not different. These 
findings infer that, echocardiographic features including geometry, myocardial texture, and cardiac systolic/dias-
tolic motions, can be reflected in both 2D-CNN-LSTM algorithm and 3D-CNN algorithm. Another important 
difference is the echocardiographic views used in the study. The deep learning algorithm developed by Xiang Yu 
et al. utilized 2 still images of echocardiogram (PLAX and A4C)44, and the algorithm by Duffy et al. utilized only 
A4C videos for the differential diagnosis of  LVH30. In contrast, we utilized 5 standard echocardiographic views 
(PLAX, PSAX, A4C, A2C and A3C) for the development of CNN-LSTM algorithms, which were concatenated 
to provide a single most-likely diagnosis. Although it can be assumed that the integration of various aspects of 
cardiac structure and function may improve the diagnostic accuracy, future studies on the direct comparison of 
these algorithms are required. Furthermore, given the potential benefits of a deep learning-assisted differential 
diagnosis, prospective studies or clinical trials are warranted to assess whether its use can reduce the time, costs, 
and number of tests deemed as necessary, compared to that for echocardiography specialists alone.

Limitations
The present study has several limitations. First, we did not include rare LVH etiologies, such as Fabry disease, 
MELAS, Danon syndrome, PRKAG2 cardiomyopathy, and transthyretin amyloidosis. The exclusion of these 
rare diseases was inevitable to ensure a sufficient number of patients for each LVH etiology. However, future 
multi-center studies are warranted to include the rare LVH etiologies in the deep learning algorithm. Second, we 
excluded patients with valvular heart disease or chronic kidney disease, as there is a possibility that these condi-
tions overlap with the LVH etiologies included in the present study. Nonetheless, the overlap of these conditions 
cannot be strictly classified into a specific label, and it is impossible to clearly distinguish the proportion of each 
causative factor of LVH. Third, we excluded patients with other overt echocardiographic abnormalities, such as 
regional wall motion abnormalities or significant LV dysfunction. As the presence of these pathologic condi-
tions indicate a poor prognosis in patients with LVH, future studies are warranted to develop a comprehensive 
deep learning algorithm that includes a wide range of complex cardiac conditions. Finally, our deep learning 



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20998  | https://doi.org/10.1038/s41598-022-25467-w

www.nature.com/scientificreports/

algorithm was developed using echocardiographic images from 2 tertiary hospitals in South Korea, but was not 
validated in external datasets from other ethnicities. For further validation, as well as for facilitation of deep 
learning approaches in cardiovascular imaging, the full code for our algorithm was released (https:// github. com/ 
djcho i1742/ Echo_ LVH).

Conclusion
We developed a deep learning algorithm for the differential diagnosis of common LVH etiologies (HHD, HCM, 
and ALCA) by applying a hybrid CNN-LSTM model and aggregate network to standard echocardiographic 
images. The high diagnostic performance of our deep learning algorithm suggests that the use of deep learning 
can improve the diagnostic process in patients with LVH.

Data availability
The datasets of echocardiographic images generated during and/or analysed during the current study are avail-
able from the corresponding author on reasonable request. The full code for our algorithm was released (https:// 
github. com/ djcho i1742/ Echo_ LVH).
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