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Microphthalmia transcription factor (MiT) family translocation renal cell car-
cinoma (tRCC) is a rare type of kidney cancer, which is not well characterized.
Here we show the comprehensive proteogenomic analysis of tRCC tumors and
normal adjacent tissues to elucidate the molecular landscape of this disease.
Our study reveals that defective DNA repair plays an important role in tRCC
carcinogenesis and progression. Metabolic processes are markedly dysregu-
lated at both the mRNA and protein levels. Proteomic and phosphoproteome
data identify mTOR signaling pathway as a potential therapeutic target.
Moreover, molecular subtyping and immune infiltration analysis characterize
the inter-tumoral heterogeneity of tRCC. Multi-omic integration reveals the
dysregulation of cellular processes affected by genomic alterations, including
oxidative phosphorylation, autophagy, transcription factor activity, and pro-
teasome function. This study represents a comprehensive proteogenomic
analysis of tRCC, providing valuable insights into its biological mechanisms,
disease diagnosis, and prognostication.

Microphthalmia transcription factor (MiT) family translocation renal
cell carcinoma (tRCC) is a rare renal cancer subtype characterized by
chromosomal translocations involving transcription factor E3 (TFE3)
or EB (TFEB) (on chromosomal loci Xp11.2 and 6p21, respectively)
genes fusions with various partners'. Owing to tRCCs with TFE3 and
TFEB gene fusions sharing many clinical, histopathological, and
genetic similarities, the 2013 International Society of Urological
Pathology (ISUP) Vancouver classification grouped these two subtypes
into a single entity, called MiT family tRCC?. So far, several gene fusions
for TFE3 have been identified in patients with tRCC, including ASPSCR1

(ASPL), PRCC, SFPQ (PSF), NONO, CLTC, DVL2, LUC7L3, PARP14, MED15,
KHSRP, RBMI10, ARIDIB, MATR3, FUBP1, NEATI, KAT6A, GRIPAP1, and
EWSRI®™. ASPSCRI1 and PRCC were identified as the most common
fusion partners of TFE3”'*. Additionally, several case reports have
reported different fusion partners for TFEB, such as MALATI, CLTC,
ACTB, KHDRBS2, COL21A1, CADM2, EWSRI, and PPPIRIO".
Histologically, tRCC mimics almost all subtypes of renal cell car-
cinoma (RCC). It can present with papillary architecture and cells with
voluminous clear or eosinophilic cytoplasm''®, Some cases even
comprise perivascular epithelioid neoplasm-like or melanoma-like
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differentiation cells”, which brings serious challenges in both diag-
nosis and treatment. Clinically, tRCC classically affects pediatric
patients and young adults but the disease has also been observed in
older patients in recent years. tRCC accounted for ~20-40%'" of
pediatric RCC and 1-4% of adult RCC**?. The incidence of tRCC is
controversial due to the difficulty of diagnosis and its diverse
subtypes’. An analysis of 403 tRCC cases from the literature indicated
that the incidence of this disease is slightly higher in females (F:M ratio,
1.6:1)”. The prognosis of tRCC remains controversial, ranging from
indolent to highly aggressive. Several studies have claimed that adult-
onset tRCC is more invasive and aggressive, especially in male
patients****, but is relatively indolent in pediatric patients®. In gen-
eral, tRCC has a similar prognosis with clear cell RCC (ccRCC)***” but
has worse outcomes than papillary RCC*. Among all the tRCC types,
patients with ASPSCRI fusion have the most unfavorable prognosis and
lymph node metastasis is more common; however, the correlation
between fusion type and prognosis is unclear®.

Recently, some studies have reported different fusion partners for
TFE3, but owing to the rarity of such tumors, general understanding of
tRCC molecular characteristics and underlying mechanisms has been
limited. The detection of copy number variations (CNVs) in 16 tRCC
cases demonstrated that the most frequent mutations were 17q gain
and 9p deletion, and distinct somatic CNVs were associated with a
poor prognosis®’. However, because previous studies are limited to
relatively small cohorts and focused on the detection of genomic
alterations, they do not sufficiently explain the biological features of
tRCC™®. Therefore, there is an urgent need for multiomics analyses,
especially proteomics and phosphoproteomics analyses.

In this work, we investigate the genomic, transcriptomic, pro-
teomic, and phosphoproteomic characteristics of 86 tRCC samples
and correlate these findings with clinicopathological features. We find
that mTOR signaling pathway is upregulated in tRCC tumor tissues in
both proteome and phosphoproteome levels, which indicates mTOR
signaling is a potential therapeutic target. Moreover, our study reveals
the impacts on clinical outcomes and molecular features of genomic
alterations in tRCC, providing biological insights of tRCC carcinogen-
esis and development.

Results

Molecular Profiling of MiT Family tRCC

We collected a total of 86 MiT family tRCC samples from treatment-
naive Chinese patients. A schematic diagram of the experimental
design is shown in Fig. 1a. Whole-exome sequencing (WES) was con-
ducted on 84 paired samples to detect any in MiT family tRCC genetic
variants. Samples from 2 patients were excluded due to low DNA
quality. Label-free proteomic and phosphoproteomic approaches
were carried out on 74 tumors and 57 normal adjacent tissues (NATS),
and 28 tumors and 21 NATSs, respectively. RNA sequencing (RNA-seq)
was carried out on 26 tumors and 16 NATs. All omics experiments
including WES, transcriptome, proteome, phosphoproteome were
conducted on the same patients and control.

This cohort was comprised by 33.7% (n=29) males and 66.3%
(n=57) females, with a median age of 34 years. The 49 patients (57.0%)
had stage I/Il tumors, and 36 patients (41.9%) had stage Ill/IV tumors.
The majority of tRCC cases showed International Society of Urological
Pathology (ISUP) grade 2 (n=36, 41.9%) and grade 3 (n=40, 46.5%),
and the rest cases showed grade 4 (n=10, 11.6%) (Supplementary
Data 1). All cases were preliminarily screened by histopathologists and
diagnosed by fluorescence in situ hybridization (FISH)*, and 68 cases
(79.1%) had their gene fusion types confirmed using next-generation
sequencing (NGS) (Supplementary Data 1, Methods). There were five
cases of TFEB-tRCC, rarer than the TFE3-tRCC (n=63) cases, which
were consistent with previous reports'. We identified 4 fusion partners
of TFEB, including CLTC, ACTB, NEATI, and EIF4A2. Fifteen fusion
partners of TFE3 were identified in this cohort, among which ASPSCRI

(n=21), SFPQ (n=14), NONO (n=6), PRCC (n=6), MEDIS (n=4), and
LUC7L3 (n=3) were recuring TFE3 fusion partners (Fig. 1b). PTPN12,
ZNF627, EWSRI1, PARP14, KHSRP, MATR3, RBM10, U2AF2, and VCP were
the rare TFE3 fusion partners observed in this cohort. The PTPNI2-
TFE3, ZNF627-TFE3, U2AF2-TFE3 and EIF4A2-TFEB fusion types of tRCC
were also observed (Supplementary Fig 1a, b). In addition, we found
two cases of tRCC with two fusion types (Fig. 1b, Supplemen-
tary Data 1).

WES data of NATs were used as a reference to detect genetic
variants in this cohort. The mean sequencing coverage in the hg38
reference genome was 118.91x for tumor tissues and 60.96x for NATs
(Supplementary Fig. 1c). Among the 86 tumors and 84 paired NATs, we
detected 2,563 non-silent mutations and 19,616 silent mutations.
MutsigCV** was used to identify the significantly mutated genes
(SMGs) in the tRCC. BCDIN3D, NDRG1, ZNF668, and GNPTG were
identified as the SMGs in tRCC (Fig. 1c). Among the SMGs in tRCC,
NDRGI acts as a tumor suppressor and plays an important role in p53-
mediated caspase activation and apoptosis. The functions of BCDIN3D,
ZNF668, and GNPTG in tumor are poorly studied. Commonly mutated
genes in other RCCs, such as VHL, PBRMI, BAP1, and MET were not
detected in our tRCC samples. In addition, we found the tumor sup-
pressor genes TP53 (n=3), BRCAI (n=3), TSC2 (n=3), SETD2 (n=3),
KMT2D (n=3), and oncogene /RS2 (n = 3) recurrently mutated in tRCC
(Supplementary Data 2).

For the proteomics and phosphoproteomics data analysis, Pear-
son’s correlation coefficients were calculated for all quality control
(QC) runs of the HEK293T cell samples. The median correlation coef-
ficient among the QC samples was 0.91 for proteomics QC and 0.96 for
phosphoproteomics QC, respectively (Supplementary Fig. 1d, e),
which demonstrated the consistency and stability of the mass spec-
trometry platform. Proteomics analysis of all samples measured a total
of 14,073 proteins (Fig. 1d), among which 11,471 proteins were com-
mon between tumor tissues and NATs, whereas 1487 and 1115 proteins
were detected specifically in tumor tissues and NATS, respectively. On
average, we identified 5607 proteins per sample, ranging from 2837 to
8120, in which more than 90% of samples had identified protein
numbers over 4000. Proteome quantification was conducted using the
iBAQ algorithm, followed by normalization to fraction of total (FOT) as
reported previously (Supplementary Fig. 1f, g). Furthermore, a total of
33,853 phosphosites, corresponding to 6469 phosphoproteins, were
identified (Fig. le).

RNA sequencing (RNA-seq) analysis identified 13,313 genes with
fragments per kilobase of transcript per million fragments mapped
(FPKM) of more than 1 (Supplementary Fig. 1h, i), allowing us to
explore the relationship between the transcriptome and full proteome.
The mRNA-protein correlation was moderate with sample-wise median
Spearman’s correlation of 0.39 (Supplementary Fig. 1j), consistent with
the previous report®. For tumor tissues, 7206 mRNA-protein pairs
were detected, and the median gene-wise Spearman’s correlation
between protein and mRNA was 0.059. Gene set enrichment analysis
(GSEA) revealed that genes with positive mRNA-protein correlation
were enriched in kidney elevated proteins (kidney signature), Gly/Ser/
Thr metabolism, and extracellular matrix (ECM) receptor interaction,
whereas genes with negative correlation were enriched in proteasome
and oxidative phosphorylation (OXPHOS) (Fig. 1f). The poor correla-
tion of mRNA-protein pairs in OXPHOS was also observed in a variety
of other tumors, such as ccRCC**.

The transcriptomic similarity was used to infer the origin of renal
malignancies, including chromophobe RCC (ChRCC) and renal
medullary carcinoma, in previous reports®~>¢. We computed the global
inter-profile correlation of ccRCC, papillary RCC (PRCC), ChRCC,
tRCC, and different microdissected nephron regions. The results
showed that tRCC mRNA expression have a high degree of correlation
with the proximal tubule (Supplementary Fig. 1k), indicating that tRCC,
similar to ccRCC and PRCC, originated from proximal tubule.
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Fig. 1| Molecular profiling of MiT family tRCC. a Schematic representation of
tRCC multiomics analyses, including WES, RNA-seq, proteomics, and phospho-
proteomics. b Circos plot showing the TFE3/TFEB gene fusion events. ¢ Genomic
profile of 70 tRCC tumors with somatic mutations. SMGs, TSGs, and oncogenes are
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noted by different shapes. d Overview of proteomic profiles of tRCC samples.
e Overview of phosphoproteomic profiles of tRCC samples. f Gene-wise mRNA-
protein correlation and functional enrichment.

In summary, our study established a comprehensive landscape of
MIT family tRCC at the genomic, transcriptomic, proteomic, and
phosphoproteomic levels.

Molecular alterations in tRCC tumors compared to adjacent
tissues

Principle component analysis (PCA) revealed clear distinctions
between tumor and adjacent tissues at the transcriptome, proteome,
and phosphoproteome levels (Fig. 2a, b, Supplementary Fig. 2a).
Interestingly, we found that upregulated TFE3 was only observed at
the protein level and not at the mRNA level in tRCC tumor tissues
(Fig. 2c). To estimate TFE3 activity in the tRCC samples, we collected

transcription factor targets of TFE3 from DoRothEA”. Single-sample
GSEA (ssGSEA)* revealed that inferred TFE3 activity, based on TFE3
target abundances using both mRNA and proteome data, was sig-
nificantly upregulated in tumors (Supplementary Fig. 2b, c). TFE3
activities were negatively correlated with the kidney signature
(Supplementary Fig. 2d). Correspondingly, the kidney signature
scores were downregulated in tumors, suggesting that TFE3 activity
plays an important role in the loss of kidney identity in tRCC
carcinogenesis.

At the proteome level, we identified 1727 proteins that
showed significant differential expression (fold-change [FC]>2;
Benjamini-Hochberg adjusted p<0.05), with 836 proteins
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downregulated and 891 upregulated in tRCC tumors compared to
adjacent tissues (Fig. 2d; Supplementary Data 4). Enrichment analysis
revealed neutrophil degranulation, insulin signaling pathway, glyco-
gen metabolism, membrane trafficking, mTOR signaling, and lysoso-
mal function to be upregulated in tumors. Extracellular matrix
organization, proximal tubule bicarbonate reclamation, and multiple

metabolic pathways (valine, leucine, isoleucine degradation, fatty acid
degradation, biological oxidation, the citric acid [TCA] cycle, and
respiratory chain) were found to be downregulated (g < 0.05) (Fig. 2e).

At the transcriptome level, 1,626 tumor-upregulated genes were
enriched in immune response, extracellular matrix organization, cell
cycle, and apoptosis. 1,247 tumor-downregulated genes were enriched
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Fig. 2 | Molecular alterations in tRCC tumors compared to adjacent tissues.
a-b Global transcriptome and proteome PCA plots. Red, tumor; Blue, NATs.

¢ Boxplots of TFE3 gene product levels displaying discordant mRNA (N, n=16; T,
n=26)-protein (N, n=57; T, n="74) expression. Boxplots show the median (central
line), the 25-75% interquartile range (IQR) (box limits), the +1.5 x IQR (whiskers). P
values are derived from two-sided Wilcoxon rank-sum test. d Volcano plot showing
DEPs (Benjamini-Hochberg-adjusted p value < 0.05, FC >2) in tumor and normal
adjacent tissues. e DEPs in tumors and adjacent tissues, and their enriched biolo-
gical pathways. f Scatterplots depicting expression of mRNA (x axis) and protein (y
axis). Genes involved in BCAA degradation, Fatty acid metabolism, Glycolysis and
Gluconeogenesis, MTOR signaling, OXPHOS, and TCR signaling were indicated by

different colors. g Schema of uncoupling of MTOR pathways at mRNA and protein
levels. h The pipeline for tRCC biomarker identification. i Log2-fold-change
between tumor and matched NATs (n=54) is shown for the 22 tRCC biomarkers.
Boxplots show the median (central line), the 25-75% IQR (box limits), the +1.5 x IQR
(whiskers). These biomarkers are annotated with potential clinical utilities and IHC
staining scores defined by HPA. j Comparison of abundance changes between
phosphosites and their corresponding proteins. Red points indicate the phos-
phosites with >2-fold increase (Benjamini-Hochberg adjusted p < 0.05) and change
stronger than in the corresponding protein. Phosphosites with functional annota-
tions are indicated. k The kinase-substrate links of significantly activated kinases (at
both protein abundance and kinase activity).

in multiple metabolic pathways (Supplementary Fig. 2e, f). Analysis of
the differential abundances of mRNA and protein levels between
tumors and adjacent tissues revealed consistent alterations in multiple
metabolic pathways (including amino acid, fatty acid, and glucose
metabolism) at mRNA and protein levels (Fig. 2f, Supplementary
Fig. 2g). However, there was remarkable uncoupling of mRNA and
protein expression in mTOR signaling and OXPHOS (Fig. 2f, g). Nota-
bly, uncoupling of mRNA and protein expression of OXPHOS was also
observed in ccRCC*. Many studies have demonstrated the activation
of mTOR signaling in tRCC***°, highlighting the importance of tRCC
research using the proteomic approach. After the rigorous screening
of proteomic data, we nominated 22 candidate tRCC biomarkers
(Fig. 2h, i, Supplementary Data 4), which may aid in tRCC diagnosis.
The potential clinical utility of these protein markers is annotated in
Fig. 2i, and immunohistochemistry (IHC) staining data in The Human
Protein Atlas (HPA) were used to help eliminate nonspecific RCC
markers. Among the 22 candidate biomarkers, ten showed high or
medium IHC scores in less than 20% of common kidney cancer samples
in the HPA dataset, seven are plasma proteins, and three are secreted
proteins. Glycoprotein nonmetastatic B (GPNMB) was identified as a
diagnostic marker for TFE3-tRCC in a previous study*, supporting the
reliability of our data. In addition, two candidates (DST, TBK1) from
these ten proteins, less expressed in kidney cancer samples, were
validated by IHC staining. The results showed that tRCC tumors pre-
sented stronger DST and TBK1 IHC staining than ccRCC, PRCC, ChRCC,
and normal kidney tissue (Supplementary Fig. 2h), indicating DST and
TBK1 were potential biomarkers to distinguish tRCC and other kidney
malignancies.

As for the phosphosites, 221 were significantly upregulated in
tumor  tissues compared with adjacent tissues (FC>2,
Benjamini-Hochberg adjusted p<0.05). Among these, 182 changed
stronger than in the corresponding protein (Fig. 2j), and only 6 sites had
known functional annotations*. CAD S1859 phosphorylation promoted
cell proliferation through its control of the de novo synthesis of
pyrimidines®. Phosphorylation of MAP4 S1073 led to a pronounced
dynamic instability in microtubules**. LCP1 S5 phosphorylation
increased the invasive capacity of cells®. Kinase activities were also
inferred based on the levels of substrate phosphorylation by kinase-
substrate enrichment analysis (KSEA)*. Three kinases (AKT2, RPS6KBI,
CDKS5) showed significantly increased activity and protein abundances
(Supplementary Fig. 2i, Supplementary Data 4). The kinase-substrate
links are showed in Fig. 2k. Activation of RPS6KBI1, an essential effector
of mTOR signaling, further supported the mTOR pathway as a potential
therapeutic target for tRCC. Trilaciclib, an FDA-approved drug® that
targeted CDKS, is a potential treatment for tRCC.

The Landscape of Mutational Signatures and Proteomic Impact
We compared the tumor mutational burden (TMB) and chromosome
instability (CIN) scores of tRCC with other major RCC subtypes,
including ccRCC, PRCC, and ChRCC (Supplementary Fig. 3a, b). It was
shown that tRCC had lower TMB compared with ccRCC and PRCC, and
it had higher TMB compared with ChRCC (Supplementary Fig. 3a).
Interestingly, tRCC showed the lowest chromosome instability among

all the RCCs (Supplementary Fig. 3b). To determine the contribution of
endogenous and exogenous mutagens to genetic alterations in tRCC,
we decomposed the mutation spectra using non-negative matrix fac-
torization, and four mutational signatures were identified (Fig. 3a).
Cosine similarity analysis was performed to match the extracted sig-
natures to the COSMIC reference signatures*®. The mutational sig-
natures that best matched those in the tRCC tumors were SBS26, SBS6,
SBS40, and SBS22. Signatures SBS6 and SBS26 were correlated with
defective DNA mismatch repair (MMR). SBS22 was associated with
exposure to aristolochic acid, a type of carcinogen from traditional
Chinese herbs***°. All four mutational signatures were significantly
correlated with TMB, while only Sig2 (SBS6) was significantly corre-
lated with CIN (Fig. 3b). It was discovered that SBS6 and CIN were
associated with poor progression free survival (PFS) (Fig. 3c). To
investigate the cause of SBS6 at the protein level, we found that DNA
repair associated proteins ATM, DDB1, PARP1, XRCC5 and CUL4A were
significantly downregulated in tumors with SBS6 (Fig. 3d), instead of
the commonly reported MMR proteins MLH1, MSH2, MSH3, and MSH6
(Supplementary Fig. 3c). Moreover, DDB1 abundance was negatively
correlated with CIN (Supplementary Fig. 3d) and positively correlated
with PFS (Supplementary Fig. 3e), indicating that reduced DDBI might
be an important cause of SBS6 associated CIN.

Next, we investigated the effects of the SBS6 signature at the
proteome level. We found that SBS6 was negatively correlated with
OXPHOS and positively correlated with oxidative damage (Fig. 3e). A
major function of the mitochondria is the synthesis of adenosine tri-
phosphate (ATP) by OXPHOS, and impaired OXPHOS is an important
sign of mitochondrial dysfunction. Thus, we used OXPHOS as the
indicator of mitochondrial function. It was reported that mitochondrial
dysfunction results in elevated reactive oxygen species (ROS) levels,
which induces cellular oxidative damage®. We consistently found that
impaired OXPHOS was correlated with increased oxidative damage in
tRCC tumors (Fig. 3f). Impaired glutathione (GSH) synthesis-related
enzymes (GSR, GSS, GCLC) in SBS6 tumors further reinforced the
association of SBS6 with oxidative damage in tRCC (Fig. 3g). In addi-
tion, patients with a higher expression of Glutathione-Disulfide
Reductase (GSR) appeared to have better prognostic outcomes (Sup-
plementary Fig. 3f). As SBS6 was also positively correlated with several
immune pathways, such as the DNA damage bypass, cytosolic DNA
sensing, and interferon-alpha response pathways (Fig. 3e), we decon-
voluted the tumor microenvironment components using xCell*>. SBS6
was positively correlated with the infiltration of CD8" Tem, Tgd cells,
CD4" naive T-cells, and CD4" Tcm cells (Supplementary Fig. 3g). CD4"
Tcm cells were also negatively correlated with OXPHOS and PFS
(Supplementary Fig. 3h, i). In conclusion, in tRCC tumors with
SBS6 signatures, mitochondrial dysfunction-induced ROS, impaired
GSH synthesis, defective DNA repair, and increased DNA damage
caused a latent self-propagating cycle of further damage (Fig. 3h).

Somatic Copy Number Alterations and their Proteomic
Consequences

Somatic Copy Number Alterations (SCNAs) in tRCC were identified
using GISTIC® (Supplementary Data 2). We identified 14 significant
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arm-level SCNAs, including amplification of 1q, 5p, and 5q, and dele-
tions of 1p, 3p, 4q, 6q, 9p, 9q, 18p, 18q, 19p, 19q, and 22q in tRCC
(Fig. 4a). Focal SCNAs are shown in Fig. 4b. Cytobands in chromosome
1p (1p13.2, 1p36.12, 1p36.21) contained the most frequently deleted
focal regions, and 1g21.1 was the only focal amplification event
(Fig. 4b). Deletion events were more frequent than amplification
events in both arm and focal levels (Supplementary Fig. 4a, b).

Next, we examined the correlations of SCNAs with mRNA and
protein abundance (Supplementary Fig. 4c, d). The trans-acting SCNA
hotspots were identified on 1p, 2q, 3p, 8p, 12q, 14q at the proteome
level (Supplementary Fig. 4d). The mRNA expression levels showed
significant cis-effect were enriched in fatty acid beta-oxidation. The
proteins that showed significant cis-effect were enriched in valine,
leucine, and isoleucine degradation, neutrophil degranulation, keto-
genesis, and fatty acid beta-oxidation (Supplementary Fig. 4e). We
used Cox regression to identify associations between significant CNA
events and clinical outcomes (Fig. 4c). Deletions of 6q, 18p, 18q, 3p,
16p, and 1p, and amplification of 1q and 5p were associated with poorer
PFS. Multivariate analysis was performed using these arm-level CNAs,

which showed that deletions of 6q and 3p and amplification of 1q were
the dominant CNA events associated poor PFS (Supplementary Fig. 4f,
g, Supplementary Data 2). Moreover, deletions of 6q and 3p were
correlated with decreased overall survival (OS) (Supplementary Fig. 4f,
g). Earlier genomic studies of tRCC indicated that 17q gain and 9p loss
were significantly correlated with poor outcomes®*°. We compared
the survival curves of patients with and without 17q gain and 9p loss
and found that our results were consistent with previous reports
(Supplementary Fig. 4h).

As chromosome 3p was a trans-acting SCNA hotspot and 3p
deletion was correlated to poorer clinical outcomes (Supplementary
Fig. 4f), the proteome impacts of 3p deletion were further surveyed.
GSEA revealed that the proteins that had positive correlations with the
3p copy number (CN) were converged on aggrephagy, while the pro-
teins that had negative correlations with the 3p CN were converged on
complement and coagulation cascades (Fig. 4d, Supplementary
Fig. 4i). As for the cis-effect, abundances of ATG7, an El-like activating
enzyme essential for autophagy, were significantly correlated with the
3p CN (Spearman’s correlation, p=7.87E-4). Moreover, proteins
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Fig. 4 | Somatic copy number alteration analysis in tRCC cohort. a Arm-level
SCNA events. Red denotes amplification and blue denotes deletion. Significant
events are highlighted using red and blue (g < 0.10). b Focal SCNA events. Focal
peaks with significant copy number amplifications (red) and deletions (blue)

(g <0.05) are shown. ¢ Cox regression analysis of significant arm-level CNA and
focal CNA events. d Identifying cis- and trans-effect of 3p deletion. Proteins are
ranked based on the correlation between protein abundance and 3p CN. e Trans-

effect of 3p deletion on ULK1 S469 phosphorylation level. Boxplots show the
median (central line), the 25-75% IQR (box limits), the +1.5 x IQR (whiskers). P value
is derived from two-sided Wilcoxon rank-sum test. f Correlations between ATG7
protein abundance and MHC molecules. g Cis and trans- effects of CTNNB1 deletion
on cadherin-catenin complex abundances. Cox regression analysis of cadherin-
catenin complex abundances are shown in left. h A model depicting the association
of 3p deletion and poor prognosis in tRCC.

involved in autophagy, such as ATG4B, PIK3C3, HSPAS, PARK7, and
ubiquitin, were also downregulated in tRCC tumors with 3p deletion
(Supplementary Fig. 4i). ULK1 S469 phosphorylation, reported to
reduce the occurrence of autophagy**, was upregulated in 3p deletion
tumors (p = 0.0381) (Fig. 4e), indicating that the deletion of 3p in tRCC
tumors might result in the impairment of autophagy. As autophagy
was reported to play an important role in antigen presentation®-¢, we
investigated the correlation between ATG7 and antigen presentation
mechanisms. We observed that ATG7 abundance was positively cor-
related to abundances of MHC-II molecules, but not MHC-I molecules
(Fig. 4f). Another important cis-effect in 3p occurred in CTNNBI, a part
of the cadherin-catenin complex. The abundance of CTNNBI was sig-
nificantly correlated with other components of the cadherin-catenin
complex (Spearman’s correlation, p < 0.05). Downregulation of most
components of the cadherin-catenin complex was associated with
poorer PFS (Fig. 4g). It was reported that the cadherin-catenin complex
performs a key role in cell adhesion. Loss of cell adhesion is seen as a
key step in the development of tumor metastasis. Altogether, 3p

deletion was associated with immune evasion and metastasis owing to
the cis-acting elements on ATG7 and CTNNBI respectively (Fig. 4h).

The proteomic differences among the tRCC fusion types
Despite both being classified as MiT family tRCC, TFE3 fusion
tumors were relatively more aggressive, while TFEB fusion tumors
had a better prognosis"”’. By comparing these two TFE fusion types,
20 proteins were identified to be upregulated in TFE3 fusion tumors,
and 518 proteins were upregulated in TFEB-tRCC (Fig. 5a, Supple-
mentary Data 5). TFEB was particularly overexpressed in TFEB-tRCC
(FC=27.34, p=0.0029) (Fig. 5a, b). Accordingly, TFEB-inferred
activities were also stronger in TFEB-tRCC than in TFE3-tRCC
(Fig. 5b). However, TFE3 abundances and inferred activities did not
show significant differences (Fig. 5¢). Enrichment analysis revealed
the upregulated glycolysis, gluconeogenesis, neutrophil degranu-
lation, endocytosis, necroptosis, and membrane trafficking in TFEB-
tRCC. Ca-calmodulin-dependent protein kinase activation was
upregulated in TFE3-tRCC (Fig. 5d).
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Fig. 5| Molecular heterogeneity of different fusion types of tRCC. a Volcano plot
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tRCC and TFE3-tRCC tumors. b, ¢ Comparisons of TFEB and TFE3 product levels
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tRCC and TFE3-tRCC tumors enriched biological pathways. e Elevated proteins in
different TFE3-tRCC fusion types and involved biological processes. f Comparison
of TFE3 activities and kidney signature scores among different TFE3-tRCC fusion
types (APSCRI, n=18; LUC7L3, n=3; PRCC, n =4, MEDI5, n=4; SFPQ, n=11; Rare,
n=9; NONO, n=5). P values are derived from two-sides Wilcoxon rank-sum test.
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g Kaplan-Meier curves of PFS for patients with different TFE3 activities and kidney
signature scores (two-sided log-rank test). h Kaplan-Meier curves of PFS for
ASPSCRI and LUC7L3 TFE3-tRCC tumors versus other TFE3-tRCC tumors in this
cohort (two-sided log-rank test). i Proportions of ISUP grades for ASPSCRI and
LUC7L3 TFE3-tRCC tumors versus other TFE3-tRCC tumors (One-sided Fisher’s
exact test). Data in b, ¢, f are shown using boxplots. Boxplots show the median
(central line), the 25-75% IQR (box limits), the +1.5 x IQR (whiskers). P values are
derived from two-sided Wilcoxon rank-sum test.

Different TFE3 fusion partners were successively discovered in the
previous decades!, yet the molecular features of the different TFE3
fusion types remained largely uncharacterized. We compared the
abundances of TFE3 and TFE3 fusion partners among the different TFE3
fusion types. The results showed that there was no significant differ-
ence in TFE3 abundances among the different fusion types (Supple-
mentary Fig. 5a). We next compared the abundances of different
corresponding fusion partners, in which only LUC7L3-TFE3 fusion
upregulated the abundance of LUC7L3 (Supplementary Fig. 5a, b). To
help discern biological insights stemming from the diverse TFE3 fusion
types of tRCC, we identified proteomic characteristics associated with
TFE3 fusions (Fig. 5e). In ASPSCRI-TFE3 tRCC, we observed an upre-
gulation of acute-phase response (C1S, C1QC) and antigen presenta-
tion (TAP1, TAP2). SFPQ-TFE3 tRCC displayed elevations in the
ubiquitin-proteosome system (UBB, UBC, PSMB7). NONO-TFE3 tRCC
had upregulated oxidation-reduction and drug metabolic processes
(DDO, ACOX2). PRCC-TFE3 had the least specifically upregulated pro-
teins, which were enriched in iron ion transport. LUC7L3-TFE3 tRCC

overexpressed proteins involved in the cell cycle (CDK9, PCNA,
MCM2). TFE3-tRCC with a rare fusion partner and showed elevated
apoptotic processes (PIK3CA).

Notably, we found that TFE3 activities and kidney signature scores
differed among different tRCC fusions types (Fig. 5f, g). ASPSCRI-TFE3
and LUC7L3-TFE3 fusion tumors had higher TFE3 activities, while fea-
tured lower kidney signature scores, than other fusion types of TFE3-
tRCC (Fig. 5f). As TFE3 activities and kidney signature scores were
significantly associated with patient prognosis (Fig. 5g), ASPSCRI and
LUC7L3 fusion tumors were more aggressive than other fusion type of
tumors (log-rank test, p=0.048) (Fig. Sh). We further incorporated
data on tRCC cases (n=15) from the TCGA studies®® with our data,
getting a more significant difference (log-rank test, p=0.033) (Sup-
plementary Fig. 5¢). Consistently, we found that ASPSCRI and LUC7L3
fusion tRCC tumors have higher ISUP grade than other fusion types of
TFE3-tRCC (Fig. 5i). To investigate how TFE3 affected clinical out-
comes, we screened 12 TFE3 target proteins (Supplementary Fig. 5d).
C1S, C3, and SERPINGI, involved in complement cascades, were
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Fig. 6 | Proteomic subtypes of tRCC and associations with genetic features and
clinical outcomes. a Relative abundances of upregulated proteins in the three
proteomic subtypes and associations of proteomic subtypes with clinical and
genetic features (Fisher’s exact test or Kruskal-Wallis test). b Kaplan-Meier curves
of OS and PFS for the three subtypes (two-sided log-rank test). ¢ Upregulated
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distribution of significant arm-level events in the three proteomic subtypes. CNA
events with significant differences among three proteomic subtypes are indicated
(Fisher’s exact test). e GSEA plots showing the trans-effect of 9q deletion. f Cis-
effects of 9q deletion in tRCC. P values are derived from two-sided Spearman’s
correlation test. g Kaplan-Meier curves of OS for patients with different ATP6V1G1
abundances (two-sided log-rank test).

upregulated by TFE3. ACAT1 and BDH1, which function in ketone cat-
abolism, were downregulated by TFE3, indicating a ketogenic diet
therapy in malignant tRCC*”. Collectively, TFE3 fused with diverse
partners, and these fusions displayed differential TFE3 activities, fur-
ther influencing protein expression patterns and clinical outcomes.

Proteomic subtypes of tRCC

Due to the high degree of inter-tumoral heterogeneity, it was
important to perform molecular subtyping of tRCC. We employed
consensus clustering® to identify tRCC proteomic subtypes. The
tRCC cases were classified into three subtypes, GP1, GP2, and GP3
comprising 29, 26, and 19 cases, respectively (Fig. 6a, Supplemen-
tary Fig. 6a-c). TFEB-tRCC showed overrepresentation in the GP3
tumors (Fig. 6a, Supplementary Fig. 6d). GP1 had the highest pro-
portion of stage IlI&IV tumors, while GP2 had the highest propor-
tion of stage 1&Il tumors (Fig. 6a). GP1 cases contained more high-
grade (grade 3&4) tumors, compared to GP2&3 cases (Supplemen-
tary Fig. 6e). Remarkably, the proteomic subtypes significantly
differed in OS (log-rank test, p = 0.0189) (Fig. 6b) and PFS (log-rank
test, p=0.0007) (Fig. 6b). Among the three subtypes, GP1 showed
the shortest OS and PFS, and GP3 showed a fairly short PFS but a
long OS (Fig. 6b). Correspondingly, 86.5% of the patients, who
finally developed recurrence or metastasis, belonged to GP1 and
GP3 (Fig. 6a, Supplementary Data 6).

We conducted an overrepresentation analysis of elevated pro-
teins in each subtype (Fig. 6¢). In total, 77, 1,009, and 630 proteins
were upregulated in GP1, GP2, and GP3, respectively. Proteins upre-
gulated in GP1 were enriched in pathways such as the complement and
coagulation cascades (C4A, C7, C8A, C9), platelet degranulation (FGA,
FGB, FGG), and the innate immune system (Fig. 6¢c, Supplementary
Fig. 6f). GP2 was more associated with elevated metabolic pathways,
including OXPHOS (COX411, UQCRB, SDHC), amino acid metabolism,
lipid metabolism, and glucose metabolism (Fig. 6¢, Supplementary
Fig. 6f). Accordingly, GP2 had the highest kidney signature scores
among the three subtypes (Supplementary Fig. 6g). GP3 had upregu-
lated proteins that were enriched in pathways related to tumor pro-
liferation and protein homeostasis, such as ribosome function,
translation, and proteasome degradation (Fig. 6c, Supplemen-
tary Fig. 6f).

Next, we compared the genomic information of the proteomic
subtypes established in this study to explore the driving effects of
genetic alterations in the proteomic subtypes. TMB showed no sig-
nificant differences among the three subtypes (Supplementary
Fig. 6h). GP2 had the lowest CIN (Supplementary Fig. 6i). Mutational
signatures also varied among the three subtypes (Supplementary
Fig. 6j, k). GP2 had the lowest level of SBS6 and SBS26 (Supplementary
Fig. 6k). As for arm-level CNA events, GP1 and GP2 showed the lowest
similarity (Supplementary Fig. 6l), indicating arm-level CNAs
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profoundly impacted the proteome and clinical outcomes of tRCC.
Deletions of 9q and 14q occurred more frequently in GP1, and ampli-
fications of 12p and 12q were aggregated in GP1 and GP3 (Fisher’s exact
test, p<0.05) (Fig. 6a, d). These four arm-level CNA events were sig-
nificantly correlated with shorter PFS (Supplementary Fig. 6m). As
deletion of 9q was the most significant CNA feature of GP1, we ana-
lyzed the proteomic impacts of 9q deletion in tRCC. GSEA showed that
complement activation was enriched in tumors with 9q deletion, while
OXPHOS was enriched in tumors without 9q deletion (Fig. 6e).
ATP6VIGI (9932), encoding a component of ATPase, showed sig-
nificant CNA cis-effect (Fig. 6f). Additionally, ATP6VIGI abundances
were significantly correlated with clinical outcomes (Fig. 6g). We
hypothesized that deletion of 9q resulted in the downregulation of
OXPHOS in both cis- and trans-acting manners, further impacted the
patient clinical outcomes.

Characterization of immune infiltration in tRCC
To investigate the characteristics of immune infiltration in tRCC, we
performed cell-type deconvolution analysis using xCell*>. Consensus
clustering, based on inferred relative abundances of different cell
types in the tumor microenvironment (TME), identified three immune
subtypes (Fig. 7a, Supplementary Fig. 7a, b). The immune subtypes
showed significant association with proteomic clusters (Fisher’s exact
test, p =4.43e-7), reflecting the impact of TME composition on protein
expression patterns (Fig. 7a). Consistent with proteomic clusters, the
immune subtypes were significantly associated with clinical outcomes
(Fig. 7b, Supplementary Fig. 7c), among which immune subtype 1 (IM1)
had the lowest PFS and OS.

Stromal infiltration was similar among the three immune sub-
types, while IM3 exhibited the lowest immune infiltration (Supple-
mentary Fig. 7d). The IM1 was characterized by a high proportion of

Nature Communications | (2022)13:7494

10



Article

https://doi.org/10.1038/s41467-022-34460-w

metastatic tumors, elevated levels of granulocytes, progenitor cells,
Natural killer T (NKT) cells, mesenchymal stem cells (MSC), fibroblasts,
and monocytes. IM2 had the highest dendritic cells, and IM3 had the
highest Thl cells (Fig. 7a).

We found that complement cascade and Epithelial-to-
mesenchymal transition (EMT) levels were enhanced in IM1 tumors
(Fig. 7c, Supplementary Fig. 7e). It was reported that fibroblasts in the
TME could enhance the EMT of tumor cells®, which was also observed
in our data (Fig. 7d, Supplementary Fig. 7f). We conducted immuno-
fluorescence (IF) analysis to elaborate the association between fibro-
blasts and EMT state of tumor cell. The results showed that IM1 tRCC
exhibited stronger co-staining of pan-cytokeratin (CK, the epithelial
marker) and alpha-smooth muscle actin (a-SMA, the fibroblast mar-
ker), and stronger single staining of a-SMA than other subtypes of
tRCC (Supplementary Fig. 7g), reflecting the enhanced EMT and
fibroblast infiltration in IM1 tumors. In addition, It showed that IF co-
staining of a large subset of tumors for CK and a-SMA (Supplementary
Fig. 7g), demonstrating the presence of tumor cells undergoing EMT
and a small subset of fibroblast in IM1 tRCC tumors microenvironment.

Notably, IM1 tumors had higher frequencies of 14q and 9q dele-
tions (Fisher’s exact test, p < 0.05), which were both correlated with
poor prognosis (Fig. 7e, Supplementary Fig. 6m). As 75% of 14q dele-
tion events were concentrated in IM1, we further analyzed the pro-
teomic impact of 14q deletion. The proteosome was the most
correlated pathway of 14q CN (Fig. 7f), which manifested through the
significant correlations between 19 proteasome components and 14q
CN (Fig. 7g). The abundance of PSMAG6 (14q13.2), a cis-acting protein in
14q, was correlated with better prognosis (Supplementary Fig. 7h). As
the proteasome played an important role in protein turnover, we
surveyed the association between the proteasome and protein abun-
dances in tRCC (Supplementary Fig. 7i). The results showed that the
abundance of EMT-associated proteins and EMT scores were nega-
tively correlated with the proteasome (Supplementary Figs. 7i, 7h),
suggesting that the EMT was regulated by the proteasome in a post-
translational mechanism in tRCC. In conclusion, 14q deletion regulated
the EMT and IM1-like microenvironment in tRCC, which was associated
with poor prognosis (Fig. 7i).

Discussion

In this study, we present a comprehensive molecular analysis of tRCC,
including genomics, transcriptomics, proteomics, and phosphopro-
teomics, investigating the molecular and clinical characteristics of this
disease. Our results revealed fusion partners of TFE3 and TFEB, found
correlations between fusion types and prognosis, identified the key
genomic alterations in the development and progression of the dis-
ease, illustrated the functions of disease-related proteins, highlighted
the biologic features of post-translational modifications, discovered
molecular subtypes and immune subtypes, and suggested several
potential therapeutic targets for the treatment of tRCC.

To provide molecular insights into tRCC carcinogenesis, we
compared the expression patterns in tumors and NATs at the mRNA
and protein levels. The results revealed that metabolic process dys-
function and the loss of kidney signature were the common features
at both mRNA and protein levels, which is consistent with previous
reports of ccRCC*. ccRCC was characterized as a genomic alteration-
attributed metabolic disease, which was the same for tRCC tumors.
More importantly, we found that mTOR signaling was upregulated in
tRCC tumors at the proteome level. Phosphorylation signals in the
mTOR signaling pathway were consistently activated in tRCC tumors.
These results further supported mTOR signaling as a potential
therapeutic target in treating tRCC. In a previous report, all patients
that switched over to an mTOR inhibitor after vascular endothelial
growth factor receptor-targeted therapy failure achieved stable
disease®. However, as mTOR signaling was not abnormally activated
in all patients, mTOR inhibitors displayed inconsistent patient

responses®® %, It was necessary to evaluate the efficiency of mTOR
inhibitors in a larger cohort and determine whether mTOR signaling
was activated in tumors before therapy.

All cancers originate from a single-cell that starts to behave
abnormally due to acquired somatic mutations in its genome. Each
mutational process may relate to the components of DNA replication,
DNA damage repair, and DNA modification, and they generate a
characteristic mutational signature®. Our analysis confirmed that
mutation signature SBS6, correlated with defective DNA mismatch
repair, was associated with the rapid progression of the disease. Inte-
grated with the proteome data, we found that tRCC tumors with
SBS6 signatures displayed mitochondrial dysfunction, impaired GSH
synthesis, defective DNA repair, and increased DNA damage. Anti-
tumor agents targeting synthetic lethality, like PARP inhibitors, which
have been used in the treatment of DNA repair defective tumors, also
have potential in tRCC therapy.

Previous studies have confirmed the correlation between com-
mon kidney cancer subtypes and cytogenetic alterations, such as the
loss of 3p in ccRCC and trisomy 7 and/or 17 in PRCC®**’. However, the
role of CNA events in tRCC remains unclear. Previous studies of tRCC
indicated that 17q gain and 9p loss were the most common CNA
events®*°, However, inconsistent with previous studies, our analysis
identified 14 significant arm-level SCNAs, including amplification of 1q,
5p, and 5q, and deletions of 1p, 3p, 4q, 6q, 9p, 9q, 18p, 18q, 19p, 19q,
and 22q. We hypothesize that such inconsistent results may be due to
our relatively small sample size, heterogeneity of tRCC, and differ-
ences in the study populations. More importantly, in contrast with the
previous studies, our study further explored the association of CNA
and protein expression patterns and revealed that 3p deletion was
correlated with the latent immune evasion and tumor metastasis by
cis- and trans-effects.

It was interesting that TFE3 activity was similar amongst TFEB-
tRCC and TFE3-tRCC tumors. We proposed two possible reasons. The
first was that TFE3 protein levels were similar between TFEB-tRCC and
TFE3-tRCC tumors. The second reason was TFEB fusion could mimic
the enhanced TFE3 activity caused by TFE3 fusion on account of the
highly conserved bHLH-LZ domains of MiT transcription factors'. It
was observed that ASPSCRI and LUC7L3 fusion TFE3-tRCCs were more
aggressive than other fusion types of TFE3-tRCC. We ascribed this
phenomenon to the higher TFE3 activities and lower kidney signature
scores of ASPSCRI and LUC7L3 fusion of TFE3-tRCC, comparing with
other fusion types of TFE3-tRCC. Interestingly, ASPSCRI and LUC7L3
were both located at 17q. Simultaneously, ASPSCRI and LUC7L3 TFE3-
tRCC contained more 17q amplification events, which was associated
with poorer PFS. The impacts of fusion types on CNA events need to be
further studied.

We performed molecular subtyping based on proteome data and
immune subtyping based on xCell-deconvoluted TME components.
Proteomic subtype GP1 and immune subtype IM1 showed great over-
lap in samples and similar aggressiveness and poor prognosis. It was
noted that protein expression patterns impacted immune infiltration
and microenvironment components impacted observed protein
expression patterns*. Moreover, Braun et al. revealed the impact of
CNA events on immune infiltration in ccRCC®. GP1 and IM1 showed
significant enrichment of 9q and 14q deletion, revealing the interplay
of CNAs, proteome pattern, and immune infiltration. Previous studies
suggested TSCI as a target of 9q deletion®® and HIFIA as a target of 14q
deletion®. In contrast, this study revealed that ATP6VIGI at 9q and
PSMAG6 at 14q might be potential tRCC tumor suppressors. Although
there was no significant association between TSCI CN and protein
abundances, it was notable that 7SCI, a negative regulator of mTOR
signaling located on 9q34.3, was focally lost in tRCC. Loss of TSCI
might contribute to mTOR signaling activation in tRCC.

In recent years, the use of immune checkpoint inhibitors has
significantly improved the prognosis of advanced ccRCC*”. Single-
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cell RNA sequencing studies provided profound insight into the
association of the TME and immune checkpoint blockade response in
ccRCC™*, Motzer et al. reported that atezolizumab combined with
bevacizumab significantly improved the PFS of TFE fusion RCCs versus
sunitinib”. In this study, the most aggressive immune subtype IM1 was
characterized by enrichment of progenitor cells, granulocytes, fibro-
blasts, and monocytes in the context of inflammation. It was con-
sistently reported that tumor-associated hematopoietic stem and
progenitor cells (HSPCs) were associated with malignant and immu-
nosuppressive phenotypes in glioblastoma’®. Despite this study linking
TME with tumor progression in tRCC, further studies are needed to
establish the connection between immune cell compositions and
clinical features.

This study has several limitations. Although our study had the
largest number of patients to date investigating the multi-omic fea-
tures of tRCC, the number was still insufficient, especially the TFEB-
tRCC and TFEB-amplified RCC cases. More importantly, the underlying
mechanism of tumorigenesis and development of tRCC remain
unknown and warrant further investigation. The retrospective and
single-center design of this study also led to several inherent biases,
such as selection bias. In conclusion, despite these limitations, the
proteogenomic analysis of tRCC, provided valuable insights into the
biological underpinnings, disease diagnosis, prognosis assessment,
and treatment selection of tRCC.

Methods

Clinical sample collection

The study was compliant with the ethical standards of Helsinki
Declaration Il and was approved by the institutional review board of
Fudan University Shanghai Cancer Center (FUSCC) (050432-4-2108*).
Written informed consent was obtained from each patient before any
study-specific investigation was conducted.

In total, tumor and NAT samples were obtained from 86 eligible
tRCC patients who had undergone nephrectomy at the Department of
Urology of FUSCC. Median follow-up was 34.5 months (range,
5.1-116.9 months). This cohort was comprised by 33.7% (n=29) males
and 66.3% (n=57) females, with a median age of 34 years. The 49
patients (57.0%) had stage I/ll tumors, and 36 patients (41.9%) had
stage III/IV tumors. The majority of tRCC cases showed International
Society of Urological Pathology (ISUP) grade 2 (n=36, 41.9%) and
grade 3 (n=40, 46.5%), and the rest cases showed grade 4 (n=10,
11.6%). Other information was summarized in Supplementary Data 1.
Histology sections were reviewed by an experienced genitourinary
pathologist and all MiT family tRCC samples and confirmed by TFE3
break-apart fluorescence in situ hybridization (FISH) assay or next-
generation sequencing (NGS).

TFE3 and TFEB fusion determination
The DNA and RNA isolated tumor and NAT samples were used for TFE3
and TFEB fusion type determination by using the NGS based
YuanSu450 gene panel (Shanghai OrigiMed Co., Ltd., Shanghai, China),
which covers all the coding exons of 450 tumor-related genes that
are frequently rearranged in solid tumors. The genes were captured
and sequenced with a mean depth of 800x by using Illumina
NextSeq 500.

Gene fusion/rearrangements were assessed by Integrative Geno-
mics Viewer (IGV)”. For RNA-seq data, gene fusions were detected
using STAR-fusion (v1.4)"5.

WES analysis

Whole-exome sequencing was performed using the Sure-Select
Human All Exon V6 kit (Agilent, Santa Clara, CA) on tumor samples
and matched NAT samples. Genomic alterations, including single base
substitutions (single-nucleotide variants), short and long insertions/
deletions (indels), copy number alterations were assessed.

Somatic variant detection

Read-depth statistics were calculated using the DepthOfCoverage
function in the Genome Analysis Toolkit (GATK v3.8.1.0)”. Paired-end
reads in Fastq format were aligned to a reference human genome®’
(UCSC Genome Browser, hgl9) using Burrows-Wheeler Aligner. Variant
calling was conducted following GATK best practices. Somatic single-
nucleotide variations and small insertions and deletions were detected
using MuTect2 (GATK v4.1.2.0) and were annotated using ANNOVAR®
based on UCSC known genes. The Maftools R package® was used to
display mutant genes with non-synonymous mutations. MutSigCV>*
was used to identify significantly mutated genes with default para-
meters. Genes with ¢<0.01 were identified as significantly mutated
genes. Oncogenes and tumor suppressor genes were obtained from
OncoKB (https://www.oncokb.org/)®.

Mutational signatures

SBSs are defined as a replacement of a certain nucleotide base. There
are six possible substitutions: C>A,C>G,C>T,T>A, T>C,and T>G.
Considering the nucleotide context, these SBS classes can be further
expanded to 96 possible mutation types. The frequencies of the 96
mutation types were estimated for each sample. The non-negative
matrix factorization algorithm of Sigminer®* was used to exact muta-
tional signatures of tumor samples. Signatures were compared against
signatures derived from COSMIC (https://cancer.sanger.ac.uk/
cosmic)*® and cosine similarity was calculated to identify the
best match.

CNA calling

CNAs were called following somatic CNA best practice, using the Cal-
culateTargetCoverage function in GATK (v4.1.2.0). We applied Geno-
mic Identification of Significant Targets in Cancer (GISTIC2.0)* to
identify significantly amplified or deleted focal-level and arm-level
events, with ¢ < 0.05 considered significant. The following parameters
were used: amplification threshold = 0.1; deletion threshold = 0.1; cap
value =2.0; broad length cutoff=0.90; remove X-chromosome=0;
confidence level = 0.95; join segment size = 4; arm-level peel off=1;
maximum sample segments=2000; gene GISTIC=1. Each gene in
each sample is assigned a threshold copy number that reflects the
magnitude of its deletion or amplification.

Protein extraction and trypsin digestion

Samples were minced and lysed in lysis buffer (8 M urea, 100 mM Tris
hydrochloride, pH 8.0) containing protease and phosphatase inhibi-
tors (Thermo Scientific) and then sonicated for 1 min (3 s on and 3 s off,
amplitude 25%). The lysates were centrifuged at 14,000 x g for 10 min
and supernatants were collected as whole-tissue extracts. Protein
concentrations were determined by the Bradford protein assay
(TaKaRa, T9310A). Extracts were reduced with 10 mM dithiothreitol at
56 °C for 30 min and alkylated with 10 mM iodoacetamide at room
temperature in the dark for 30 min. The samples were digested with
trypsin using a filter-aided sample preparation method®.

Peptide pre-fractionation

Tryptic peptides (50 pg) were separated in a home-made reverse-
phase C18 column. Peptides were eluted and separated into nine
fractions using an acetonitrile gradient (6%, 9%, 12%, 15%, 18%, 21%, 25%,
30%, and 35%) at pH 10. The nine fractions were pooled into three
fractions (6% + 15% + 25%; 9% + 18% + 30%; 12% + 21% + 35%), vacuum-
dried (Concentrator Plus, Eppendorf).

Enrichment of phosphopeptides

Phosphopeptides were enriched by High-Select™ Fe-NTA Phospho-
peptide Enrichment Kit (Thermo Fisher, A32992), according to the
manufacturer’s instruction. Briefly, 1 mg peptides were resuspended in
200 pL binding/wash buffer and loaded to the equilibrated spin
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column with Fe-NTA resin. The samples were mixed with resin by
gently tapping and then incubated for 30 min. The mixture was cen-
trifuged at 1000xg for 30s to discard the flowthrough and then
washed by 200 pL of binding/wash buffer for 3 times and washed by
200 pL of LC-MS grade water one additional time. The enriched
phosphopeptides in NTA resin were eluted by adding 100 pL of elution
buffer and centrifuged at 1000xg for 30s for two times and
vacuum-dried.

LC-MS/MS

Samples were analyzed on a Q Exactive HF-X mass spectrometer
(Thermo Fisher Scientific) coupled with a high-performance liquid
chromatograph (EASY-nLC 1200 System, Thermo Fisher Scientific).
Dried peptide samples were dissolved in solvent A (0.1% formic acid in
water) and loaded onto a trap column (100 pm x 2 cm, home-made;
particle size, 3 pm; pore size, 120 A; SunChrom) with a maximum
pressure of 280 bar using solvent A, then separated on a home-made
150 pm x 12 ¢cm silica microcolumn (particle size, 1.9 um; pore size,
120 A; SunChrom) with a gradient of 5-35% mobile phase B (acetoni-
trile and 0.1% formic acid) at a flow rate of 600 nL/min for 75 min. MS
analysis was conducted with one full scan (300-1,400 m/z,
R=120,000 at 200 m/z) at an automatic gain control target of 3e6
ions, followed by up to 20 data-dependent MS/MS scans with higher-
energy collision dissociation (target 5e4 ions, max injection time
20 ms, isolation window 1.6 m/z, normalized collision energy of 27%).
Detection was done using Orbitrap (R=7500 at 200 m/z). Data were
acquired using the Xcalibur software (Thermo Fischer Scientific).

For the phosphoproteomic samples, enriched peptides were
separated with 150 pm x 12 cm silica microcolumn in 150 min gradient
(0-10 min, 3-8% of buffer B; 10-125min, 8-16% of buffer B;
126-140 min, 25% of buffer B; 141-150 min, 95% of buffer B). MS ana-
lysis was conducted with one full scan (300-1400 m/z, R=120,000 at
200 m/z) at an automatic gain control target of 3e6 ions, followed by
up to 20 data-dependent MS/MS scans with higher-energy collision
dissociation (target 5e4 ions, max injection time 100 ms, isolation
window 1.6 m/z, normalized collision energy of 27%). Detection was
done using Orbitrap (R =15,000 at 200 m/z). Data were acquired using
the Xcalibur software.

Proteome identification and quantification

Raw files were processed in Firmiana® and searched against the human
National Center for Biotechnology Information (NCBI) RefSeq protein
database (updated on 04-07-2013, 32,015 entries) using the Mascot
2.4 search engine (Matrix Science Inc). Mass tolerances were 20 ppm
for precursor and 50 mmu for product ions. Up to two missed clea-
vages were allowed. Cysteine carbamidomethylation was set as a fixed
modification and methionine N-acetylation and oxidation as variable
modifications. For phosphoproteomic samples, phosphorylation at
Ser/Thr/Tyr was set as an additional variable modification. Precursor
ion score charges were limited to +2, +3, and +4. The data were also
searched against a decoy database so that protein identifications were
accepted at an FDR of 1%. Label-free protein quantifications were cal-
culated using a label-free, intensity-based absolute quantification
(iBAQ) approach®. Match between runs®® was used to improve paral-
lelism between tumor/adjacent samples. We built a dynamic regres-
sion function based on common peptides in tumor/adjacent samples.
Based on the correlation value R? Firmiana chooses a linear or quad-
ratic function for regression to calculate the retention time (RT) of
corresponding hidden peptides and checks the existence of the
extracting ion current (XIC) based on the m/z and calculated RT. The
program determines the peak area values of existing XICs. We calcu-
lated peak area values as parts of corresponding proteins. Proteins
with at least 1 unique peptide with a 1% FDR at the peptide level were
selected for further analysis. The FOT was used to represent the nor-
malized abundance of a particular protein across samples. FOT was

defined as a protein’s iBAQ divided by the total iBAQ of all proteins
identified in a given sample. FOT values were multiplied by 10e10 for
ease of presentation.

MS platform quality control

For QC of MS performance, tryptic digests of HEK293T (ATCC: CRL-
11268; RRID: CVCL_QWS54) cell lysates were measured as a QC standard
every 2 days for proteome analysis and a QC standard per day for
phosphoproteome analysis. The HEK293T cell line, obtained from
ATCC, was authenticated by short-tandem repeat profiling and was
tested negative for mycoplasma contamination. The QC standard was
made and run using the same method, conditions, software, and
parameters as those used for tRCC samples. Pairwise Pearson’s cor-
relation coefficients were calculated and shown in Supplementary
Fig. 1d-e.

Preprocessing of proteomic data

The fraction of total (FOT) was used to represent the normalized
abundance of a particular protein across samples. FOT was defined as a
protein’s iBAQ divided by the total iBAQ of all proteins identified in a
given sample. FOT values were multiplied by 10el0 for ease of pre-
sentation and log2 transformed. The density plot of the normalized
intensities of the proteins identified in each sample showed that all
samples showed an expected unimodal distribution. K-nearest neigh-
bor (KNN) imputation was applied to impute the missing values using
R package DreamAI®. Proteins having more than 75% missing data
were excluded to ensure that each sample had enough data for
imputation (Supplementary Data 3).

RNA-seq analysis

RNA-seq raw data quality was assessed with the FastQC (v0.11.9) and
the adaptor was trimmed with Trim_Galore (v0.6.6) before any data
filtering criteria was applied. Reads were mapped onto the human
reference genome (GRCh38.p13 assembly) by using STAR software
(v2.7.7.a). The mapped reads were assembled into transcripts or genes
by using StringTie software (v2.1.4)°° and the genome annotation file
(GCF_000001405.39_GRCh38.p13_genomic.gff). For quantification
purpose, the relative abundance of the transcript or gene was mea-
sured by a normalized metrics, FPKM (Fragments Per Kilobase of
transcript per Million mapped reads). Transcripts with median
FPKM > 1 were retained. Missing values were also imputed using KNN.

Analysis of kidney nephron atlas expression data

An external expression dataset of normal tissue microdissected
from various regions of the nephron® was used to infer the origin of
renal malignancies (including chromophobe renal cell carcinoma
and renal medullary carcinoma) in previous studies®~°. For each
gene in the kidney cancer dataset (combined tRCC, and each 50
cases of ccRCC, PRCC, ChRCC from TCGA), we centered expression
values on the mean centroid of these malignancies. The gene
expression profiles from different nephron sites (both human and
mouse) obtained from Cheval L. et al.” were centered on mean
centroid across samples. We computed the global inter-profile
correlation (by Pearson’s), using all ~4000 genes in common, as
previously described®-*.

Protein and pathway alterations in tumor vs. NATs

PCA was conducted to visualize the separation of tumor and tumor-
adjacent proteomes using the R package factoextra v1.0.6. In total,
proteins identified in both >25% of tumor and tumor-adjacent samples
were used for subsequent analysis. Volcano plots were used to display
DEPs in tumor and adjacent tissues by applying thresholds of fold-
change >2 and Benjamini-Hochberg-adjusted p<0.05. Among
the DEPs, 891 proteins were significantly upregulated and 836
proteins were significantly downregulated in tRCC tumor tissues. The
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DEPs were then subjected to functional enrichment analyses in
ConsensusPathDB®? (Supplementary Data 4).

GSEA

GSEA was conducted using the GSEA 4.0.3 software (http://software.
broadinstitute.org/gsea/index.jsp)®*. KEGG, Wikipathways, and HALL-
MARK gene sets downloaded from the MSigDB v7.1 (http://software.
broadinstitute.org/gsea/msigdb/index.jsp) were set as background. P
value <0.05 was used as a cutoff. The normalized enrichment score was
used to reflect the degree of pathway overrepresentation.

Immune, stromal and pathway scores and TFE3/TFEB activities
inferring

Immune, and stromal scores were inferred using the R package,
ESTIMATE v1.0.11°*. Gene sets were obtained from MSigDB v7.1 and the
transcription factor (TFEB/TFE3) targets were collected from
DoRothEA¥. Transcription factor activity and pathway score for each
sample was inferred using single-sample GSEA (ssGSEA)*,

Proteomic subtyping of tRCC

Consensus clustering was conducted using the R package
CancerSubtypes® using Pearson correlation as the distance mea-
sure and the following detail settings were used for clustering:
number of repetitions =1000 bootstraps; item subsampling pro-
portion = 0.8; feature subsampling proportion =1). The 50% of the
DEPs, between tumors and NATs, with the highest median absolute
deviation in tumor samples were used for partitioning around
medoids (PAM) clustering with up to six groups. Consensus matri-
ces for k=2, 3, 4, 5, 6 clusters are shown in Supplementary Fig. 6a.
The consensus matrix for k=3 showed clear separation among
clusters. The cumulative distribution function of the consensus
matrix for each k-value was also measured (Supplementary Fig. 6b).
The relative change in area under the cumulative distribution
function curve increased by 33% from 2 clusters to 3 clusters,
whereas others exhibited no appreciable increase. Moreover, the
average silhouette distance (0.75) for k=3 was larger than k=4 or
k=5 and did not have significant negative values. Based on the
evidence above, the tRCC proteomic data were clustered into three
groups (Supplementary Fig. 6c).

Subtype-specific upregulated proteins are: (1) detected in >25%
tumor samples; (2) expressed higher than other subtypes (FC>2,
Wilcoxon rank-sum test, p<0.05). Subtype-specific upregulated
proteins were further analyzed in ConsensusPathDB?2. DEPs of each
subtype and relevant enriched pathways are listed in Supplemen-
tary Data 6.

Immune subtype identification

To evaluate the tumor immune microenvironment of tRCC tumors, the
raw enrichment scores of 64 different cell types were computed via
xCell?, based on the tumor proteomic profiles (Supplementary
Data 7). Consensus clustering was performed using the R package
ConsensusClusterPlus based on the z score normalized Raw enrich-
ment scores of tumor samples. Specifically, 80% of the original tRCC
tumor samples were randomly subsampled without replacement and
were partitioned into three major clusters using the PAM algorithm,
which was repeated 2000 times.

Correlations between subtypes and clinical features

To evaluate correlations between proteomic subtypes and clinical
and genomic features, Fisher’s exact test was conducted on cate-
gorical variables, including age, sex, TMB, CIN, mutational sig-
natures, and significant arm-level CNA events. Only variables that
varied significantly among the three proteome subtypes are shown
in Fig. 6a.

Effects of CNAs

Spearman’s correlations between CNA values (gene level) and protein
abundances were calculated using genes quantified at both CNA and
proteome levels. CNAs with significant correlation with proteins were
selected based on p value <0.05 and used for further analysis. Gene-
wise correlations with FDR < 0.1 were visualized using the R package
multiOmicsViz. Genomic alterations that affect gene expression at the
same locus are said to act in cis, whereas an impact of another locus is
defined as a trans-effect, whereas the impact of other locus was
defined as a trans-effect.

Survival analysis

The Kaplan-Meier method was used for survival analyses, and groups
were compared using the log-rank test. The R survival package 3.2-3
(Therneau and Lumley, 2015) and survminer 0.4.8 were used for sta-
tistical tests and visualization. The HR was calculated by Cox propor-
tional hazards regression analysis. Variates with p<0.05 were
considered to significantly impact prognosis. CNA events with p < 0.05
in single variant analysis were selected for Cox regression multivariate
analysis (Supplementary Data 2).

IHC and immunofluorescence staining assays
Immunohistochemistry staining was conducted to assess the expres-
sion levels of DST and TBK1 using primary antibody against DST
(#DF6752; Affinity Bioscience, China), TBKl (#DF7026; Affinity
Bioscience) at 1:3000 dilution, and peroxidase-conjugated goat anti-
rat IgG (Abcam, #ab205718, 1:5000) according to manufacturer’s
protocols. The overall IHC score ranging from O to 12 was measured
based on the multiplying of the staining intensity and extent score, as
previously described’.

During immunofluorescence assay, FFPE tissue slides were first
deparaffinized in a BOND RX system (Leica Biosystems) and then
incubated sequentially with primary antibodies targeting a-SMA (Ser-
viceBio, #GB111364, 1:1000) and pan-CK (Abcam, #ab7753, 1:100). This
was followed by incubation with secondary antibodies and corre-
sponding reactive Opal fluorophores, and nuclei acids were stained
with DAPI. Tissue slides that were bound with primary and secondary
antibodies but not fluorophores were included as negative controls to
assess autofluorescence. All scans for each slide were then super-
imposed to obtain a single image. Multilayer images were imported to
inForm v.2.4.8 (Akoya Biosciences) for quantitative image analysis. The
quantities of various cell populations were expressed as the number of
stained cells per square millimeter and as the percentage of positively
stained cells in all nucleated cells.

Statistical analysis

Quantification methods and statistical analysis methods for proteomic
and integrated analyses were mainly described and referenced in the
respective Method Details subsections.

Additionally, standard statistical tests were used to analyze the
clinical data, including but not limited to Wilcoxon rank-sum test,
Fisher’s exact test, Kruskal-Wallis test, and log-rank test. Statistical sig-
nificance was considered when p value <0.05. To account for multiple
testing, the p values were adjusted using the Benjamini-Hochberg FDR
correction. Kaplan-Meier plots (log-rank test) were used to describe
survival. Variables associated with overall survival were identified using
univariate Cox proportional hazards regression models. Significant fac-
tors in univariate analysis were further subjected to a multivariate Cox
regression analysis. All the analyses of clinical data were performed in R
and GraphPad Prism.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability

Proteome and phosphoproteome raw datasets have been deposited to
the ProteomeXchange Consortium (dataset identifier: PXD035377) via
the iProX partner repository (https://www.iprox.cn/)”” under Project
ID: IPX0003336000. WES and RNA-seq data are available at NODE (The
National Omics Data Encyclopedia) under Project ID: OEP002630. WES
and RNA-seq data are also deposited in GSA-human (Genome
Sequence Archive for human)®® in NGDC (the National Genomics Data
Center) (https://ngdc.cneb.ac.cn/)®® under the accession: HRA003190
and HRA002855. The raw sequencing data are available under con-
trolled access due to data privacy laws related to patient consent for
data sharing and the data should be used for research purposes only.
Access can be obtained by approval via their respective DAC (Data
Access Committees) in the GSA-human database. According to the
guidelines of GSA-human, all non-profit researchers are allowed access
to the data and the Principle Investigator of any research group is
allowed to apply for Controlled access of the data. The user can reg-
ister and login to the GSA database website (https://ngdc.cncb.ac.cn/
gsa-human/) and follow the guidance of “Request Data” to request the
data step by step (https://ngdc.cncb.ac.cn/gsa-human/document/GSA-
Human_Request_Guide_for_Users_us.pdf). The approximate response
time for accession requests is about 2 weeks. The access authority can
be obtained for Research Use Only. The user can also contact the
corresponding author directly. Once access has been granted, the data
will be available to download for 3 months. The remaining data are
available within the Article, Supplementary Information, or Source
Data file. Source data are provided with this paper.
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