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hemisphere. Animal experiments have revealed that 
regrowth of ipsilateral descending fibers from the unaffected 
hemisphere to denervated motor neurons plays a significant 
role in the restoration of motor function. In addition, several 
clinical treatments have been designed to restore ipsilateral 
motor control, including brain stimulation, nerve transfer 
surgery, and brain–computer interface systems. Here, we 
comprehensively review the neural mechanisms as well as 
translational applications of ipsilateral motor control upon 
rehabilitation after CNS injuries.

Keywords  Stroke · Traumatic brain injury · Spinal cord 
injury · Brain–computer interface system · Neuroplasticity · 
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Introduction

In adult mammals, most corticospinal (CS) neurons 
(CSNs) in the cerebral cortex project directly to the oppo-
site side of the spinal cord and control contralateral limb 
movements [1–3]. Therefore, the extremities on the side 
contralateral to the lesion often display motor deficits 
following injuries to the cortical descending pathways, 
such as stroke or traumatic brain injury [3–5]. Among 
central nervous system (CNS) injuries, stroke is the main 
worldwide cause of death and disability [6–10]. During 
the acute phase of injury, the majority of patients experi-
ence some degree of spontaneous recovery, thereby the 
impaired function is partially restored with time [11–13]. 
After entering the chronic phase of recovery (> 6 months), 
it is estimated that 55%–75% of stroke survivors exhibit 
permanent functional impairment of the paralyzed extrem-
ities [14, 15].

Abstract  Central nervous system (CNS) injuries, includ-
ing stroke, traumatic brain injury, and spinal cord injury, are 
leading causes of long-term disability. It is estimated that 
more than half of the survivors of severe unilateral injury 
are unable to use the denervated limb. Previous studies have 
focused on neuroprotective interventions in the affected 
hemisphere to limit brain lesions and neurorepair measures 
to promote recovery. However, the ability to increase plastic-
ity in the injured brain is restricted and difficult to improve. 
Therefore, over several decades, researchers have been 
prompted to enhance the compensation by the unaffected 
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In recent decades, many efforts have been devoted to res-
cuing abnormal descending connections in the acute phase; 
for example, pharmacological interventions, stem cells, 
behavioral therapies, and non-invasive brain stimulation 
(NIBS) [11, 16–23]. Although such early interventions can 
improve parts of motor function, most patients still have 
difficulty in flexibly using the affected arm and/or hand 
for completing skilled movements, such as grasping and 
manipulating objects [24]. Notably, skilled movements of 
the upper extremities serve as the main predictor of whether 
a patient will resume a usual professional and personal life 
after brain injury [11, 24]. Recent studies have revealed that 
the unaffected hemisphere can compensate for the function 
of the damaged hemisphere and control the movements of 
the ipsilateral, paralyzed limb [19, 25–30]. The ipsilateral 
CS tract (CST) from the unaffected hemisphere to the para-
lyzed hand is one of the most common routes through which 
skilled motor function is restored following CNS injuries 
[30–33]. However, the compensatory ability to regain ipsi-
lateral motor control gradually diminishes with age and is 
largely determined by the location and extent of the lesion 
[34–36]. Emerging technologies have focused on using 
the unaffected hemisphere to control the paralyzed upper 
extremity, such as novel NIBS strategies, brain–computer 
interface (BCI)-based rehabilitation systems, and a unique 
nerve transfer surgery named contralateral cervical seventh 
nerve transfer (CC7), which can effectively enhance skilled 
motor performance [27, 37–42].

In this review, we first describe the various effects of CNS 
injury on the cortical descending pathway and summarize 
the neural mechanisms of plasticity-dependent motor recov-
ery. We next introduce interventions aimed at protecting or 
repairing the damaged brain in the early stage and highlight 
the limitations of their clinical application. Then, we shift 
our focus from the ipsilesional hemisphere to the contral-
esional hemisphere and summarize the research advances 
related to using the unaffected hemisphere to control the 
paralyzed upper extremity in both animal research and 
clinical application. Furthermore, we propose a sensorimo-
tor integration-based treatment concept, the individualized, 
combined application of multiple methods to manipulate 
sensory input and motor output, which may contribute to 
driving neuroplasticity and accelerate the recovery of skilled 
motor function of the paralyzed hand.

CNS Injury and Plasticity‑Dependent 
Spontaneous Recovery

CNS injuries associated with motor dysfunction results from 
the cortical denervation due to the destruction of contral-
esional CST axons [3, 5], also known as the pyramidal tract. 
The cortical neurons that constitute the CST are also known 

as upper motor neurons, and postsynaptic neurons of CST 
in the spinal cord are referred to as lower motor neurons, 
which are connected to skeletal muscle through neuromus-
cular junctions and control muscle contraction [1–3, 43]. 
Anatomically, most CST axons cross the midline in medulla 
oblongata, forming the pyramidal decussation. During typi-
cal development, the CST axons of motor cortices initially 
project bilaterally to the spinal cord. Continued develop-
ment is characterized by the progressive weakening of 
uncrossed CST axons and the strengthening of crossed CST 
axons through synaptic competition driven by cortical activ-
ity [44–46]. Consequently, the uncrossed CST axons target 
motor neurons innervating the proximal and axial muscles, 
while the crossed CST axons target motor neurons in the dis-
tal muscles and are mainly involved in skilled movements. 
Most of the CST axons originate from pyramidal neurons 
located in the deep cortical layers (layers V and VI) of the 
primary motor and sensory cortex (M1 and S1, respectively). 
In mammalian species, the terminal distribution of the CST 
shows marked similarities, but the cortical-motor connec-
tions differ among species. In felines and rodents, motor 
commands conveyed by the CST are eventually transmitted 
to forelimb motoneurons relayed via segmental interneurons 
and propriospinal neurons [47]. In contrast, direct cortical-
motor connections in the distal muscles are a specific feature 
of primates, thus enabling more advanced hand function and 
manual dexterity [3, 48–50].

Depending on their location, CNS injuries are divided into 
upper and lower motor neuron lesions [51–54]. An upper 
motor neuron lesion refers to an injury/lesion that occurs 
between the brain and the spinal cord, i.e., proximal to the 
ventral horn, including cortical damage, internal capsular 
infarction, brainstem injury, and spinal cord injury (SCI). 
An injury that occurs in the ventral horn of the spinal cord 
is considered to be a lower motor neuron lesion. In cortical 
damage caused by traumatic brain injury and stroke, the CSNs 
are greatly affected and exhibit degeneration or death, result-
ing in termination of the transmission of cortical commands 
[34]. In addition, internal capsular infarction and brainstem 
injury are primarily found in subcortical regions, known to 
be vital structures containing CS fibers carrying motor com-
mands from some cortices to lower motor neurons. There are 
two main categories of SCI: complete and incomplete. Incom-
plete SCI is commonly caused by compression or damage to 
the spinal cord, which decreases motor signal transmission. 
However, complete SCI is the most severe and results from 
serious trauma to the spinal cord, bilaterally eliminating signal 
transmission between the spinal cord below the injury site and 
the brain. Therefore, these types of CNS injury disrupt CS 
fibers, causing motor dysfunction and paralysis of the limb.

In general, CNS injury often results in a permanent loss 
of motor function, causing mature neurons to typically fail to 
regenerate. Nevertheless, an accelerating amount of research 
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has revealed that the brain exhibits substantial neuroplasticity 
during the acute stage after damage, and this can compensate 
for the damage through reorganization and the creation of 
new connections among undamaged neurons [55–57]. Inju-
ries occurring in different regions, such as the cerebral cortex, 
internal capsule, brainstem, and spinal cord, with different 
lesion extent are compensated for by different alternative path-
ways [58, 59]. In the event of motor cortical lesions, the per-
ilesional area compensates for the functional loss [55, 60, 61] 
(Fig. 1A1). In contrast, the contralesional hemisphere exhibits 
a pronounced compensatory effect for lesions involving senso-
rimotor cortical areas [25, 59, 62] (Fig. 1A2, A3). The more 
serous the injury, the greater the activation of the ipsilateral 
hemisphere that is used during paretic limb movement [24, 63, 
64]. Sprouting of the cortico-rubro-spinal pathway contributes 
to recovery in internal capsule injury [65–67] (Fig. 1B). Like-
wise, the rubrospinal and reticulospinal tracts play an impor-
tant part in functional recovery from pyramidal lesions [66, 68, 
69]. After a dorsolateral funiculus (DLF) lesion at the C4/C5 
segments, an indirect pathway composed of the propriospinal 
tract contributes to recovery [70] (Fig. 1C). In the event of the 
hemisection of the lower cervical cord, the CST axons from 
the ipsilateral cortex descend to the contralesional DLF, and 
sprout across the midline below the lesion site (Fig. 1D).

Notably, spontaneous recovery is generally incomplete. 
The degree of spontaneous recovery varies among individu-
als, and spontaneous recovery usually plateaus 6 months 
after CNS injury [11, 24]. The majority of patients still have 
difficulty in flexibly using the affected arm and/or hand for 
performing motor skills, such as grasping and manipulat-
ing objects. Therefore, in recent decades, various restorative 
therapies have been developed or are under development and 
aim to potentiate the remaining function of the damaged 
brain or enhance the compensatory capacity of the undam-
aged brain by fostering neuroplastic changes.

Neuroprotection, Chemical Neuromodulation, 
and Neurorepair Strategies in the Damaged CNS

In patients, neuroprotective agents or endovascular therapy 
should be administered strictly within the neuroprotection 
time window, which is 4–6 h after CNS injury [71, 72]. 
Clinical treatments administered beyond this brief window 
have limited neuroprotective effects [73, 74]. In the dam-
aged brain, the neuroinflammatory cascade amplifies the pri-
mary injury [75, 76]. These secondary biochemical changes 
lead to tissue damage with associated cell death [77]. The 
time over these effects occur has been assumed to be 
hours–weeks, allowing a potential window for interventions.

Numerous experimental studies have suggested that exci-
tation (glutamate and excitotoxicity), radicals (oxidative 
stress and free radicals), and cellular suicide (activation of 

apoptotic-like pathways) are the main reasons for the con-
tinuous cell death after CNS injuries [78–80]. Recent animal 
studies have overwhelmingly established that neuroprotec-
tive interventions can relieve secondary tissue damage and 
improve motor function after stroke [16, 81, 82]. These 
interventions include the pharmacological blockade of neu-
rotransmitter receptors to inhibit cell death pathways [83] 
and inducing hypothermia [84] or hyperoxygenation [85, 
86]. Besides, these restorative processes mainly depend on 
the severity of CNS injury and are appropriate for treating 
mild to moderate injuries but are largely ineffective in severe 
injuries. However, a number of clinical trials have shown 
that drugs modulating one or more of these mechanisms do 
not significantly improve the outcome for stroke patients 
[16].

In recent decades, it has gradually been recognized that 
neurovascular units (NVUs) play a major part in neuro-
protection. The NVU is defined as a complex functional 
and anatomical structure including neurons, astrocytes, 
endothelial cells of the blood–brain barrier (BBB), myo-
cytes, pericytes, and extracellular matrix components [87]. 
The modulation of interactions among different components 
of the NVU is essential for rescuing the damaged brain at an 
early stage. For example, enhancing microglial phagocytosis 
can reduce the brain damage caused by an excessive inflam-
matory response in brain tissue, avoiding a large degree of 
neuronal apoptosis and maintaining a number of neurons 
as much as possible [88]. In addition to affecting micro-
glia, CNS injury can also continuously induce astrocyte 
reactivation and regeneration to reduce neurotoxic events 
and encourage scar tissue formation to avoid further injury 
[89–91]. Moreover, blood vessels, as multi-branched struc-
tures, continuously provide relevant nutritional materials 
to promote the recovery of injured brain tissue [92]. Fur-
thermore, related studies have also suggested that pericytes 
contribute to maintaining the stability of the NVU and rescu-
ing the normal BBB structure [93, 94]. Overall, neuropro-
tection in the damaged brain can accelerate functional and 
structural recovery in multiple animal models by stimulating 
endogenous neurorestorative events, such as neurogenesis, 
gliogenesis, angiogenesis, anti-inflammation, and synaptic 
plasticity.

Although many neurons around the lesion die after CNS 
injury, some survive but become dormant. These neurons 
may still have the ability to be excited in response to inputs 
from spared circuits and pharmacological neuromodulation. 
Neurotransmitter agonists, such as serotonin, dopamine, and 
norepinephrine temporarily restore locomotion when applied 
to paralyzed SCI animals [95]. Furthermore, systemic 
administration of CLP290, an agonist of the neuron-spe-
cific K+/Cl− co-transporter KCC2, enhances locomotion in 
paralyzed SCI mice [96]. CLP290 downregulates the excit-
ability of spinal inhibitory interneurons enabling increased 
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activity in propriospinal circuits to ameliorate the locomotor 
dysfunction. These drug treatments targeting propriospinal 
interneurons enhance their activity to promote locomotion 
by facilitating the transmission of motor signals through 
propriospinal circuits [96], and by raising the excitability 
of downstream locomotor networks [97]. But so far, these 

pharmacological neuromodulations have not been tested in 
patients.

In addition, neurorepair strategies, such as the transplan-
tation of neural stem/progenitor cells (NSPCs), can also pro-
mote neuroprotection by repopulating areas of damaged cells 
and tissues [98, 99]. NSPCs are multipotent progenitors and 

Fig. 1   Compensatory pathways during the acute stage after differ-
ent CNS injuries. A1 After a local motor cortical lesion, significant 
reorganization occurs in the perilesional areas to compensate for the 
injured region. A2 The contralesional cortex controls the ipsilesional 
cortex by functional cortico-cortical connections to compensate for 
the lesion in a moderate cortical lesion. A3 A severe cortical lesion 
affects interhemispheric inhibition, while the cortex on the injured 
side completely loses its function, and the contralesional cortex 

directly controls the paretic side. B The cortico-rubro-spinal pathway 
is enhanced after damage to the internal capsule or brainstem pyra-
mid. The reticulospinal tracts can be another compensatory pathway 
after pyramidal lesions. C After a DLF lesion, the spared proprio-
spinal tract connecting different segments of the spinal cord plays an 
important role in functional recovery. D CST axons from the ipsile-
sional cortex sprout and cross below the lesion after hemisection of 
the spinal cord.
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can form neurospheres to differentiate into a wide range of 
cell types, such as neurons, glial cells, and precursor cells. 
NSPCs tend to differentiate into oligodendrocytes when 
transplanted into host parenchyma, while they are more to 
differentiate into astrocytes when transplanted into a lesion 
site [100]. Following transplantation into the damaged 
brain, they can induce regeneration of the axons of damaged 
neurons to bridge the break caused by injury and thereby 
recover the regular function of nerve cells and restore brain 
area function [99, 101]. NSPCs transplanted into sites of 
SCI enable the regeneration of CS axons by maintaining 
CST neurons in an embryonic growth state [102], and the 
regenerating axons can form synaptic projections to appro-
priate NSPCs-derived neurons [103]. These grafted neurons, 
functioning as interneuronal relays, extend abundant axons 
for long distances to the host spinal neurons below an injury 
[104, 105], and these neurons can respond to cortical stimu-
lation or sensory stimulation below the lesion in vivo [106]. 
Recent studies have also reported that NSPCs derived from 
human pluripotent stem cells (hPSCs) can differentiate into 
distinct spinal cord neurons, enable robust CS regenera-
tion, integrate various intraspinal and supraspinal systems, 
and improve functional outcomes after injuries [107–109]. 
Enhancing activity within the transplanted hPSCs-NSPCs 
or in combination with rehabilitation training can promote 
the efficiency and efficacy of cell transplantation therapy for 
SCI [110, 111]. Although animal studies have revealed that 
NSPC transplantation is a feasible and promising means of 
compensating for lost functions, there are still some limita-
tions and potential side-effects in their clinical application, 
including a large-scale bottleneck in stem cell production 
and potential allogeneic rejection of the cells [112].

In summary, neuroprotection, neuromodulation, and neu-
rorepair can not only effectively rescue the damaged CST but 
also induce neuroplasticity to restore the motor function of 
a paralyzed limb. However, these successes are limited to 
animal studies, and translation of these interventions from 
animal studies into clinical practice has yield disappointing 
results. Clinical failure may be due to insufficient efficacy of 
current treatments and ignorance of the heterogeneity among 
patient populations [16]. Particularly, it is still difficult to 
achieve persistent recovery of motor function by repairing 
the damaged brain when injury-related recovery enters the 
chronic stage.

The Cortical Physiology of Ipsilateral Motor 
Control

Is it possible to use the intact hemisphere to control the 
paralyzed limb on the same side? In fact, as early as 1874, 
Brown-Sequard declared that it was quite possible and that 
one hemisphere was sufficient to act on both sides of the 

body [113]. Anatomical and physiological studies have 
established that almost 15% of CST fibers directly project 
to the ipsilateral spinal cord without crossing the medulla 
[1–3, 114]. Notably, the location, proportion, and distribu-
tion of the uncrossed CST axons differ by species and stages 
of development. Continued development is characterized 
by the gradual weakening of uncrossed CST axons and the 
strengthening of crossed CST axons through synaptic com-
petition, driven by cortical activity [114]. With the exception 
of the uncrossed CST axons described above, the unilateral 
motor cortex can control ipsilateral movements by the cor-
pus callosum, as well as neural networks interconnecting 
brainstem and spinal cords [115, 116]. Consequently, this 
indicates the potential involvement of the contralesional 
hemisphere in the restoration of motor function after uni-
lateral CNS injury.

It is well known that the juvenile brain has more powerful 
neural plasticity than the adult brain, thus allowing better 
functional recovery after CNS injury [117, 118]. Patients 
who undergo brain injury at a young age often exhibit sub-
stantial improvement in motor function [119]. Animal stud-
ies have revealed that the ipsilateral motor pathways from 
the contralesional sensorimotor cortex to the opposite side 
of the spinal cord play a vital role in motor recovery fol-
lowing a sizable cortical lesion at a young age [30, 118, 
120]. The possible mechanisms involved in ipsilateral motor 
control are as follows: (1) enhancing the neuronal activity of 
the ipsilateral cortex via the corpus callosum and the more 
substantial contralateral CST [121]; (2) regenerating new 
synaptic connections of the contralateral CST in subcortical 
areas such as the brainstem, leading to the reorganization of 
descending motor pathways [122–124]; (3) promoting axon 
sprouting of the CST in the contralesional hemisphere across 
the midline and growing into the denervated area of the spi-
nal cord [2, 33]; and (4) enhancing the efficacy, increas-
ing the regeneration, or decreasing the degeneration of the 
uncrossed CST axons of the ipsilateral spinal cord [31, 125] 
(Fig. 2A). Certainly, multiple mechanisms must be involved 
in the reorganization of ipsilateral motor pathways after 
injury, and these mechanisms need to be further elucidated.

Unfortunately, such compensatory ability gradually 
diminishes as the brain matures, mainly because the ipsilat-
eral motor pathway, which perform as compensation for the 
early stage of development, becomes sparse with maturity 
[3, 115, 116]. Recent studies have established that the ipsi-
lateral CST is also necessary for behavioral recovery after 
CNS injury in adult rodents [19, 126], monkeys [127], and 
humans [128, 129]. However, the regenerative characteris-
tics of the ipsilateral CST are significantly different at differ-
ent developmental stages. As the ipsilateral CST is not fully 
pruned after CNS injury in childhood, the axons of CSNs 
in the uninjured motor cortex project to both halves of the 
spinal cord to control both limbs [33, 130]. Nevertheless, 
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in adulthood, the decline in cortical neural activity on the 
injured side promotes axon sprouting, but this compensa-
tory effect cannot flexibly control the impaired limbs by the 
weakened ipsilateral CST. To achieve ipsilateral motor con-
trol after CNS injury, the underlying mechanism is related 
to the selective activation of CSNs and cortical layer V neu-
rons, promoting neuronal plasticity, and ameliorating injury-
induced sensory-motor deficits. Therefore, new therapies are 

urgently needed to stimulate the compensatory ability within 
the contralesional cortex to recruit the spared circuit in adult 
patients with CNS injury.
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Cellular and Molecular Interventions 
for Promoting Axon Regrowth

By definition, axon growth includes both regeneration 
and sprouting, with the difference between the two being 
whether the neuron was damaged in the first place (Fig. 2B) 
[131, 132]. Regeneration refers to axon growth of dam-
aged neurons, whereas sprouting refers to axon growth of 
undamaged neurons. It is now widely recognized that both 
the intracellular and extracellular environments can influ-
ence axon growth [133, 134]. Myelin-associated inhibitors 
(MAIs), such as Nogo and myelin associated glycoprotein, 
are an important class of neuron-extrinsic mechanisms that 
inhibit axon growth. Interestingly, inhibition of MAIs alone 
increases compensatory axon sprouting, but has poor effect 
on the axon regeneration of injured neurons [135–137]. 
Notably, research progress in the mechanisms underlying 
the change of axon growth capacity in the development 
period contributes to understanding the neuron-intrinsic 
mechanisms underlying axon regeneration [34, 133]. Dur-
ing development, the axon growth competence of neurons 
diminishes after synapse-formation is complete and func-
tional neuronal circuits are established. After CNS injury, 
the cellular processes in the affected neurons are altered, and 
the neuron transitions from an active, electrically-transmit-
ting state to an electrically-silent, growth-competent state 

similar to that during development, regaining the intrinsic 
capacity for axon growth [133, 138]. Next, we summarize 
the optimal interventions related to axon regrowth from cel-
lular and molecular perspectives.

Recent studies have shown that multiple steps of signal 
initiation and transduction, including receptor availability 
[139] and signal propagation [140, 141], or silencing inhibi-
tory pathways [142, 143], can be targeted to enhance axon 
regeneration of the mature neuron (Fig. 2C). For example, 
a combination of osteopontin/insulin-like growth factor 1 
(IGF1) induces robust sprouting of CST axons and associ-
ated behavioral recovery after injuries [144]. In addition, 
IGF1-dependent axon regeneration is down-regulated by 
presynaptic neurons [139]. Interestingly, in the case of a 
lack of growth factors, direct molecular intervention target-
ing adult neurons promotes robust CST axon sprouting and 
restores motor function after injury, including enhancers 
such as WNT/RYK signaling [145], ras homolog gene fam-
ily member A [146], cyclic adenosine monophosphate [147], 
and mammalian target of rapamycin [148], and repres-
sors such as phosphatase and tensin homolog [149–151], 
Kruppel-like transcription factors [152], and suppressor of 
cytokine signaling 3 [149]. Similarly, some ions involved 
in neuronal activity play an important part in promoting 
axon regeneration. An increase of the Ca2+ concentration in 
damaged neurons within minutes after the lesion promotes 
the initiation of axon regeneration by promoting neuronal 
growth cone assembly and other stages of axon regenera-
tion [133, 153, 154]. But the continuous Ca2+ influx through 
voltage-gated Ca2+ channels after injury suppresses the axon 
regeneration, and the ablation of Cacna1c (Calcium Channel 
Subunit Alpha1c, encoding the Cav1.2 channel) [155] or 
Cacna2d1 (encoding subunits necessary for the Cav2 chan-
nel) [156] efficiently promote axon regeneration in dorsal 
roots ganglion ( DRG) neurons after peripheral axotomy or 
SCI.

In addition, extensive scar tissue is formed after CNS 
injury, and newly-formed axons need to reinnervate and 
redistribute axon terminals through scars (Fig. 2D). The 
CNS scar is a compartmentalized structure and consist of 
two major parts: the reactive astrocytes constituting the outer 
glial scar [157] and the fibrotic scar at the core of the lesion 
with pericyte derived fibroblasts [158] and inflammatory 
cells. Recently, different types of loss-of-function study have 
revealed that scar formation and fibrosis in the CNS involves 
complex interactions among multiple types of CNS glia and 
non-neural stromal cells. A partial reduction of Type-A peri-
cytes reduces the fibrosis, enhances the tissue repair and 
promotes locomotor recovery, whereas a more complete 
prevention of the scarring produced by Type-A pericytes 
appears to be detrimental and worsens the outcome [159]. 
Preventing astrocytic scar formation or specifically ablat-
ing chronic astrocyte scars does not lead to axonal regrowth 

Fig. 2   The potential circuit basis and molecular mechanism for 
implementation of ipsilateral motor control and the cellular mecha-
nism of axon regeneration. A Schematic organization of ipsilateral 
motor pathways. The mechanism of ipsilateral motor control may 
include the following possibilities: 1. The contralesional cortex con-
trols the remaining CST in the impaired hemisphere by callosal fiber 
enhancement; 2. Synaptic connections between the contralesional 
cortex and the ipsilesional subcortical areas are increased; 3. The 
crossed CST originating from the contralesional cortex sprouts across 
the midline to the damage-denervated side of the spinal cord; 4. The 
number and activity of uncrossed CST fibers from the contralesional 
cortex to the affected spinal cord are increased. B Cartoon showing 
the difference between CST axonal sprouting and regeneration in the 
spinal cord. Axon growth including axon sprouting and axon regen-
eration. The sprouting refers to axon regrowth from intact neurons on 
the unaffected side, and regenerating axons arise from the cut ends 
of the transected axon of injured neurons. C Factors that enhance 
axon growth are shown in the yellow box, while factors that inhibit 
axon growth are shown in the blue box. Note that both CST regrowth 
(green) and spared CST axons (blue) aim to re-innervate the spinal 
cord of the affected side. D, There are two forms of axon regeneration 
in spinal cord injury, one in which regenerating axons cross through 
the glial scars, and one in which regenerating axons bypass the injury 
site. E Cellular mechanisms that facilitate the passage of regenerat-
ing axons across the astroglial scar. The neonatal microglia secrete 
fibronectin and their binding proteins to establish a bridge to the 
extracellular matrix and express various peptidase inhibitors to pro-
mote CST regrowth to pass through the injury site. Nerve/glial anti-
gen 2 positive (NG2+) cells increase scar formation by secreting pro-
inflammatory factors that impede the passage of regenerating axons 
through glial scars.

◂
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after SCI [160], while pharmacological blocking of the 
interaction between reactive astrocytes and type I collagen 
prevents glial scar formation, allowing for a more loosely-
arranged glial architecture and promoting axonal regrowth 
[161]. Besides, astrocytes activated by injury synthesize and 
secrete various neurotrophic or axon-growth-supporting fac-
tors for axon regeneration, including brain-derived neuro-
trophic factor [162], ciliary neurotrophic factor [163, 164], 
and chondroitin sulfate proteoglycan 5 (also known as neuro-
glycan C) [160], which contribute to the composition of the 
injury microenvironment. Depleting microglia specifically 
results in an increase in systemic immune cell infiltration 
and neuronal cell death, disruption of glial scar formation, 
and worsened behavioral outcomes after SCI [165–167]. 
Moreover, the latest research has revealed that a subgroup 
of microglia secrete fibronectin and its binding proteins to 
establish a bridge to the extracellular matrix and express 
various peptidase inhibitors to promote scarless healing of 
spinal cord lesions [168], thus allowing descending axons 
to pass through the injury site in neonatal mice. Such new 
insights from cell type-specific loss-of-function studies and 
next-generation sequencing results have yielded a more com-
plex portrait of the molecular mechanisms governing the 
glial and neuronal responses to injury, and provide possible 
combinatorial therapeutic approaches to scar modulation to 
restore function after severe CNS injury [169].

Notably, robust axon regrowth and the establishment of 
appropriate neural connectivity does not mean restoration 
of neural function [170]. Combined rehabilitation training 
at an adequate time encourages CST regrowth and helps to 
form, select, and stabilize new functional neural circuitry 
[19]. Overall, sequentially combining sensory-motor reha-
bilitation with molecular therapies may act synergistically 
to enhance cortical plasticity in the intact brain and thereby 
promote long-term recovery after CNS injury [117]. How-
ever, these successes are currently restricted to animal stud-
ies and are challenging to translate immediately into clinical 
applications.

Clinical Interventions for Enhancing 
Compensatory Capacity

Current treatments to improve long-term outcomes in CNS 
injury patients include rehabilitative training, electrical 
stimulation, and pharmacological interventions [11, 18]. 
However, these treatments have had only limited success, 
and it is difficult to achieve the recovery of motor skill at the 
chronic stage. In recent years, several advanced neuromodu-
lation treatment strategies have been developed to improve 
motor performance in people with functional impairments 
[117]. We next summarize the neurotechnologies designed 
for applying appropriate stimulation to the nervous system to 

help enhance neuroplasticity in the intact hemisphere, thus 
facilitating functional recovery of the paralyzed arm/hand.

Electrical Stimulation to Drives Neuroplasticity 
for Functional Recovery

Electrical stimulation can be delivered by non-invasive sur-
face electrodes or invasive implanted electrodes to activate 
or inhibit the CNS. This stimulation can enhance the neural 
plasticity of specific brain regions, modify local neural cir-
cuits in combination with appropriate neurological rehabili-
tation training, and correct maladaptive neural reorganiza-
tion caused by neurological injury [11, 18, 171].

Noninvasive brain stimulation (NIBS), including tran-
scranial magnetic stimulation (TMS) and transcranial elec-
trical stimulation, is available to activate or inhibit the CNS 
by electrodes placed on the epicranium (Fig. 3A1 and A2) 
[7]. Based on the finding of interhemispheric imbalance, 
NIBS was first used to suppress the contralesional hemi-
sphere and attenuate transcallosal inhibition to activate the 
ipsilesional primary motor cortex. However, an increasing 
number of negative results have appeared, and no additional 
beneficial effects of the re-activation of the ipsilesional hem-
isphere have been reported [172]. A plausible explanation is 
that suppression of the contralesional motor cortex reduces 
the excitability of the ipsilateral motor pathways that are 
also important for movement of the paralyzed limb. Several 
neuroimaging results have demonstrated that the contral-
esional hemisphere also participates in functional restoration 
by involving the ipsilateral CST pathway and the cortico-
reticulo-propriospinal pathway [40, 65, 173, 174]. We then 
conclude that NIBS is not the “one size fits all” solution for 
all patients but that it can be tailored to individuals accord-
ing to the extent and location of damage, the degree of func-
tional deficiency, or the stage of the recovery process [11]. 
Moreover, NIBS should not only focus on interventions in 
the primary motor cortex. In addition, it is notable that the 
premotor cortex, supplementary motor areas, and the cer-
ebellum, as well as other areas connected to the primary 
and secondary motor areas and form a complex network, are 
also involved in the processes of restoration of motor func-
tion after brain damage [39, 175]. Therefore, patient-specific 
characteristics might be considered for determining the best 
neuromodulation target and more focal stimulation of spe-
cific cortical targets. The combination of EEG and TMS has 
recently offered a new direction named “closed-loop NIBS”, 
which provides a novel and effective strategy of neuromodu-
lation to restore the impaired motor function [176]. These 
closed-loop strategy-based therapeutic approaches can suc-
cessfully restore injured motor function in patients after 
SCI. Even though various animal experiments and clinical 
trials have established that NIBS can treat the dysfunction 
caused by CNS injury to a certain extent, the results are not 
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satisfactory [18]. In future, the underlying concepts of NIBS 
need to be deeply elucidated, and NIBS-based treatments, 
such as personalized NIBS, multi-site NIBS, and closed-
loop NIBS need to be further developed.

In deep brain stimulation (DBS), the most invasive ther-
apy, electrodes are implanted in brain regions, such as deep 
nuclei and white matter tracts, and a generator is implanted 
in the upper chest (Fig. 3A3). The stimulation pattern of 

Fig. 3   Clinical advances for enhancing neuroplasticity to promote 
motor recovery. Schematic of brain stimulation systems for patients: 
A1 The noninvasive brain stimulation method TMS controls corti-
cal activity via magnetic signals. A2 tES modulate the activation of 
cortex by low-intensity current. A3 In invasive brain stimulation sys-
tems, such as DBS, electrodes are implanted in a deep brain region 
and a generator is implanted in the upper chest. A4 The VNS sys-
tem requires the implantation of electrodes into the vagus nerve in the 
left neck. B Targeted neurotechnologies for EES during overground 
walking in patients with SCI [187]. Upper: During training, the wire-
less communication environment ensures that the EES on the spinal 
cord can be independently adjusted in real time. An auxiliary device 
applies multidirectional forces to the trunk against gravity and a real-
time processing system records the full-body movements, ground 
reaction forces, and the electrical activity of leg muscles. A 16-chan-
nels electrode paddle array with pulse generator is implanted in the 
lumbosacral dorsal roots that connect to specific motor neuron pools 

innervating different leg muscles. EES sequences under voluntary 
intention induce different lower extremity movements, such as hip 
flexors and ankle extensors. Lower: The study timeline of this system. 
C The mechanism and study methodology of IpsiHand [37]. Left: 
The EEG electrode placement strategy of IpsiHand. The recording 
electrodes are placed in the bilateral motor cortex (blue triangle in the 
contralesional motor cortex and yellow diamond in the ipsilesional 
motor cortex), a spatial control electrode (green pentagon) in the con-
tralesional frontal lobe, and a spectral control electrode in the contral-
esional motor cortex (red dot). Right: The images above show how 
IpsiHand works. The exoskeleton is attached to a patient’s impaired 
forearm, palm, and intermediate phalanges of the index and middle 
finger. A microprocessor in the forearm controls the exoskeleton by 
an assembly that processes EEG signals. Based on the decoded EEG 
signals, a linear actuator drives fine hand movements in a 3-finger 
pinch grip.



1578	 Neurosci. Bull. December, 2022, 38(12):1569–1587

1 3

DBS is often continuous, and its intensity and frequency 
can be customized according to individual characteristics. 
Originally used to treat Parkinson’s disease, DBS can relieve 
symptoms such tremors, stiffness, and involuntary move-
ments. Recent studies have made a breakthrough in the 
application of DBS to treat severe traumatic brain injury 
(STBI) [177, 178]. Direct activation of central thalamic 
neurons through DBS in patients with STBI tends to nor-
malize cortico-striato-pallido-thalamocortical function. For 
example, a clinical trial demonstrated that DBS of the bilat-
eral central thalamus alleviated the arousal disorders and 
increased functional limb control in a 38-years-old patient 
who remained in a minimally conscious state for 6 years 
following STBI [179]. Therefore, DBS provides a feasible 
solution to activate dormant networks or reorganize aber-
rant or desynchronized connections across brain regions to 
accelerate functional recovery.

Vagus nerve stimulation (VNS) consists of electrodes 
connected to the left vagal nerve and a pulse generator 
implanted under the skin (Fig. 3A4). Previously, VNS was 
applied in patients with pharmaco-resistant epilepsy, and 
several studies demonstrated that it triggers neural plasticity 
to reorganize the motor response area by activating ascend-
ing cholinergic pathways [180]. Recently, various animal 
studies and clinical trials have confirmed that VNS com-
bined with rehabilitative therapies is a promising treatment 
option for hemiplegic patients [181, 182]. VNS paired with 
rehabilitative training in adult rats with stroke improves fore-
limb motor performance in an untrained task, and the treat-
ment effects can persist for several months, even after stop-
ping the treatment [182]. Anatomically, VNS can enhance 
plasticity in ipsilateral CST regeneration to enhance synap-
tic connectivity to the muscles of the paralyzed forelimb. 
Hence, VNS acts synergistically with rehabilitation exercise 
to restore impaired motor function by enhancing plasticity 
in the descending motor pathway.

Recent clinical studies of spinal cord epidural electrical 
stimulation (EES) have demonstrated that delivery of current 
to the dorsal spinal cord can restore several voluntary move-
ments below the level of a SCI (Fig. 3B) [183–185]. Fur-
ther investigations have suggested that EES and task-specific 
training can reconstruct independent stepping in completely 
paralyzed patients [186–188], revealing the reactivation of 
previously dormant spared spinal circuits and the enhance-
ment of use-stimulation dependent plasticity [183, 184]. On 
the other hand, EES can recruit proprioceptive input from 
afferent dorsal roots, which has been suggested to be central 
to the ability of EES to engage motor neurons at specific 
spinal cord segments [187]. Spatiotemporal EES applied to 
specific dorsal roots allows for selectively stimulation to be 
timed to coincide with the desired movement [187, 189].

In sum, electrical stimulation therapies are promising; 
however, based on the individual characteristics of patients 

evaluated by electrophysiology and imaging, current neuro-
modulation techniques need to be combined with traditional 
rehabilitation and necessary pharmacological treatment, ulti-
mately leading to the formation of a complete rehabilitation 
treatment program for patients with motor disorders after 
CNS injury.

BCI‑assisted Movement Control

BCI systems record brain signals, analyze them, and trans-
late them into specific commands that are relayed to output 
equipment that achieves the desired actions [190]. BCI sys-
tems record and decode specific signals related to motion 
execution, and provide appropriate feedback to the CNS for 
enhancing neural plasticity. To date, BCI systems have been 
used as promising treatments to restore motor function in 
patients following chronic CNS injury. Studies have dem-
onstrated that BCI-controlled electrical stimulators targeted 
to muscles or peripheral nerves and BCI-driven neuropros-
theses can effectively improve motor performance in stroke 
survivors. But these BCI systems for stroke patients have 
only focused on residual signals from the perilesional cortex 
[191, 192]. However, in patients with moderate-to-severe 
cortical damage, it is difficult to modulate perilesional corti-
cal activity, and new therapies should be directed to focus on 
the non-lesioned, or ipsilateral, cortical hemisphere.

It is universally acknowledged that unilateral limb 
movements derive primarily from the cortical hemisphere 
contralateral to the limb, but the ipsilateral motor cortex 
is also involved in the control of these movement [116]. 
This ipsilateral motor activation can be used to decode 
specific motor intentions [193, 194]. Recently, the FDA 
approved a BCI system, “IpsiHand”, from the company 
Neurolutions, as a novel and potentially powerful tool that 
processes movement-related EEG signals from the contral-
esional hemisphere to control the exoskeleton of the para-
lyzed hand, which may lead to functional improvements in 
patients with chronic stroke (Fig. 3C). This contralesional 
BCI was designed and configured for stroke rehabilitation in 
the home environment [37, 38]. Despite much progress, the 
development of this BCI-driven powered exoskeleton sys-
tem for stroke patients to restore dexterous movements and 
perform daily living activities remains an ambitious project. 
The current design mainly has the following deficiencies: 
(1) This product cannot separate the signals of both upper 
extremities so that the contralesional hemisphere cannot 
spontaneously control both the healthy and the paralyzed 
hands independently. (2) IpsiHand has a flexible exoskeleton 
only for the index finger with a single degree of freedom 
and cannot achieve motion assistance for multiple joints of 
the hand. (3) IpsiHand does not induce neuroplasticity in 
the contralesional cortex, and the restored functions cannot 
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be maintained without the assistance of the BCI device. 
Therefore, compared with traditional rehabilitation, the 
IpsiHand system-assisted rehabilitation improves the Fugl-
Meyer (FM) score by only 0.79 points, far from reaching 
the minimum difference of clinical significance (FM score 
5.25 points).

While various interventions targeting the CNS can effec-
tively increase neuroplasticity, peripheral sensory-motor 
training may play an important part in remodeling brain 
function. Neuromuscular electrical stimulation (NMES) 
provides proprioceptive feedback through the residual sen-
sory afferent pathway to reactivate spared cortical circuits 
and achieve motor recovery [195, 196]. Recent studies have 
established that an NMES-based BCI approach may achieve 
functional recovery in patients with moderate and severe 
chronic stroke, and such recovery can continue to be main-
tained 6–12 months after completing treatment [197]. In 
addition to proprioception, the sense of touch is also essen-
tial for motor control. A closed-loop BCI uses residual touch 
signaling from the patient’s own hand to restore the ability 
to detect object touch and improve motor functions after SCI 
[198]. Notably, it is difficult to use a prosthesis or perform 
any simple task without being able to sense the interact-
ing object. In patients with complete SCI, the brain loses 
all neural connections below the injury site and disrupts 
sensory-motor control of the extremities. Recent studies 
have reported a novel bidirectional BCI that records neural 
activity from the motor cortex and generates sensations by 
intracortical microsimulation of the sensory cortex [192, 
199]. As a result, bidirectional BCI can enable a tetraplegia 
patient to substantially restore motor function with a robotic 
limb [192]. Therefore, we believe that bidirectional closed-
loop BCI integrating sensory feedback and motor control is 
a promising strategy for recovering skilled motor function 
after CNS injury.

Crossing Nerve Transfer Surgery to Reconstruct 
Ipsilaterally‑based Sensory‑motor Function

The brachial plexus (BP) is a network of five nerves from 
distinct spinal cord segments (C5, C6, C7, C8, and T1) con-
taining ~ 80,000 nerve fibers and innervating the upper limb 
[200]. With the widespread use of nerve transfer, we have 
gained more knowledge of the internal anatomy of individ-
ual nerve fibers within the major peripheral nerves. Within 
the BP, the C7 nerve accounts for ~ 20% and contains both 
sensory and motor fibers. The unique feature of the C7 nerve 
is that the its innervation largely overlaps with that of the 
other four nerves that give rise to the BP. Resection of the C7 
nerve usually results in transient weakness and numbness in 
the upper extremity [201, 202]. Therefore, the healthy side 
of the C7 nerve in humans can be used as a donor in cross-
ing nerve transfer surgery. Crossing nerve transfer surgery 

has been widely performed to repair avulsion of the BP by 
reconnecting the injured nerve ends to the C7 nerve on the 
healthy side [203, 204]. Recently, we confirmed the possi-
bility of the creative use of crossing nerve transfer as a new 
peripheral nerve strategy for CNS injury. A crossing nerve 
transfer surgery, named contralateral cervical seventh nerve 
transfer (CC7), was applied to achieve significant functional 
recovery of the paralyzed arm by transferring the C7 nerve 
from the non-paralyzed side to the paralyzed side in a patient 
after brain injury (Fig. 4A) [41]. A unique feature of this 
operation is that the sensory and motor signals of the para-
lyzed upper extremity communicate with the contralesional 
hemisphere through the displaced “left-right crossover” 
nerve. Patients who underwent this surgery showed signifi-
cant improvements, especially in skilled movements of the 
paralyzed hand, as measured by Fugl–Meyer assessment; 
and this recovery led to improved self-care in daily life. In 
addition, TMS and functional magnetic resonance imaging 
(fMRI) showed the establishment of physiological connec-
tivity between the contralesional cortex and the paralyzed 
arm (Fig. 4B). Notably, the functional recovery resulting 
from CC7 surgery is not limited to function innervated by 
the C7 nerve itself. Therefore, there are sufficient reasons 
to believe that CC7 surgery can stimulate neuroplasticity to 
accelerate motor recovery from CNS injury by modulating 
peripheral sensorimotor interactions.

Future Prospects

To date, many emerging neurotechnologies, such as NIBS, 
BCI, and crossing nerve transfer surgery, have supported 
the direct modulation of cortical plasticity in the intact brain 
to improve the fine motor function of the paralyzed limb 
in adult patients after CNS injury. However, a novel tech-
nology is still needed to specifically focus on the coordi-
nated combination of various methodologies to maximize 
their strengths. Sensory input is quite important for motor 
function [205]. Sensory signals affect motor functions by 
transmitting environmental information and intrinsic physi-
ological status as well as by guiding the initiation of the 
motor system [206, 207]. Nevertheless, the modulation of 
sensorimotor integration can reactivate dormant plasticity in 
the adult neocortex. Hence, the next step needs an in-depth 
exploration of the underlying mechanisms of how sensori-
motor integration contributes to skilled hand movements in 
both normal humans and patients.

In this review, we propose that those new therapeutic 
designs should focus on targeting sensorimotor integration 
and combining innovative neurotechnologies to drive neuro-
plasticity in the adult brain to achieve ipsilateral motor con-
trol and thus accelerate the recovery of skilled motor perfor-
mance (Fig. 5). To date, a growing number of amputees are 
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using neuroprosthetics that restore some somatosensation 
[192, 208–210]. The greatest advantage of crossing nerve 
transfer is that the sensory inputs from the paralyzed hand 
can be physiologically transmitted to the ipsilateral (contral-
esional) brain by avoiding the injured side. Future studies 
should pay more attention to bidirectional BCI systems, in 
which sensory enhancement is achieved through peripheral 
stimulation, surgical reconstruction, or patient-specific corti-
cal stimulation and decoding the signals related to motion 
intention during motor preparation to control a robotic pros-
thesis (Fig. 4). We believe that the bidirectional BCI system 
can be used to maximally enhance intrinsic neuroplasticity 

while functionally bridging undamaged ipsilateral motor 
pathways and thus contribute to promoting recovery after 
brain injury.
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Fig. 4   Crossing nerve transfer surgery to improve motor function by 
enhancing neuroplasticity in the contralesional hemisphere in patients 
with unilateral arm paralysis [41]. A Procedure of contralateral C7 
nerve transfer surgery. After harvesting the bilateral C7 nerves in ade-
quate sites, the C7 nerve on the non-paralyzed side (blue) is drawn 
behind the trachea and esophagus via a pre-spinal route to the para-
lyzed side (yellow) and coapted directly to the C7 nerve on the para-
lyzed side. B Functional MRI assessment in patients with CC7 sur-
gery. The changes in brain activation on fMRI are evaluated during 
the 12 months after surgery. Left: Brain activation (yellow) during 

active extension of the paralyzed wrist. Before surgery, activation was 
only evident in the ipsilesional hemisphere. At month 8, activation 
began to appear in both hemispheres. Contralesional activation was 
enhanced and extended to a larger area than ipsilesional activation 
at 10 months after surgery, and it was weaker and covered a smaller 
region at month 12 than at month 10. Right: Brain activation (blue) 
during active extension of the non-paralyzed wrist. Brain activation 
associated with movements of the non-paralyzed wrist was stable in 
the contralesional hemisphere before and after surgery.
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