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Abstract
Genetic syndromes which develop one or more nervous system (NS) tumors as one of the manifestations can be grouped 
under the umbrella term of NS tumor predisposition syndromes. Understanding the underlying pathological pathways at the 
molecular level has led us to many radical discoveries, in understanding the mechanisms of tumorigenesis, tumor progres-
sion, interactions with the tumor microenvironment, and development of targeted therapies. Currently, at least 7–10% of 
all pediatric cancers are now recognized to occur in the setting of genetic predisposition to cancer or cancer predisposition 
syndromes. Specifically, the cancer predisposition rate in pediatric patients with NS tumors has been reported to be as high 
as 15%, though it can approach 50% in certain tumor types (i.e., choroid plexus carcinoma associated with Li Fraumeni 
Syndrome). Cancer predisposition syndromes are caused by pathogenic variation in genes that primarily function as tumor 
suppressors and proto-oncogenes. These variants are found in the germline or constitutional DNA. Mosaicism, however, can 
affect only certain tissues, resulting in varied manifestations. Increased understanding of the genetic underpinnings of cancer 
predisposition syndromes and the ability of clinical laboratories to offer molecular genetic testing allows for improvement in 
the identification of these patients. The identification of a cancer predisposition syndrome in a CNS tumor patient allows for 
changes to medical management to be made, including the initiation of cancer surveillance protocols. Finally, the identifica-
tion of at-risk biologic relatives becomes feasible through cascade (genetic) testing. These fundamental discoveries have also 
broadened the horizon of novel therapeutic possibilities and have helped to be better predictors of prognosis and survival. 
The treatment paradigm of specific NS tumors may also vary based on the patient’s cancer predisposition syndrome and 
may be used to guide therapy (i.e., immune checkpoint inhibitors in constitutional mismatch repair deficiency [CMMRD] 
predisposition syndrome) [8]. Early diagnosis of these cancer predisposition syndromes is therefore critical, in both unaf-
fected and affected patients. Genetic counselors are uniquely trained master’s level healthcare providers with a focus on the 
identification of hereditary disorders, including hereditary cancer, or cancer predisposition syndromes. Genetic counseling, 
defined as “the process of helping people understand and adapt to the medical, psychological and familial implications of 
genetic contributions to disease” plays a vital role in the adaptation to a genetic diagnosis and the overall management of 
these diseases. Cancer predisposition syndromes that increase risks for NS tumor development in childhood include clas-
sic neurocutaneous disorders like neurofibromatosis type 1 and type 2 (NF1, NF2) and tuberous sclerosis complex (TSC) 
type 1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Constitutional Mismatch Repair Deficiency, Gorlin syndrome (Nevoid 
Basal Cell Carcinoma), Rhabdoid Tumor Predisposition syndrome, and Von Hippel-Lindau disease. Ataxia Telangiectasia 
will also be discussed given the profound neurological manifestations of this syndrome. In addition, there are other can-
cer predisposition syndromes like Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 syndrome, among many others 
which also increase the risk of NS neoplasia and are briefly described. Herein, we discuss the NS tumor spectrum seen in 
the abovementioned cancer predisposition syndromes as with their respective germline genetic abnormalities and recom-
mended surveillance guidelines when applicable. We conclude with a discussion of the importance and rationale for genetic 
counseling in these patients and their families.
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Introduction

Genetic syndromes which develop one or more nervous 
system (NS) tumors as one of the manifestations can be 
grouped under the umbrella term of NS tumor predispo-
sition syndromes. Understanding the underlying patho-
logical pathways at the molecular level has led us to many 
radical discoveries, in understanding the mechanisms of 
tumorigenesis, tumor progression, interactions with the 
tumor microenvironment, and development of targeted 
therapies. Currently, at least 7-10% of all pediatric cancers 
are now recognized to occur in the setting of genetic pre-
disposition to cancer, or cancer predisposition syndromes 
[1, 2]. Specifically, the cancer predisposition rate in pedi-
atric patients with NS tumors has been reported to be as 
high as 15%, though it can approach 50% in certain tumor 
types (i.e., choroid plexus carcinoma associated with Li 
Fraumeni Syndrome).

Cancer predisposition syndromes are caused by patho-
genic variation in genes that primarily function as tumor 
suppressors and proto-oncogenes [3, 4]. These variants 
are found in the germline, or constitutional DNA. Mosai-
cism is defined as the presence in an individual of at least 
two cell lines differing in genotype and arising from a 
single zygote [5]. Mosaicism however, can affect only 
certain tissues, resulting in varied manifestations [6]. 
Increased understanding of the genetic underpinnings of 
cancer predisposition syndromes and the ability of clinical 
laboratories to offer molecular genetic testing allows for 
improvement in the identification of these patients. The 
identification of a cancer predisposition syndrome in a 
CNS tumor patient allows for changes to medical man-
agement to be made, including the initiation of cancer 
surveillance protocols. Finally, the identification of at-
risk biologic relatives becomes feasible through cascade 
(genetic) testing [7, 8].

These fundamental discoveries have also broadened the 
horizon of novel therapeutic possibilities and have helped 
to be better predictors of prognosis and survival. The treat-
ment paradigm of specific NS tumors may also vary based 
on the patient’s cancer predisposition syndrome and may 
be used to guide therapy (example: immune checkpoint 
inhibitors in constitutional mismatch repair deficiency 
[CMMRD] predisposition syndrome and targeted therapies 
like MEK inhibitors, described later) [9]. Early diagnosis 
of these cancer predisposition syndromes along with early 
involvement of genetic counselors is therefore critical, in 
both unaffected and affected patients [10].

Cancer predisposition syndromes that increase risks for 
NS tumor development in childhood include classic neu-
rocutaneous disorders like neurofibromatosis type 1 (NF1), 
schwannomatosis and its subtypes (e.g.,: NF2 , SMARCB1 

and LZTR1) and tuberous sclerosis complex (TSC) type 
1 and 2 (TSC1, TSC2). Li Fraumeni Syndrome, Consti-
tutional Mismatch Repair Deficiency, Gorlin syndrome 
(Nevoid Basal Cell Carcinoma), Rhabdoid Tumor predis-
position syndrome, Von Hippel-Lindau disease, and Ataxia 
Telangiectasia will also be discussed given the profound 
neurological manifestations of these syndromes. In addi-
tion, there are other cancer predisposition syndromes like 
Cowden/PTEN Hamartoma Tumor Syndrome, DICER1 
syndrome, among many others which also increase the 
risk of NS neoplasia and are briefly described.

Herein, we discuss the NS tumor spectrum seen in the 
abovementioned cancer predisposition syndromes as with 
their respective germline genetic abnormalities and rec-
ommended surveillance guidelines when applicable. We 
conclude with a discussion of the importance and rationale 
for genetic counseling in these patients and their families.

Neurofibromatosis Type 1 (NF 1)

NF1 is among the most common genetic disorders. The inci-
dence is about one in every 2500–4000 live births making it 
one of the most common cancer predisposition syndromes. 
The incidence does not vary across gender or ethnicity [11, 
12]. It is inherited in an autosomal dominant fashion, though 
50% of cases are thought to occur de novo (are not inherited 
from an affected parent), with near-complete penetrance, 
though the clinical manifestations and phenotypes can vary 
tremendously. Individuals with NF1 are at risk of developing 
tumors in multiple organ systems, particularly the central 
and peripheral nervous systems.

Neurofibromin is a negative regulator of the RAS-MAP 
kinase and mammalian target of rapamycin (mTOR) sign-
aling pathways, and it is a well-known proto-oncogene. 
The role of the MAPK pathway is well-established in cell 
growth and proliferation (Fig. 1). The neurofibromin pro-
tein is coded by the NF1 gene located on the long arm of 
chromosome 17. Germline mutations of NF1 result in a 
multitude of manifestations that can be seen throughout the 
body [13]. Common nervous system tumors that develop 
in NF1 include low-grade gliomas (LGGs), cutaneous 
neurofibromas, plexiform neurofibromas (PNs), malignant 
peripheral nerve sheath tumors (MPNSTs), and high-grade 
gliomas (HGGs). Other non-nervous system tumors seen 
in the NF1 population are juvenile myelomonocytic leuke-
mia (JMML), embryonal rhabdomyosarcoma, gastrointes-
tinal stromal tumors, pheochromocytoma, breast cancers 
and endocrine tumors a monng others. The diagnostic 
criteria for NF1 are well-established, and recommended 
surveillance guidelines have been published (Table 1).
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Low‑grade gliomas (LGG)

Optic pathway gliomas (OPGs) are the most common central 
nervous system tumor seen in NF1. OPGs are seen in up to 
20% of the patients with NF1 and mainly present within the 
first 8 years of life, with a mean age of 4.5 years. On rare 
occasions, OPGs can present at an older age [14]. These 
lesions can often be indolent, but sometimes, they are pro-
gressive and may cause vision impairment. Once diagnosed 
with NF1, patients should undergo annual age-appropriate 
vision exams starting at the age of 1 year to 8 years; the 
recommendations for MRI screening after the age of 8 

years are variable and considered on a case by case basis. 
This recommendation is based upon the relatively lower 
incidence of OPGs and vision dysfunction in this older age 
group [14, 15]. Tumors can arise anywhere from the retro-
orbital optic nerve to optic radiations. In up to 50% of the 
patients, there may be no eye or vision symptoms associated 
with the tumors. Current recommendations are to treat only 
symptomatic tumors, particularly if there is a worsening in 
visual acuity. Due to the high degree of variability in symp-
toms and lack of reliable biomarkers, ophthalmologic exams 
and quantitative vision testing serve as the primary surveil-
lance tools. Screening baseline MRI evaluations are not 
indicated for NF1-OPGs, as detecting these tumors rarely 
changes management in the absence of clinical symptoms 

Fig. 1   Molecular pathways associated with pathogenesis of NF and TSC with point of inhibition
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or signs [16]. Asymptomatic tumors are hence monitored 
with annual to biannual ophthalmologic evaluations. Symp-
tomatic tumors are often treated with chemotherapy and 
monitored with more frequent MRI surveillance and oph-
thalmologic exams [17, 18]. These practices may vary based 
on institution-specific protocols.

NF1-associated gliomas can occur in other parts of the 
central nervous system (CNS), including the brain, spinal 
cord, and cerebellum. Management options include maxi-
mum safe surgical resection symptomatic tumors. If sur-
gery is not a safe option, chemotherapy is often utilized. 
Typically, it is the same chemotherapy used for LGG not 
associated with NF1, like the combination of carboplatin 
and vincristine, vinblastine monotherapy, and in the modern 
era, MAP kinase–targeted therapies, like Mek inhibitors as 
discussed in below. NF1-associated LGGs, including OPGs, 
have a more favorable prognosis when compared to the sub-
group without NF1.

Surgery has a limited role in treating OPGs and is typi-
cally offered when vision is already significantly compro-
mised and non-visual symptoms need management [16, 20]. 
Radiation is seldom used as a treatment modality in NF1-
associated LGG due to the high risk of radiation-induced 
secondary high-grade malignancies, moyamoya disease and 
other radiation toxicities [21]. Chemotherapy is the main 
therapy option for OPGs and other NF-1-associated LGGs 
that require treatment. Packer et al. proposed chemotherapy 
involving vincristine and carboplatin in the early 1990s [22]. 
This was followed by the vinblastine regimen proposed by 
Buffet et al. [23] in the 2000s; both the regimens have simi-
lar effectiveness in stabilizing tumors and are often offered 
as the standard of care. Bevacizumab has been reported to 
improve visual outcomes in select cases; currently, studies 

are underway to evaluate an objective response [24]. In many 
clinical trials, targeted therapies and combinations are being 
studied with recent advancements in understanding molecu-
lar pathways. The MAP kinase pathway can be inhibited at 
many target points. One such trial studying MEK1/2 inhibi-
tor selumetinib showed 40% sustained partial response and 
96% of patients and progression-free survival and was toler-
ated well with minor side effects; completion of the studies 
might replace the current first-line chemotherapy protocols 
with MEK inhibitors especially in OPGs associated with 
NF1 [25] (Figure 1).

Plexiform Neurofibromas (PNs) and Malignant 
Peripheral Nerve Sheath Tumors (MPNSTs)

Plexiform neurofibromas and malignant peripheral nerve 
sheath tumors arise from schwann cells, grow along the 
nerve, and are seen in up to 50% of patients with NF1. These 
tumors are rarely encountered outside the diagnosis of NF 
1. PNs can be present at birth and classically show maxi-
mum growth during childhood [26, 27]. While many PNs 
may be asymptomatic, some can present with significant 
complications and morbidities such as pain, cosmetic issues, 
and disfigurement which may compromise motor function. 
They can also cause pressure symptoms on the surrounding 
tissue, for example, around the carotid arteries or trachea 
which may lead to cardiovascular or respiratory compro-
mise [27, 28–32]. Unlike LGGs, PNs are not sensitive to 
traditional cytotoxic chemotherapy regimens. Surgery is 
limited to debulking of symptomatic PNs. While it can be 
curative, complete resection is rarely safely achieved due to 
a high degree of involvement of the surrounding tissue and 
the underlying nerves. Various treatment options, including 

Table 1   Revised diagnostic criteria for neurofibromatosis type 1: an international consensus recommendation (NF1) [19]

a If only café-au-lait macules and freckling are present, the diagnosis is most likely NF1 but exceptionally the person might have another diagno-
sis such as Legius syndrome. At least one of the two pigmentary findings (café-au-lait macules or freckling) should be bilateral
b Sphenoid wing dysplasia is not a separate criterion in case of an ipsilateral orbital plexiform neurofibroma

Revised diagnostic criteria for neurofibromatosis type 1: an international consensus recommendation

A: The diagnostic criteria for NF1 are met in an individual who does not have a parent diagnosed with NF1 if two or more of the following are 
present:

       • Six or more café-au-lait macules over 5 mm in greatest diameter in prepubertal individuals and over 15 mm in greatest diameter in postpubertal 
individuals a 

       • Freckling in the axillary or inguinal region a 
       • Two or more neurofibromas of any type or one plexiform neurofibroma 
       • Optic pathway glioma 
       • Two or more iris Lisch nodules identified by slit lamp examination or two or more choroidal abnormalities (CAs)—defined as bright, 

patchy nodules imaged by optical coherence tomography (OCT)/near-infrared reflectance (NIR) imaging 
       • A distinctive osseous lesion such as sphenoid dysplasia, b anterolateral bowing of the tibia, or pseudarthrosis of a long bone 
       • A heterozygous pathogenic NF1 variant with a variant allele fraction of 50% in apparently normal tissue such as white blood cells

B: A child of a parent who meets the diagnostic criteria specified in A merits a diagnosis of NF1 if one or more of the criteria in A are present
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antihistamines (ketotifen), antifibrotic (pirfenidone), and 
immunotherapies (thalidomide and interferon), have been 
studied with limited success [27, 33–38]. However, one 
recent phase 2 trial using pegylated interferon (PI) showed 
more than doubling of the time to progression compared 
with placebo, further studies are needed to understand the 
role of immunotherapy in treating PNs [39]. Among the 
targeted therapies, MEK inhibitors have shown the most 
promising results. Recently completed phase 2 trial, most 
children with neurofibromatosis type 1 and inoperable 
PNs had durable tumor shrinkage and meaningful clinical 
benefit from selumetinib [40, 41]. Selumetinib is currently 
FDA approved for children with NF1 with inoperable and 
symptomatic PNs, after the age of 2 years. Another such 
therapy with limited evidence but early data suggestive of 
benefits is cabozantinib, a broad receptor tyrosine kinase 
(RTK) inhibitor. RTK inhibition has been shown to reduce 
the interaction between schwann cells and the surrounding 
tumor microenvironment. In a recently published phase 2 
trial evaluating the response of PNs to cabozantinib, of the 
19 participants assessed for response, 8 (42%) had a partial 
response (PR), and 11 had stable disease (SD). No patient 
had disease progression while on the study. PR was defined 
as ≥20% reduction in tumor volume from baseline on MRI 
[42]. Other trials targeting the mammalian target of rapamy-
cin (mTOR) pathway, which has shown success in treating 
tumors related to neurofibromatosis 2 (NF2), have failed to 
show similar benefit in NF1 related PNs [43–45]. Future 
trials are underway to study the benefit of these medica-
tions in combination in addition to evaluating late effects. 
In approximately 8–13% of cases, PNs can progress to high-
grade sarcoma-like tumors known as malignant peripheral 
nerve sheath tumors (MPNST) which is the leading cause 
of mortality in NF1 patients [46, 47]. Due to the risk of 
transformation of PNs to MPNSTs, radiation is not used to 
treat a classic PN [27, 48, 49] (Fig. 1).

Malignant Peripheral Nerve Sheath Tumors

Sequential inactivation of tumor suppressor genes is pro-
posed as the underlying mechanism of MPNST. Other 
somatic alterations that contribute to high-grade cancerous 
behavior of these tumors in addition to biallelic inactivation 
of the NF1 gene include inactivation of tumor suppressors, 
namely CDKN2A/B, TP53, PTEN, and polycomb repressor 
complex 2 (PRC2). Additionally, the involvement of growth-
promoting genes, such as PDGFR and EGFR, has also 
been implicated along with H3K27me3 alteration [27, 50, 
51]. Risk factors for PNs transforming to MPNSTs include 
NF1 gene microdeletion, overall larger PN burden, atypical 
lesions, nodularity, and prior history of radiation [52]. Clini-
cally, change in consistency or hardening of PNs, develop-
ment of new neurological symptoms in the area involved, 

rapid growth, distinct nodular lesions (DNLs), and refractory 
pain are considered red flags for transformation and warrant 
further investigation with MRI sequences including diffu-
sion-weighted imaging .18Fluorodeoxyglucose (FDG)-PET 
can also be considered, and FDG-PET scan can sometimes 
distinguish between benign growth of PNs versus malig-
nant MPNST by demonstrating increased FDG uptake in the 
latter. Similarly, a combination of mean apparent diffusion 
coefficient (ADC) value and absence of split fat is excel-
lent for discriminating malignant from benign PNSTs [12, 
52–54]. Though tissue biopsy is still the gold standard for 
diagnosis, it might not always be safe to perform.

MPNSTs are aggressive and pose significant treatment 
challenges. Similar to PNs, there is a limited role of cyto-
toxic chemotherapy and radiation. Surgical options, includ-
ing those using fluorescence techniques, are considered the 
first line to reduce tumor burden. Currently, many clinical 
trials are underway to study the role of targeted therapies 
alone and in combination. Many immune checkpoint inhibi-
tors and vaccine therapies are also currently being tested, 
details of which are beyond the scope of the article.

High‑Grade Gliomas (HGG)

NF1 patients are also at increased risk of developing HGG 
and most cases present in adulthood. The somatic molecu-
lar landscape of these HGGs is similar to that of MPNSTs, 
and similar additional secondary mutations are seen mainly 
in CDKN2A/B, TP53, ATRX, TERT, and PI3 kinase path-
ways along with the underlying germline NF1 mutation 
[15, 55]. It should be noted that alterations in IDH1 and 
histone proteins seen in adult HGGs are not typically seen 
in NF1-associated HGGs [56]. Overall, the prognosis of 
NF1-associated HGGs is better than in patients without 
NF1 [15, 57]. Due to its relative rarity, the treatment para-
digm is yet to be universally standardized. Radiation along 
with temozolomide are often used, similarly to sporadic 
HGG, as they share similar tumor biology and harbor sim-
ilar genetic mutations as mentioned above. Other novel 
therapies are still being tested in this population.

Neurofibromatosis Type 2 (NF 2)

NF2 was previously grouped under the umbrella term of 
neurofibromatosis and then considered a separate syndrome 
only after discovering the underlying genetic mutation in the 
NF2 gene on chromosome 22. NF2 is an autosomal domi-
nant disease with distinct clinical manifestations and thera-
peutic challenges as compared to NF1.

The constellation of these manifestations along with the 
family history is used in the Manchester criteria, which 
remains the standard for diagnosis (Table 2). Due to signifi-
cant mosaicism, genetic testing might be negative in up to 
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15% of the patients even if they meet the clinical criteria, 
in such cases testing for NF2 mutation in tumor tissue and 
germline might have a better yield. Genetic testing is often 
not required for the diagnosis. NF2 affects 1 in 25000 peo-
ple worldwide [58, 59]. Common nervous system tumors in 
NF2 involve the cells covering the cranial nerves (schwan-
nomas), brain (meningiomas), and ventricles and spinal 
canal (ependymomas). Most of the tumors arising in NF2 
are low-grade, and malignant transformation is rare. How-
ever, patients may suffer from significant morbidity due to 
pressure symptoms on surrounding cranial nerves (CNs) and 
brainstem and spine, creating chronic progressive symptoms 
which are often challenging to treat and ultimately lead to 
death [60, 61].

The relationship between the severity of the symptoms 
and underlying germline NF2 variant is becoming more 
evident. It is now known that biallelic loss of NF2 gene is 
necessary for tumor development in schwannomas. Patients 
with truncated mutations present at an earlier age and have 
more severe symptoms when compared to missense muta-
tions which have a milder course [62].

Schwannomas

As the name suggests, schwannomas arise from the schwann 
cells which are responsible for the production of myelin and 
play a similar role to the oligodendrocyte in the central nerv-
ous system [63]. NF2-associated schwannomas most com-
monly arise within the 8th cranial nerve (CN), and multiple 
foci along the same nerve can be involved. Symptoms are 
mainly due to the pressure effects on the surrounding cra-
nial nerves and brainstem. For example, schwannoma of 8th 
CN often presents clinically with hearing loss due to direct 
effects upon the cochlear part of the CN 8. This can then 
progress to vestibular symptoms and facial weakness as the 
vestibular part of the 8th CN and facial nerve lie in close 
anatomic proximity. Current data suggests that the size of 
the tumor does not directly correlate to the severity of hear-
ing loss [64, 65].

Since the schwannoma typically does not lead to rapid 
mortality, the management is mainly on preserving the func-
tion of the nerve and patient functional outcomes such as 

hearing whenever possible. This limits the role of surgery 
and radiation in managing the disease. Currently, bevaci-
zumab a VEGF inhibitor (Figure 1) is considered the first 
choice in treating symptomatic CN8 schwannomas, as mul-
tiple studies have shown benefit in tumor size and hearing 
[66–68]. Bevacizumab has shown to cause tumor volume 
reduction in 40% of the tumors and 40% improvement in 
hearing loss. While bevacizumab may be used to control size 
for either unilateral (hearing ear) or bilateral tumors, when 
used for hearing loss alone, it is generally withheld until an 
only functioning/hearing ear begins to fail. Another phase 2 
study using lapatinib, an EGFR and Erb2 inhibitor, has also 
demonstrated some improvements in both tumor volumes 
and hearing and may be considered in the management [69].

With recent advancements in the understanding of genetic 
and molecular underpinnings, several clinical trials are 
underway investigating different therapeutic options. Some 
of them include the COX2 inhibitor aspirin (NCT03079999), 
MEK inhibitor selumetinib (NCT03095248), tyrosine kinase 
inhibitor brigatinib (NCT04374305), and crizotinib, which 
inhibits focal adhesion kinase 1 (FAK1) (NCT04283669).

Meningiomas

Meningiomas are the second most common tumor typical 
of NF2. These can develop anywhere in the craniospinal 
axis through the length of meninges; however, they typi-
cally occur intracranially in the majority of the cases [70]. 
Upto 80% of patients with NF2 develop meningiomas and 
multifocal disease is seen in almost all of these patients. The 
presence of multiple meningiomas or early onset meningi-
omas should raise suspicion of NF2, as this might be the first 
presenting sign [71–73]. Treatment options for meningiomas 
are limited. Surgical resection is typically reserved for symp-
tomatic patients. Radiation therapy is used on a case-by-case 
basis when complete surgical resection is not possible, radia-
tion is used with caution in the setting of NF2 meningiomas. 
lapatinib, everolimus, and combination everolimus + octreo-
tide and bevacizumab + everolimus have shown benefit in 
slowing the tumor growth, none have shown any benefit in 
tumor shrinkage [74–78].

Table 2   Manchester criteria for diagnosis of NF2, diagnosis of Nf2 requires to meet primary and added features as mentioned below

Primary finding Added features needed for diagnosis

Bilateral Vestibular Schwannoma None
First-degree relative with NF2 Unilateral Vestibular Schwannoma, or Any two (2) other NF2-Associated lesions: Meningioma, Schwannoma, 

Ependymoma, or Juvenile Cataracts
Unilateral Vestibular Schwannoma Any two (2) other NF2-Associated lesions: Meningioma, Schwannoma, Ependymoma, or Juvenile Cataract
Multiple Meningiomas Unilateral Vestibular Schwannoma, or Any two (2) other NF2-Associated lesions:Schwannoma, Ependymoma, 

or Juvenile Cataracts
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Meningioangiomatosis

Meningioangiomatosis was initially considered a benign 
hamartomatous lesion with meningeal and vascular compo-
nents; however, it is increasingly being recognized as a pre-
cancerous lesion. It can be unifocal or multifocal in nature 
and clinicians are advised to follow with serial MRIs [79–82].

Ependymomas

Ependymomas are seen in about 35–50% of the patients 
with NF2, but only 20% of the patients report symptoms. 
These most commonly arise in the spinal cord and cervical 
medullary junction [83, 84]. Ependymomas are more often 
seen in patients with truncating NF2 mutations, highlighting 
that those with truncating mutations have a more aggressive 
disease course [72]. Surgery is considered the standard of 
care with a goal of gross total resection when feasible and 
safe, especially in symptomatic patients. Radiation therapy 
(both newer proton beam and traditional photon therapy) is 
well established in the treatment of sporadic ependymomas 
and is considered with caution considering the underlying 
NF2 mutation [27, 85, 86].

Schwannomatosis

Schwannomas can also arise in other conditions which have 
overlapping clinical manifestations with NF2. These condi-
tions are known as schwannomatosis and can be further clas-
sified as SMARCB1 (previously INI) and LZTR1-related 
schwannomatosis based on underlying germline mutation. 
Schwannomatosis is yet to be well understood. It is an 
autosomal dominant disorder with incomplete penetrance. 
About 5% of patients with germline pathogenic SMARCB1 
variants might develop meningiomas. Germline pathogenic 
LZTR1 mutations can present with only unilateral vestibular 
schwannomas along with other intradermal tumors like NF2 
but often lack other ocular manifestations like posterior sub-
capsular cataracts and retinal findings and skin findings [27, 
87, 88]. It is important to make the distinction between these 
three overlapping conditions as the course of the tumors, 
management, and surveillance guidelines may change based 
on the diagnosis. Hence, the revised Manchester criteria dif-
ferentiate LZTR1 as a separate condition from NF2 [87, 89] 
(Table 2).

Constitutional Mismatch Repair Deficiency 
(CMMRD)

CMMRD is one of the most aggressive cancer predisposi-
tion syndromes, with typical onset of malignancy in child-
hood. This rare autosomal recessive syndrome is caused by 

bi-allelic pathogenic variants in one of the mismatch repair 
genes: MLH1, MSH2, MSH6, and PMS2, and rarely EPCAM 
or MSH3. Single variants in these genes cause autosomal 
dominant Lynch Syndrome (LS), or Non-polyposis Heredi-
tary Colorectal Cancer Syndrome. LS involves a predispo-
sition to the development of gastrointestinal and genitouri-
nary tract cancers with a mean age of first tumor onset of 45 
years old [90–92]. While patients with Lynch syndrome can 
develop CNS tumors, it is rare. This syndrome is considered 
an adult-onset cancer predisposition syndrome. Therefore, 
current LS surveillance guidelines do not recommend screen-
ing for CNS tumors or any cancer screening in childhood 
[93, 94].

The process of DNA replication is a highly conserved 
process, which relies on DNA polymerases and the mis-
match repair (MMR) system. Specifically, the exonuclease 
domains of DNA polymerases along with the mismatch 
repair complex are responsible for monitoring and repair-
ing DNA replication errors. As a result, the hallmark of mis-
match repair deficiency is an accumulation of point muta-
tions and microsatellite instability [95].

Cancers in constitutional mismatch repair deficiency can 
arise as young as infancy and throughout childhood. The 
mean age for the first tumor presentation is reported to be 
7.5 years old, though there is a wide range reported (0.4–39) 
[94]. Brain tumors are the most common tumors reported 
in patients with CMMRD and present at an average age 
of 10 years. Although a variety of brain tumors have been 
reported, including medulloblastomas, high-grade gliomas 
(HGG) are the most common type seen [93, 94, 96, 97]. 
Non-CNS malignancies reported in CMMRD include T cell 
lymphoblastic lymphoma, colorectal carcinoma, and other 
blood and gastrointestinal malignancies along with some of 
the neurocutaneous features described below.

Surveillance guidelines for patients with CMMRD have 
been proposed by both the “Care 4 CMMRD,” an Inter-
national Biallelic Mismatch Repair Deficiency (BMMRD) 
Consortium and by the American Association of Cancer 
Research (AACR) Childhood Cancer Predisposition Work-
shop. They include brain MRI imaging at diagnosis and 
every 6 months thereafter. In addition, whole body MRI 
(WB-MRI) should begin by age 6 y/o (when the need for 
anesthesia is lessened) and be performed annually. Since 
body MRIs are not sensitive enough for brain tumors, brain 
MRIs are still recommended bi-annually [93, 94, 98]. Addi-
tional surveillance recommendations are included in Table 3.

Interestingly, there is an overlap between some neurocu-
taneous findings between CMMRD and NF1; patients with 
both diseases can develop café au-lait macules (CALM). 
While 99% of patients with NF1 develop CALMs by the 
age of 1 year, CALMs are known to develop in 62–71% 
of the patients with CMMRD [93, 96, 97]. However, many 
CMMRD patients do not have greater than 5 CALMs 
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with the required measurements and age to meet the cri-
teria for NF1 (Table 1). Furthermore, there appears to be a 
subtle difference between the morphologic appearance of 
CALMs. Patients with CMMRD develop a jagged “coast 
of Maine appearance” due to varying degrees of pigmen-
tation and appear different from the more uniformly pig-
mented and smooth margined CALMs seen in NF 1 patients 
[93, 99–102]. Axillary freckling, Lisch nodules, cutaneous 
neurofibromas, and tibial pseudoarthrosis, all of which are 
features of NF1, are also reported in CMMRD with vary-
ing frequency. Hence, if the patient shows phenotypic mani-
festations of NF1 but tests negative for NF1 and SPRED1 
gene alteration (causing legius syndrome), CMMRD should 
be considered in the differential diagnosis [93, 96, 97, 
103–106].

Tuberous Sclerosis Complex (TSC)

TSC is another neurocutaneous syndrome that involves the 
development of a unique set of symptoms involving multi-
ple organ systems. TSC is the result of suppression of one 
of the tumor suppressor genes namely TSC1 located on 
chromosome 9 and TSC 2 on chromosome 16. TSC1 and 
TSC2 encode for proteins hamartin and tuberin respec-
tively, both of which are involved in the suppression of 
the mTOR pathway via RAS homologue enriched in the 
brain (Rheb). These are inherited in an autosomal dominant 
fashion with near-complete penetrance, but 2∕3 of cases 
are thought to be from de novo mutations [107–110]. The 
spectrum of manifestations includes typical skin findings, 
such as hypomelanotic macules, ungual fibromas, shagreen 
patch, and angiofibromas as well as angiofibromas lym-
phangiomyomatosis, and hamartomatous growths in mul-
tiple organ systems.

In the brain, hamartomatous growth, focal cortical dys-
plasia, and other developmental anomalies can present 
even before birth. Epilepsy develops in 70–80% of patients 
with TSC and is often refractory to traditional anticon-
vulsants. Frequently, patients develop epileptic encepha-
lopathy in the form of infantile spasms. Current treatment 
guidelines recommend using ACTH and vigabatrin as the 
first-line therapy. Recently, EPISTOP demonstrated that 
when used prophylactically in patients with TSC (with-
out epilepsy), vigabatrin reduces the risk and severity of 
epilepsy [111].

Another unique finding in TSC is the clustering of 
cells lining the ventricles named subependymal nodules 
(SEN) which occur in 80–90% of the patients. Approxi-
mately 15% of subependymal nodules transform into a 

more aggressive subependymal giant cell astrocytoma 
(SEGA) [112–114]. Other features with diagnostic criteria 
are listed in Table 4 (Washington DC 2012 TSC meeting 
report). A better understanding of the mTOR pathway and 
its role in TS led to clinical trials testing mTOR inhibitors, 
ultimately establishing everolimus as an FDA approved 
drug in the management of TSC-associated SEGAs as 
discussed below.

SEGA

Subependymal nodules and low-grade hamartomas are 
mostly asymptomatic. However, depending on the loca-
tion within the ventricles, these might cause blockage of 
CSF flow resulting in obstructive hydrocephalus. While 
SENs mostly develop in the first 2 decades of life, some 
congenital cases have been reported. When diagnosed 
congenitally, they are known to grow at a faster rate 
when compared to non-congenital SEGAs [115–123]. In 
one large multicenter study of 2200 patients with TSC, it 
was found that SEGAs developed in 25% of the patients. 
There is a higher rate in patients with a TSC2 (33%) 
compared to patients with a TSC1(13%). SEGAs were 
symptomatic in 42% of patients, and the most common 
presenting symptoms included the following: seizures or 
increased seizure frequency (15%), regression of mile-
stones (10%) or behavioral change (12%) [124].

SEGAs are typically classified as low-grade gliomas and 
mostly have an indolent course. Currently, they are defined 
by imaging criteria set in 2013 by an international panel of 
experts [125]. Once a diagnosis of TSC is made, a base-
line MRI is recommended to evaluate for underlying SENs 
and SEGAs [126]. SEGAs show contrast enhancement, and 
classically, continued tumor growth on serial surveillance 
MRIs. These characteristics help differentiate them from 
SENs. Like many SENs, SEGAs can also be asymptomatic. 
Current recommendations are to treat symptomatic SEGAs 
and to monitor asymptotic SEGAs and SNs with serial sur-
veillance MRIs.

Everolimus is FDA approved for the treatment of 
SEGAs, and in the modern era, surgery is reserved for 
select patients, typically with acute symptoms such as 
hydrocephalus [110, 127–130]. Everolimus has shown to 
be effective in shrinking SEGAs by 30–50% and has also 
shown benefit in the control of underlying epilepsy which 
can often be refractory to classic anticonvulsants. Simi-
lar effects are also seen on renal angiomyolipomas [129, 
131–133]. The role of mTOR in other manifestations of 
TSC including TSC-associated neuropsychiatric disorder 
(TAND) is yet to be well understood.
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Von Hippel–Lindau Syndrome (VHL)

VHL is caused by pathogenic germline variants in the 
VHL gene, located on chromosome 3. This encodes for 
the pVHL protein, which regulates the response of a cell to 
hypoxia via hypoxia-inducible transcription factor (HIF) 1 
and 2. The loss of a pVHL allele results in a skewed ratio 
of HIF 1 to HIF 2 resulting in an imbalance of the VHL/
HIF axis and tumorigenesis [134]. VHL is inherited in an 
autosomal dominant fashion with an incidence of around 
1 in 36000 live births, but up to 25% of cases occur due to 
a de novo mutation, but up to 25% of cases occur due to a 
de novo mutation [135–142].

VHL is not associated with malignant tumors of nerv-
ous system origin; however, hemangioblastomas are seen 
in 60–80% of patients with VHL and most often develop 
along the craniospinal axis, often causing neurologic 
symptoms due to direct pressure effects on adjacent struc-
tures or spontaneous hemorrhages [143, 144]. Patients 
with VHL are also known to develop endolymphatic sac 
tumors in the temporal bone. About 15% can also present 

with hearing loss, vertigo, tinnitus, and headaches [145, 
146]. Hemangioblastomas can remain dormant for long 
periods of time before becoming symptomatic due to sud-
den growth or hemorrhage [147].

Other manifestations of VHL include neuroendocrine 
tumors of the pancreases, renal angiomas, renal cell carci-
nomas, serous cystadenomas, paragangliomas, and pheo-
chromocytoma (PPGLS). VHL can be further classified 
as type 1 (truncating or missense mutation developing 
pheochromocytoma) and type 2 (missense mutation usu-
ally not developing pheochromocytoma). A better under-
standing of the VHL axis may lead to unique surveillance 
guidelines in the future based upon type (1 or 2) [136]. 
It should be noted that patients with VHL show variable 
degrees of mosaicism impacting clinical management and 
counseling [148].

Pheochromocytomas and paragangliomas (PPGLs) aris-
ing from adrenal chromaffin cells can also be seen in other 
mutations along the VHL/HIF axis, including PHD, VHL, 
HIF-2A (EPAS1), and SDHX (VHL Figure 2). About 40% 
of PPGLs result from germline mutations [149].

Table 4   Tuberous sclerosis complex clinical features and diagnosis

a Includes tubers and cerebral white matter radial migration lines
b A combination of the two major clinical features (LAM and angiomyolipomas) without other features does not meet criteria for a definite diag-
nosis. A combination of these two major clinical features does not meet criteria for a definite diagnosis

Diagnostic criteria for tuberous sclerosis complex 2012

A. Genetic diagnostic criteria The identification of either a TSC1 or a TSC2 pathogenic mutation in DNA from normal tissue is sufficient 
enough to make a definite diagnosis of Tuberous Sclerosis Complex (TSC)

B. Clinical diagnostic 
criteria

Major features 1. Hypomelanotic macules (≥ 3, at 
least 5-mm diameter)

2. Angiofibromas (≥ 3) or fibrous 
cephalic plaque

3. Ungual fibromas (≥ 2)
4. Shagreen patch
5. Multiple retinal hamartomas
6. Cortical dysplasias a
7. Subependymal nodules
8. Subependymal giant cell astro-

cytoma
9. Cardiac rhabdomyoma
10. Lymphangioleiomyomatosis 

(LAM)b

11. Angiomyolipomas (≥ 2) b

Definite diagnosis: Two major 
features or one major feature 
with ≥ 2 minor features

Possible diagnosis: Either one major 
feature or ≥ 2 minor features

Minor features 1. “Confetti” skin lesions
2. Dental enamel pits (> 3)
3. Intraoral fibromas (≥ 2)
4. Retinal achromic patch
5. Multiple renal cysts
6. Nonrenal hamartoma
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Created with BioRender.com

Current NIH and VHL Alliance recommendations for sur-
veillance in individuals with VHL are to obtain MRI imaging 
of the brain and spinal cord with contrast every two years 
from the age of 11 years old onward [150]. If neurologi-
cal symptoms are seen, then imaging should be considered 
sooner. Additionally, MRI without contrast is recommended 
around the 4th month of pregnancy to evaluate for the need 

for cesarean section in the presence of retinal, brain, or spi-
nal lesions within the developing fetus [136, 140, 147, 151, 
152]. This is accompanied by detailed neurological testing, 
ophthalmologic and hearing tests as mentioned in Table 3.

Recently, Belzutifan a hypoxia-inducible factor inhibitor 
was approved to treat adults with VHL-associated renal cell 
carcinoma, central nervous system hemangioblastomas, and 
pancreatic neuroendocrine tumors that do not require imme-
diate surgery [153].

Fig. 2   Pathogenesis of Von Hippel-Lindau syndrome in VHL/HIF axis
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Genetic counseling should be a part of management and 
should be offered early. As 80% of the patients have an 
affected parent and 20% of patients have de novo mutations, 
all affected individuals have a 50% chance of passing down 
VHL to their biological children.

Ataxia Telangiectasia (AT)

As the name suggests, this syndrome is primarily charac-
terized by ataxia secondary to progressive cerebellar atro-
phy and development of telangiectasias. AT is an autoso-
mal recessive disorder with an incidence of 1 in 20,000 to 
100,000 people [154]. Mutations in the “ataxia telangiec-
tasia mutated” (ATM) gene located on chromosome 11 are 
known to cause carcinogenesis and can promote malignant 
transformation. Gene products of ATM genes are normally 
involved in repairing double-strand DNA breaks. Although 
reported, primary CNS tumors are not a cardinal manifes-
tation. Other characteristic cancers of AT are lymphomas, 
leukemias, breast, and gastric cancers. Patients are particu-
larly radiosensitive and ionizing radiation should be avoided 
[147, 155, 156].

Surveillance guidelines for individuals with AT have 
been recommended by the Pediatric Cancer Predisposition 
Workshop [157]. Routine MRI surveillance in patients with 
brain and spinal lesions should be considered. If neurologi-
cal symptoms arise, surgery can be considered with cau-
tion. Although no targeted therapies have been successful 
in treating the underlying disorder or manifestations, beta-
methasone has shown some improvement in ataxia and can 
be tried if ambulation is affected [158]. Patients with AT can 
have poor ambulation and often develop early wheelchair 
dependency. Only 50% of the patients will survive into their 
20s [159, 160].

Nevoid Basal Cell Carcinoma Syndrome 
(NBCCS or Gorlin Syndrome)

NBCCS or Gorlin syndrome has an incidence of 1:15,000 
to19,000 births and is caused by an underlying germline 
mutation in the sonic hedgehog (SHH) pathway, specifi-
cally in patched1 (PATCH1) gene and suppressor of fused 
(SUFU) gene, which are inherited in an autosomal dominant 
fashion [161–164]. About 5% of patients develop medul-
loblastomas in the course of the disease, and most of them 
arise before the age of 3 years old [165–167]. Often medul-
loblastoma might be the first presenting sign, and therefore, 
a high level of suspicion is needed. Detailed family history 
and a detailed skin exam should be performed in those chil-
dren less than 3 years old presenting with medulloblastoma, 
particularly if the subgrouping is SHH. Other features that 
help in the clinical diagnosis include jaw keratocyst, palmar 
and plantar pits, multiple basal cell carcinomas, and MRI 
findings of lamellar calcification of falx or clear evidence of 
calcification in a young child. The Jones criteria are often 
used to make the diagnosis and is described in Table 5 
[168]. Patients who receive radiation for treatment of their 
medulloblastoma have the risk of developing a large num-
ber of basal cell carcinomas within the radiation entrance 
fields, further stressing the importance of early diagnosis 
[169, 170].

Rhabdoid Tumor Predisposition Syndrome 
(RTPS)

RTPS results from germline loss-of-function muta-
tions in the SMARCB1 gene and differs phenotypi-
cally from schwannomatosis though both the syndromes 

Table 5   Jones criteria for diagnosis of Gorlin syndrome. A diagnosis can be made when 2 major or 1 major and 2 minor criteria are fulfilled

Major criteria Minor criteria

Lamellar (sheet-like) calcification of the falx or clear evidence of calcification 
in an individual younger than age of 20 years

Childhood medulloblastoma

Lympho-mesenteric or pleural cysts
Jaw keratocyst Macrocephaly (OFC > 97th centile)
2 or more palmar/plantar pits Cleft lip/palate
Multiple BCCs (more than five in a lifetime) or a BCC before the age of 

30 years
Vertebral/rib anomalies such as bifid/splayed/extra ribs or bifid 

vertebrae
First degree relative with Gorlin Syndrome Preaxial or postaxial polydactyly

Ovarian/cardiac fibromas
Ocular anomalies (cataract, developmental defects, and pigmentary 

changes of the retinal epithelium)
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share common genetic mutation. More recently, ger-
mline SMARCA4 mutations have also been associated 
with RTPS. These are both transmitted in an autosomal 
dominant fashion. Patients with germline mutations in 
SMARCB1 are classified as RTPS type 1 and patients 
with germline mutations in SMARCA4 are categorized as 
RTPS type 2 [171–174]. Patients with SMARCB1 muta-
tions have shown more aggressive tumor types like atypi-
cal teratoid rhabdoid tumors (AT/RT) and intracranial 
meningiomas, schwannomas, and malignant peripheral 
nerve sheath tumors in the peripheral nervous system. 
Whereas, patients with SMARCA4 pathogenic variants 
harbor more risk of ovarian and thoracic carcinoma, in 
addition to the rhabdoid tumors. AT/RT can be the first 
manifestation, and hence, the current recommendation 
is to test for germline mutations in both the genes in all 
newly diagnosed cases of AT/RT [175–177]. Underlying 
germline mutation in SMARCB1 also indicates an overall 
poor prognosis.

Initial diagnosis of RTPS can be established after genetic 
confirmation of germline heterozygous mutation in either of 
the two genes in a patient with rhabdoid tumor anywhere in 
the body, and/ or a family history of rhabdoid tumors and/
or other typical tumors as described above [178].

Surveillance recommendations have been published by 
the AACR Pediatric Cancer Predisposition Workshop and 
suggest MRI brain and ultrasound of the abdomen every 
three months from the day of diagnosis till the age 5 years 
and whole-body MRI at the age 5 years [171]. This recom-
mendation was made only for truncating/loss of function 
mutations in the SMARCB1 gene. No recommendations 
were made on brain imaging of SMARCA4 genes and ger-
mline missense mutations of SMARCB1. The only recom-
mendation for SMARCA4 was abdominal ultrasound every 
6 months and consideration of oophorectomy if considered 
high risk after childhood [171].

Li‑Fraumeni Syndrome (LFS)

LFS is an autosomal dominant disorder resulting from 
germline pathogenic variants in the TP53 gene. The TP53 
tumor suppressor gene is located on chromosome 17. 
In addition to germline variants causing LFS, somatic 
(tumor) mutations in TP53 are some of the most common 
genetic alterations in human cancer [179].

Diagnosis of Li-Fraumeni can be made in a patient 
with a heterozygous germline mutation in TP53 and/or a 
patient meeting all the 3 diagnostic criteria, including the 
following: development of sarcoma before 45 years; one 
first-degree relative with any cancer diagnosed before 45 
years; and one first or a second-degree relative with any 

cancer diagnosed before age of 45 years or a sarcoma at 
any age [180].

The risk of CNS tumors in LFS is well-established, and 
numerous brain tumors have been described such as medul-
loblastomas, astrocytomas, and choroid plexus carcinomas. 
The incidence of brain tumors in LFS can be estimated to be 
around 12% and appear to have a bimodal distribution with 
the first peak occurring around infancy to early childhood and 
a second, smaller peak at about the 3rd to 4th decade of life 
[181–183]. Females have a higher risk of tumors including 
brain tumors when compared to males [184, 185]. The impli-
cations of germline TP53 abnormalities on medical decision-
making and prognosis remain poorly understood; however, 
all individuals with LFS are highly susceptible to the DNA-
damaging effect of radiation, increasing the risk for secondary 
malignancies within radiation therapy fields [186].

Currently, the modified Toronto protocol of 2017 recom-
mends annual brain MRIs; the first one should be performed 
with contrast and the subsequent ones without contrast if no 
abnormality is observed [187].

Surveillance guidelines for pediatric patients with LFS 
are available through the AACR Pediatric Cancer Predispo-
sition Workshop and summarized in Table 3 [187].

Other Cancer Predispositions with CNS 
Tumors

Other rare cancer predisposition syndromes with a risk of 
developing CNS tumors are described below.

Multiple Endocrine Neoplasia Type 1 (MEN‑1)

This autosomal dominant disorder of the tumor suppressor 
gene MEN1 can present with pituitary adenoma or tumors of 
the pancreas and parathyroid glands. The pituitary adenomas 
are likely to be prolactinomas and are more resistant to treat-
ment when compared to the ones seen in the general popula-
tion [188–190]. Neurologic symptoms mainly arise due to 
direct local pressure on the pituitary often causing vision 
loss and disturbances in the hypothalamic-pituitary axis.

Rubinstein Taybi Syndrome (RTS)

RTS is an autosomal dominant disorder linked to 
CREBBP gene products which plays a regulatory role in 
SHH and AMP regulated gene expression. An increased 
risk of medulloblastoma, oligodendroglioma, and menin-
giomas has been reported. Other morphological features 
that help raise suspicion of this diagnosis include broad 
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thumbs, broad great toes, and distinctive facial features 
[191–194].

Cowden Syndrome (CS)

CS is an autosomal dominant syndrome with an underlying 
mutation in PTEN which has been linked to a higher risk of 
brain tumors, specifically cerebellar dysplastic gangliocy-
toma [195–197]. PTEN mutations have also been described 
in various other types of cancers.

Melanoma‑Astrocytoma Syndrome

First described by Kaufman et al in 1993, melanoma-astrocytoma 
syndrome is now known to have mutations in CDKN2A. Many 
families have been described presenting with both melanomas 
and astrocytomas. Genetic testing should be considered if skin 
findings are concerning [198–204].

DICER1 Syndrome

DICER1 Syndrome, previously called Pleuropulmonary 
Blastoma (PPB) Syndrome, is caused by germline patho-
genic variants in the DICER1 gene. This autosomal domi-
nant syndrome increases the risk for a broad spectrum of 
both benign and malignant neoplasia, including pleuropul-
monary blastoma, cystic nephroma, genitourinary embryo-
nal rhabdomyosarcoma, ovarian Sertoli Leydig cell tumors, 
and thyroid carcinoma. Specifically, CNS manifestations 
can include metastatic PPB, pituitary blastoma, pineoblas-
toma, and ciliary body medulloepithelioma [205].

Genetic Counseling

All individuals suspected to have a hereditary cancer pre-
disposition syndrome should be referred to a cancer genetic 
counselor or a pediatric genetics clinic. Genetic counselors are 
trained to provide pre-test counseling, obtain informed con-
sent for genetic testing, and select the optimal genetic test for 
each patient. Once genetic testing results become available, 
genetic counselors are trained to facilitate a discussion of rec-
ommended cancer surveillance for children and their families. 
Genetic counselors are also trained to provide psychosocial 
support to patients undergoing an evaluation for a cancer pre-
disposition syndrome, as well as to coping and adapting to 
living with the information once results become available).

Conclusion

Cancer predisposition syndromes might present to neurolo-
gists and oncologists alike in pediatric population or later 
as adults. Early genetic counseling is imperative and should 

be part of routine medical care. A detailed clinical history 
and examination will help raise suspicion, further confirmed 
with appropriate genetic testing. Patients and families can 
thus be appropriately subjected to screening measures, aid-
ing not only in potential early diagnosis and management 
altering the course of the disease but also in family plan-
ning. As we continue to understand the complex interplay 
of genetic and molecular pathways, more diagnostic and 
therapeutic possibilities are being uncovered and surveil-
lance guidelines continue to be updated in line with newer 
research.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s13311-​022-​01277-w.
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