Skip to main content
. 2022 Nov 22;16:1046268. doi: 10.3389/fnins.2022.1046268

TABLE 4.

Classification performance of ASD identification achieved by six different methods on four datasets (i.e., OHSU, NYU, USM and UCLA) with rs-fMRI data.

Site Method Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)
OHSU SVM 53.8 ± 5.2 55.1 ± 6.1 48.9 ± 7.2 52.6 ± 6.7
SVM-ATM 70.9 ± 3.7 69.9 ± 5.6 66.8 ± 4.1 70.1 ± 5.5
MLP 64.0 ± 4.5 56.5 ± 3.9 61.6 ± 4.2 60.3 ± 4.7
Autoencoder 74.0 ± 3.5 66.6 ± 2.9 75.5 ± 4.7 71.5 ± 4.1
BLS 75.5 ± 5.1 66.3 ± 3.8 72.6 ± 4.9 75.3 ± 3.9
Ours 80.8 ± 3.8 76.9 ± 7.7 84.6 ± 7.7 83.3 ± 8.3
NYU SVM 57.1 ± 2.5 50.3 ± 3.5 62.2 ± 2.7 57.8 ± 3.9
SVM-ATM 71.2 ± 5.1 53.3 ± 4.2 81.0 ± 1.2 69.1 ± 6.5
MLP 64.3 ± 4.2 68.4 ± 3.7 60.6 ± 3.9 57.1 ± 4.3
Autoencoder 65.7 ± 3.2 68.8 ± 2.6 63.2 ± 2.7 61.1 ± 4.8
BLS 69.7 ± 3.5 67.4 ± 6.3 71.1 ± 1.1 70.8 ± 1.4
Ours 71.4 ± 5.7 75.0 ± 1.5 68.4 ± 9.4 66.7 ± 9.8
USM SVM 64.7 ± 5.1 60.6 ± 1.9 66.9 ± 5.1 60.7 ± 3.9
SVM-ATM 69.6 ± 4.6 44.3 ± 3.8 68.2 ± 6.3 61.8 ± 4.3
MLP 64.1 ± 4.1 61.2 ± 3.8 65.4 ± 4.2 62.9 ± 3.8
Autoencoder 62.5 ± 2.8 60.0 ± 3.2 66.3 ± 4.5 62.5 ± 4.1
BLS 76.9 ± 3.1 78.5 ± 2.9 79.8 ± 3.9 82.2 ± 3.9
Ours 81.6 ± 2.9 84.8 ± 4.1 76.0 ± 0.9 86.6 ± 0.3
UCLA SVM 65.1 ± 5.7 68.3 ± 3.5 60.8 ± 4.7 65.2 ± 3.3
SVM-ATM 72.2 ± 3.1 73.8 ± 4.1 68.9 ± 3.8 69.2 ± 2.8
MLP 71.9 ± 3.5 72.7 ± 2.4 64.8 ± 3.1 66.1 ± 3.2
Autoencoder 57.7 ± 4.6 68.2 ± 4.1 47.4 ± 4.8 58.5 ± 3.9
BLS 73.2 ± 2.8 76.4 ± 4.5 65.8 ± 4.9 71.6 ± 3.1
Ours 79.5 ± 3.1 77.8 ± 3.7 75.0 ± 2.3 79.2 ± 2.3