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Background: Intestinal microbiota has been confirmed to influencing 

the pharmacokinetic processes of a variety of oral drugs. However, the 

pharmacokinetic effects of the gut microbiota on cyclosporine A, a drug with 

a narrow therapeutic window, remain to be studied.

Method: Twenty-one rats were randomly divided into three groups: (a) control 

group (CON), (b) antibiotic treatment group (ABT) and (c) fecal microbe 

transplantation group (FMT). The ABT group was administrated with water 

containing multiple antibiotics to deplete microorganisms. FMT was with the 

same treatment, followed by oral administration of conventional rat fecal 

microorganisms for normalization.

Result: The bioavailability of CSA increased by 155.6% after intestinal microbes 

were consumed by antibiotics. After intestinal microbiota reconstruction by 

fecal transplantation, the increased bioavailability was significantly reduced 

and basically returned to the control group level. Changes in gut microbiota 

alter the protein expression of CYP3A1, UGT1A1 and P-gp in liver. The 

expressions of these three proteins in ABT group were significantly lower than 

those in CON and FMT groups. The relative abundance of Alloprevolleta and 

Oscillospiraceae UCG 005 was negatively correlated with CSA bioavailability 

while the relative abundance of Parasutterella and Eubacterium xylanophilum 

group was negatively correlated with CSA bioavailability.

Conclusion: Intestinal microbiota affects the pharmacokinetics of CSA by 

regulating the expression of CYP3A1, UGT1A1 and P-GP.
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Introduction

Cyclosporine A (CSA), a lipophilic molecule, is a powerful 
immunosuppressive drug used in organ transplantation and 
autoimmune diseases treatment, with narrow treatment window, 
mainly metabolized by CYP3A enzyme in liver and excreted by 
bile (Fahr, 1993). The clinical use of CSA is limited by its side 
effects, including the nephrotoxic, hepatotoxic, neurotoxic, and 
cardiotoxic effects (Patocka et al., 2021). Clinical studies indicated 
that in the renal transplant recipients, concentrations of CSA 
trough could get lowered safely towards the range of 150–200 ng/
ml, added by minimal toxic cyclosporine effects without increased 
risk for graft rejection (Ragab et  al., 2013). Although CSA is 
traditionally administered at a standard 100 mg dose every day, 
the resulting exposure can vary greatly between patients and can 
lead to treatment failure or toxicity. Therapeutic Drug Monitoring 
(TDM) is a clinical strategy that assesses the response of an 
individual patient and helps adjust the dosing regimen of CSA to 
maximize efficacy while minimizing toxicity. However, TDM 
based dose adjustment could be lagging, and some patients are 
still at risk of overexposure to or underdose of CSA (Gaies 
et al., 2019).

Previous studies indicated that age, food, drugs and genetic 
factors caused variation in CSA pharmacokinetics (Hesselink 
et al., 2008; Han et al., 2013). Age affects the expression of ABCB1 
(encoding the efflux transporter P-GP) gene and the elimination 
of CSA in the gut and liver (Fanta et al., 2008; Hesselink et al., 
2008). Foods help increase bile production, and bile and bile salts 
appear to be essential for the absorption of cyclosporine (Vonk 
et al., 1978; Venkataramanan et al., 1986). The most common 
types of metabolic drug–drug interactions between CSA and other 
drug are the inhibition and induction of the drug metabolic 
enzymes (Lake, 1991; Mallat, 1992; Okada et  al., 2009). 
Pharmacogenetics found that CYP450 3A4 and 3A5 variants 
significantly affect the pharmacokinetics of CSA. (Cascorbi, 2018). 
However, the role of gut microbiota, being called “the second 
genome,” in the pharmacokinetics of CSA might be neglected. 
Studies mentioned that there could be higher risks of graft failure 
and all-cause mortality in transplant patients with diarrhoea than 
patients without diarrhoea, but adjusting the dose of 
immunological agents could improve about 20% of these patients’ 
graft survival (Kim et al., 2020; Sonambekar et al., 2020). This 
suggests that microbiota disturbance is a potential factor affecting 
the pharmacokinetics of cyclosporine A. Therefore, we hope to 
achieve a more profound and comprehensive pharmacokinetic 
study to investigate the effect of gut microbiota, so as to realize the 
best therapeutic effect.

“The human gut microbiome is a complex ecosystem that 
can mediate the interaction of the human host with their 

environment,” says Weersma RK (Weersma et al., 2020). The 
gut microbiota is intricately involved in many of our bodily 
functions. Pharmacogenomics has been at the forefront of 
research into the impact of individual genetic background on 
drug response variability or drug toxicity, and recently the gut 
microbiota has been recognized as an important player in this 
respect (Zhu et al., 2010; Doestzada et al., 2018). Manipulating 
the composition of microbiome is a very attractive way for 
improving drug efficacy and safety. Gut microbiota affects 
absorption, enterohepatic recycling, volume of distribution, 
metabolism and excretion of drugs (Tsunoda et  al., 2021; 
Zhang et  al., 2021). Oral drugs might undergo 
biotransformation by gut microbiota by microbiome located in 
the intestinal lumen. A study involving 76 different human gut 
bacteria and 271 oral drugs found that many of them could 
be  chemically modified by microbes in vivo (Zimmermann 
et al., 2019). Digoxin, a cardioside drug, can be  inactivated 
directly by Eggerthella lenta (Haiser et al., 2013). In addition, 
Faecalibacterium prausnitzii could convert tacrolimus into a 
ketone reductor, into which liver microsomes could not 
metabolize (Lee et al., 2015; Guo et al., 2019). Microbes can 
also regulate the expression and activity of metabolic enzymes 
to indirectly influence drug effects (Björkholm et al., 2009). 
Foley et al. identified that Clostridia and Bacilli were necessary 
and sufficient for P-gp induction in the intestinal epithelium in 
mouse models (Foley et al., 2021). Both in vitro and in vivo 
experiments demonstrated that intestinal microbiota could 
regulate the expression of CYP3A1 (CYP3A4 in human) and 
P-GP in rats (Hu et al., 2021). CYP3A gene cluster was down-
regulated in germ-free (GF) mice, while Cyp4a gene cluster 
was up-regulated, compared with conventional mice (Selwyn 
et  al., 2016). Ciprofloxacin could reduce liver CYP3A11 
expression by inhibiting the production of cholic acid by 
intestinal microbiota (Toda et al., 2009). The expressions of 
CYP1A2, CYP2C19, and CYP3A were positively correlated 
with the alpha diversity of intestinal microbiota (Jarmusch 
et al., 2020).

At present, the effects of intestinal microbes on the efficacy 
and toxicity of CSA have been preliminarily reported. Shang et al. 
‘s study found that the combination of Xuebijing and CSA was 
superior to CSA alone in preventing acute graft-versus-host 
disease by maintaining the intestinal microbial diversity, 
normalizing the intestinal microorganism and preventing flora 
disorder (Shang et  al., 2022). Another study found that 
administration of Astragalus and Salvia Miltiorrhiza and fecal 
microbiota transplantation increased lactic acid-producing 
probiotics such as Akkermansia and Lactobacillus, reducing the 
nephrotoxicity of CSA through the “gut-kidney axis” (Han 
et al., 2021).

As mentioned above, alteration of the gut microbiota may 
lead to the changes in the pharmacokinetics of CSA. In this study, 
antibiotic treatment and fecal transplantation were used to 
intervene intestinal microbes to examine the role and significance 
of gut microbiota in the pharmacokinetics of CSA.

Abbreviations: CsA, Cyclosporine A; CYP, Cytochrome P450 proteins; MRP, 

multi-drug resistance protein; NTCP, sodium taurocholate cotransporting 

polypeptide; P-gp, P-glycoprotein; UGT, UDP-glucuronosyltransferases..
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Materials and methods

Animals

Male Sprague–Dawley (SD) rats (weighing 180–220 g) were 
purchased from the Laboratory Animal Research Center of Tongji 
Medical College of Huazhong University of Science and 
Technology (Wuhan, China), and were given access to a 
commercial rat chow diet and tap water. The animals were housed, 
three per cage, and maintained at 22 ± 2°C and 50–60% relative 
humidity, under a 12 h light–dark cycle. The experiments were 
initiated after acclimation under these conditions for at least 
1 week. The rats were then randomly divided into three groups: 
ABT group (antibiotic treatment group), CON group (control 
group), and FMT group (fecal microbiota transplant group; n = 14 
or 15). The experiments were performed in accordance with the 
“Guiding Principles in the Use of Animals in Toxicology” adopted 
by the Society of Toxicology (United States) in July 1989 and 
revised in March 1999.

Antibiotic and feces treatment

Antibiotics were administered for 25 days in the drinking 
water (Staley et al., 2017). Two kinds of antibiotic cocktail were 
used in the study. Antibiotic cocktail I  consisted of neomycin 

1 mg/ml, vancomycin 1 mg/ml, and ertapenem 1 mg/ml. 
Antibiotic cocktail II consisted of clindamycin 1 mg/ml, ampicillin 
1 mg/ml, and cefoperazolone 1 mg/ml. And the solutions were 
freshly prepared every day. Rats in ABT group and FMT group 
were administrated with antibiotic cocktails I on days 1 to 7 and 
19 to 25. And on days 10 to 16, rats were treated with antibiotic 
cocktail II. There was a two-day break between antibiotic changes. 
The feces were collected from control rats and vortex into 
suspension with buffer phosphate solution (200 mg in 1 ml), 
followed by centrifugation at 2000 rpm for 5 min to obtain 
supernatant. The rats in FMT group were treated with the 
supernatant 2 ml per rat for 7 days, followed by 2 weeks of normal 
feeding for colonization. The experimental timeline is shown in 
Figure 1. Rats in CON group were fed sterile water instead of the 
antibiotic cocktail for 46 days in the same environment.

Cyclosporine administration and sample 
collection

There was a 24-h interval after pretreatment to reduce the 
occurrence of antibiotic-drug interactions. After the 24 h interval, 
a single dose of CSA (100 mg/kg), dissolved in virgin olive oil, was 
administered to the rats via oral gavage. Whole blood samples 
were collected at 1, 2, 4, 6, 7, 8, 10, 12, 24, 48 and 72 hours after 
CSA administration. After the last whole blood sample was 

A

B

C

FIGURE 1

The experimental timeline and the process of antibiotic and feces administration. (A) the experimental timeline; (B) the process of antibiotic 
administration, Antibiotic cocktail I consisted of neomycin 1 mg/ml, vancomycin 1 mg/ml, ertapenem 1 mg/ml. Antibiotic cocktail II consisted of 
clindamycin 1 mg/ml, ambenzyl 1 mg/ml, cefoperazolone 1 mg/ml; (C) the process of fecal microbiota transplantation.
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collected, the rats were sacrificed with pentobarbital sodium by 
intraperitoneal injection and dissected to collect tissue and cecum 
contents. All samples were snap frozen after collected and kept 
at-80°C until further analysis.

High performance liquid 
chromatography detection of 
cyclosporine in whole blood

The protein precipitation method and high-performance 
liquid chromatography-mass spectrometry (HPLC–MS) were 
used to extract and detect CSA in whole blood samples. The 
method for the determination of CsA was based on our previous 
developed LC–MS/MS methods (Yang et al., 2018). The linear 
concentration range of CsA was 5–4,000 ng/ml, and the lower 
limit of quantification was 5 ng/ml. More details were provided in 
Supplementary Material.

Pharmacokinetic analysis

The blood concentration data were analyzed by the 
non-compartmental method using Drug and Statistics software 
(DAS, version 3.2.8, Shanghai BioGuider Medicinal Technology 
Co. Ltd., Shanghai, China). The peak blood concentration (Cmax) 
and time to reach Cmax (Tmax) of CsA were acquired directly 
from the concentration-time curve. The elimination rate constant 
(Kel) was calculated by log-linear regression of the phase-
eliminated data. The area under the plasma concentration-time 
curve (AUC0-t) from time zero to the time of last measured 
concentration (Clast) was calculated by the linear trapezoidal rule. 
The AUC zero to infinity (AUC0-∞) was obtained by the addition 
of AUC0-t and the extrapolated area determined by Clast/Kel. 
And the terminal half-life (T1/2) was calculated by 0.693/Kel. The 
mean residence time (MRT) was calculated by AUMC/AUC, 
where AUMC represented the area under the first moment versus 
time curve. Apparent clearance (CL/F) was calculated by Dose/
AUC0-∞ and the apparent volume of distribution (V/F) was 
calculated by CL/Kel.

Microbiota composition

Total genome DNA from samples was extracted using CTAB/
SDS method. DNA concentration and purity was monitored on 
1% agarose gels. According to the concentration, DNA was diluted 
to 1 ng/μL using sterile water. 16S rRNA genes of distinct regions 
(16SV3-V4) were amplified used specific primer with the barcode. 
All PCR reactions were carried out with Phusion® High-Fidelity 
PCR Master Mix (New England Biolabs). Mix same volume of 1X 
loading buffer (contained SYB green) with PCR products and 
operate electrophoresis on 2% agarose gel for detection. Samples 
with bright main strip between 400 and 450 bp were chosen for 

further experiments. PCR products was mixed in equidensity 
ratios. Then, the mixture of PCR products was purified with 
Qiagen Gel Extraction Kit (Qiagen, Germany). Sequencing 
libraries were generated using TruSeq® DNA PCR-Free Sample 
Preparation Kit (Illumina, United States) following manufacturer’s 
recommendations and index codes were added. The library quality 
was assessed on the Qubit® 2.0 Fluorometer (Thermo Scientific) 
and Agilent Bioanalyzer 2,100 system. At last, the library was 
sequenced on an Illumina NovaSeq 6,000 platform and 250 bp 
paired-end reads were generated. More details were provided in 
Supplementary Material.

Protein extractions and western blots

Place 20 mg tissue in round-bottom microcentrifuge tubes or 
Eppendorf tubes，adding 400 μl of ice-cold lysis buffer (with 
PMSF) and homogenized with an electric homogenizer. 
Centrifuge for 20 min at 12,000 rpm at 4°C in a microcentrifuge. 
Gently remove the tubes from the centrifuge and place on ice, 
aspirate the supernatant, and place in a fresh tube kept on ice. 
Concentrations of total cellular protein were determined using a 
BCA assay kit (Beyotime Biotechnology, China). Total protein 
samples were analyzed by 8% SDS-PAGE gel and transferred to 
PVDF membranes by electroblotting. Primary antibodies against 
CYP3A1 (1/5000, ab22733), CYP3A2 (1/5000, ab195627), 
UGT1A1 (1/6000, ab194697), P-gp (1/6000, ab170904), BSEP 
(1/3000, ab217532), MRP2 (1/5000, ab203397) and NTCP 
(1/5000, ab131084) were probed with proteins on the membrane 
for 3 h at room temperature, and then incubated with goat anti-
rabbit secondary antibody (1/10000, ab6721) for 1 h. Bands were 
detected by enhanced chemiluminescence (ECL) kit (Beyotime 
Biotechnology, China). The intensity of the bands of interest was 
analyzed by Image J software (Rawak Software, Inc. Munich, 
Germany). The gray scale of internal reference protein was 
normalized for statistical analysis, and the significance was 
analyzed by one-way variance test and Dunnett test.

Statistics

T-test, Wilcox rank-sum test, Tukey test, and Kruskal test were 
performed to analyze whether the differences between groups were 
significant. Linear discriminant analysis (LDA) was used to reduce 
the dimension of the data and evaluate the influence of species with 
significant differences (LDA Score). Zero-mean normalization was 
performed to normalize the values of relative abundance using the 
mean and standard deviation (Z Score). Data of pharmacokinetic, 
including AUC, Cmax and so on, and western blot were expressed 
as mean ± SD. Spearman’s correlation coefficient to determine the 
monotonic correlation. The absolute value of Spearman’s 
correlation coefficient (ρ) reflected the strength of correlation. 
Meanwhile ρ > 0 meant a positive correlation, and ρ < 0 meant a 
negative correlation. Statistical analysis was performed using 
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GraphPad Prism 5.0 software (GraphPad Software, Inc., La Jolla, 
CA, United States) and SPSS (Statistical Product Service Solutions, 
IBM, United States). The threshold for statistical significance was 
set at p < 0.05.

Results

Antibiotic and feces treatment affecting 
the composition of microbiota in the 
cecum

To evaluate the effects of antibiotic treatment and fecal 
transplantation on the gut microbiota of rats, Sequencing of the 
bacterial ribosomal RNA (16S rRNA) was performed to compare 
the bacterial populations on the caecum content. The results 
revealed that the species richness and diversity were lower after 
antibiotic treatment than in the CON group, but the depletion was 
reversed after feces microbiota transplantation (Figure 2A).

The difference in the number of OTU was small (Figure 2B). 
Moreover, compared with the rats in the ABT, the composition of 
intestinal microbes of rats in the FMT was more similar to that in 
the CON group according Figure 2C; Supplementary Figure S1. 
Results of principal coordinate analysis (PCoA) showed that the 
species composition of ABT group was significantly different from 
that of CON group and FMT group (p < 0.01, Figure  2C). 
Differences at phylum and genus levels were also analyzed 
(Figures 2D,E). At the phylum level, several bacteria were altered 
by both interventions, with antibiotics causing a reduction of 
Firmicutes/Bacteroidetes ratio. Firmicutes and Bacteroidetes were 
dominant in CON group and FMT group (Figure 2D). However, 
in ABT group, the relative abundance of Proteobacteria and 
Verrucobacteria increased significantly, which became the four 
major phyla together with Bacteroidetes and Firmicutes. The 
comparison at the genus level was based on individual rats 
(Figure  2E). The relative abundance of top  30 was shown in 
different colors in the bar chart, and the remaining genus were 
assigned to others. The proportion of the top 30 was higher in the 
ABT group, which reflected the composition of bacterial genera 
in the ABT group was simpler, compared with the other two 
groups. In ABT group, relative abundance of Akkermansia, 
Parabacteroides and Enterobacter increased, while the relative 
abundance of Lachnospiraceae_NK4A136_group, Prevotella 
Lactobacillus and Alistipes decreased (Supplementary Figure S2).

We compared the relative abundance of each genus by t-test 
between groups, and p < 0.05 was considered to be  significant 
difference (Figure 3). Compared with CON and FMT group, the 
relative abundance of genera including Enterobacter, Klebsiella, 
Parasutterella, Parabacteroides, Akkermansia, Escherichia-Shigella, 
Veillonella, Bacteroides and Cellulosilyticum was significantly 
increased in ABT group. And the relative abundance of Prevotella_9, 
[Eubacterium]_xylanophilum_group, Lachnospiraceae_NK4A136_
group, Colidextribacter, Alloprevotella, Phascolarctobacterium, 
Christensenellaceae_R-7_group, Lactobacillus, Limosilactobacillus, 

Lachnoclostridium, UCG-005, and Ruminococcus was markedly 
decreased in ABT group, compared with the other two groups. 
Despite the transplantation of feces from the CON group, the 
composition of the cecal contents of the FMT group was not the 
same as that of the CON group. Compared with CON group, the 
relative abundance of Prevotella and Romboutsia decreased, while the 
relative abundance of Roseburia and Anaerovirio increased in FMT 
group. This might indicate that compared with Prevotella and 
Romboutsia, Roseburia and Anaerovirio had stronger colonization 
ability in the process of feces microbiota transplantation.

Changes in composition of intestinal 
microbiota affecting oral bioavailability 
of CSA

After oral administration of CSA, blood concentrations of 
CSA were determined at each time point in the three groups 
(Figure 4A). The pharmacokinetic parameters were analyzed by 
non-atrioventricular model simulation (Figure 4C). Compared to 
the CON group, the blood concentration of CSA was significantly 
increased by antibiotic treatment, indicating that the bioavailability 
of CSA was improved by interfere with intestinal microbial 
composition. And the pharmacokinetic profiles of CSA in FMT 
group fell between the ABT group and the CON group. Fecal 
transplantation could reverse the increased bioavailability of CSA 
caused by antibiotic treatment.

In addition, statistical analysis of pharmacokinetic parameters 
showed that AUC(0-t), AUC(0-∞) and Cmax had statistical differences 
(p < 0.05; Figure 4B). Compared with the CON group, the AUC(0-

T), AUC(0-∞) and Cmax of the ABT group were significantly 
increased. Antibiotic-induced microbiota depletion led to the 
increase in AUC(0-t), AUC(0-∞) and Cmax of CSA by 155.6, 140.8 and 
154.8%, respectively. After intestinal microbiota reconstruction by 
feces microbiota transplantation, the increased AUC(0-T), AUC(0-∞) 
and Cmax were significantly reduced and basically returned to the 
control group level. Half-lives of CSA were not statistically 
different among the three groups.

The spearman correlations between the 
relative abundance of the genera and 
pharmacokinetic parameters

After demonstrating that changes in the microbiome occurred 
in parallel with changes in the systemic absorption of CSA 
(Figure 3), we compared whether the relative abundance of specific 
taxa was associated with pharmacokinetic parameters [including 
AUC(0-T), Cmax, MRD (0-T), t1/2 and CLz/F] in three groups 
(Figure  5; Supplementary Figure S3). Spearman correlation 
analysis was performed to assess the correlation between relative 
abundance of genera in Figure  3 and CSA pharmacokinetics 
(p < 0.05 was considered to be relevant). Supplementary Figure S3 
showed the scatter plots of 15 genera that were correlated with 
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AUC (0-T). The genera with the|ρ|value exceeding 0.4 were 
Alloprevolleta, Oscillospiraceae_UCG_005, Parasutterella and 
Eubacterium_xylanophilum (Figure 5; Supplementary Figure S3). 
The relative abundance of Akkermansia, Morganella, Parasutterella, 
Parabacteroides, Eeterobacter, Escherichia Shigella, Klesiella and 

Proteus positively and significantly correlated with AUC(0-T) and 
Cmax of CSA (Figure  5). Eubacterium Xylanophilum group, 
Desulfovibrio, Alloprevotella, Alistipes, Phascolarctobacterium, 
UCG 005, NK4A214 group, and Christensenellaceae R−7 group were 
negatively correlated with AUC(0-T) and Cmax of CSA (Figure 5).

A

C

E

D

B

FIGURE 2

16S rRNA sequencing results. (A) is the Shannon and Chao index analysis chart of the three groups of α diversity analysis; (B) is a Venn diagram; 
(C) is the β diversity analysis diagram of the three groups; (D) is the relative abundance of microbiota at phyla level in each group; (E) is the relative 
abundance of microbiota of each sample at the genus level.
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Intestinal microbiota altering the level of 
CYP3As and UGT1A1

To test whether the changes of intestinal microbiota had an 
effect on the drug metabolic enzymes (including CYP3A1, 
CYP3A2, UGT1A1) relevant for the metabolism of CSA in the liver 
and intestine, western blotting was performed to examine the level 
of protein expression (Figure  6; Supplementary Figure S4). 
CYP3A1 and CYP3A2 are the main metabolic enzymes of CSA, 
which are isomers of human CYP3A4 and CYP3A5 (Martignoni 
et al., 2006). Compared with the CON group, the expression of 
CYP3A1 of the ABT group decreased by 35.7% while there was no 
marked difference between the FMT group and CON group. 
Hepatic protein expression of UGT1A1, a major two-phase 
metabolic enzyme of CSA, was decreased by 66.0% in the ABT 
group and 30.8% in the FMT group compared to the CON group 
(Figure 6A). Contrary to the results in liver, there was no difference 
in the expression of UGT1A1 and CYP3A1 in the small intestine 
among the three groups, and the protein expression of CYP3A2 in 
the ABT groups was higher than that in the CON group 
(Supplementary Figure S4). As liver played a more important role 
in the metabolism of CSA than intestine, the alteration of hepatic 
metabolic enzymes was consistent with our pharmacokinetic results.

Intestinal microbiota altering the level of 
P-gp and MRP2

P-gp and MRP2 were important efflux transporters in the 
transport of CSA. The hepatic protein expression of P-gp of the 
ABT group and the FMT group decreased by 59.9 and 34.8% in 
comparison to the CON group (Figure 6A). Consistent with 
liver, the protein expression of the efflux transporters P-gp and 
MRP2 was decreased in the ABT group and reversed in the FMT 

group (Supplementary Figure S4). Efflux proteins located at the 
apical membrane, which include P-gp and MRP2, may drive 
compounds from inside the cell back into the intestinal lumen 
or biliary excretion, preventing their absorption into blood.  
In ABT group, the down-regulation of efflux transporters  
both in the liver and intestine resulted in the increased 
bioavailability of CSA.

Changes in intestinal microbiota not 
altering hepatic expression of BSEP and 
NTCP but regulating the expression of 
nuclear receptors FXR and PXR

Previous studies have suggested that intestinal microbiota 
regulate the bile metabolism (Sayin et al., 2013; Ramírez-Pérez 
et al., 2017; Ma et al., 2018; Winston and Theriot, 2020). For this 
reason, we assessed protein expression of two key transporters for 
the secretion of bile acids from hepatocytes into bile, BSEP and 
NTCP. Western blotting results showed the protein expression of 
BSEP and NTCP were not affected by either microbiome targeted 
intervention (Figure 6). However, compared with CON group, the 
hepatic level of nuclear protein FXR and PXR was significantly 
reduced in ABT and FMT group (Supplementary Figure S5). The 
protein expression of these two nuclear receptors in ABT group 
was lower than FMT group, but there was no significant difference.

Antibiotic and feces treatment not 
changing the physiologic morphology of 
the liver and proximal colon

In this study, liver and proximal colon sections were stained 
with H&E staining to observe the effects of intestinal microbiota 

FIGURE 3

Heatmap of relative abundance for genera with significant difference between groups. Z Score was obtained by zero-mean normalization for 
each group of values. The colored patches show the p-values in the t-test: off-white is p > 0.05; orange is 0.05 > p > 0.01; dark red is p < 0.01.
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FIGURE 4

Pharmacokinetic of cyclosporine A. (A) Time curve of cyclosporine A plasma concentration; (B) Histogram of statistical analysis of cyclosporine A 
pharmacokinetic parameters; (C) is the table of pharmacokinetic parameters of CSA.
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intervention on physiologic morphology of liver and proximal 
colon (Figure 7). Figures 7A–C showed H&E staining of liver 
sections of the CON group, ABT group, and FMT group, 
respectively. According to H&E staining results, no significant 
morphological change was found among the three groups. H&E 
staining results showed that liver cells were clearly defined, and 
the cells were evenly and neatly distributed, without obvious 
aggregation of inflammatory cells among the three groups. 
Figures  7D–F showed the proximal colon section. The H&E 
pathological section of rat in CON, ABT and FMT groups did not 
reveal disappeared crypts and broken structure of colon wall 
(Figures  7D–F). There was no marked histological damage in 
livers and colons in three groups.

Discussion

The gut microbiome affects not only the body’s physiology and 
pathology but also how the body handles foreign substances, 
including foods and oral drugs (Jandhyala et al., 2015; Gomaa, 2020; 

Weersma et al., 2020). Microbiota and drugs interact with each 
other. Drugs affect the diversity and richness of microbiota, and 
microbiota also affects the pharmacology and efficacy of drugs. 
Pharmacomicrobiomics is an emerging field that detects the effect 
of microbiome alterations on drug pharmacokinetics (ElRakaiby 
et al., 2014; Aziz et al., 2018; Doestzada et al., 2018; Panebianco 
et al., 2018; Rowland et al., 2018; Hannachi and Camoin-Jau, 2021). 
Previous researches suggest that intestinal microbiota had a strong 
modification effect on the metabolic process of drugs, but the 
influence of intestinal microbiota changes on drug disposition in 
vivo remains to be further studied (Zimmermann et al., 2019). In 
this study, antibiotic therapy and feces microbiota transplantation 
were employed to assess whether the changes in the microbiome 
affect the pharmacokinetic profiles of CSA. Our results reveal that 
the bioavailability of CSA was significantly increased after 
antibiotics depleting gut microbes. Feces microbiota transplantation 
could reverse the increase in CSA bioavailability caused by 
microbial depletion. Consequently, the intestinal microbiota played 
a role in modulating the oral bioavailability of CSA.

According to the results of 16S sequencing, several genera 
correlated with the pharmacokinetics profile of CSA. Akkermansia, 
Parabacteroides, Enterobacter, Escherichia-Shigella, Klebsiella, 
Parasutterella, and Morganella were positively correlated with the 
AUC(0-t) and Cmax of CSA. Alloprevotella, Oscillospiraceae 
UCG-005, Phascolarctobacterium, Christensenellaceae R−7 group, 
[Eubacterium] xylanophilum group, Desulfovibrio, Oscillospiraceae 
NK4A214 group, and Alistipes were negatively correlated with the 
bioavailability of CSA. This suggested that these specific bacteria 
may play a role in the alteration of pharmacokinetic profiles of 
CSA. At the same time, even fed under the same conditions, the 
intestinal microbiota composition of rats in the same group still 
had variability, which might be  one of the factors leading to 
individual differences in the pharmacokinetics of CSA.

CYP3A1, CYP3A2, and UGT1A1 are the main metabolic 
enzymes of CSA in liver (Dupuis et  al., 2012; Yu et  al., 2016; 
Hassan et al., 2021). Our results showed that neither of the two 
microbiome-targeted interventions altered CYP3A2 protein 
expression, but significantly altered the protein expression of the 
other two metabolic enzymes in liver. The protein expression of 
CYP3A1 and UGT1A1 was decreased significantly after antibiotic 
treatment. Feces microbiota transplantation up-regulated 
CYP3A1 and UGT1A1 protein expression to near normal level. 
The changes of microbiome also decreased the protein expression 
of P-gp, an important efflux drug transporter, in both liver and 
intestine. The downregulation of CYP3A1, UGT1A1 and P-gp in 
the ABT group inhibited the metabolism and excretion of CSA in 
the liver, and reduced the hepatic first-pass effect of 
CSA. Additionally, in intestine, the protein expression of MRP2 
downregulated in ABT group. The decrease in protein expression 
of P-gp and MRP2 in ABT group could reduce the efflux of CSA 
in intestine, leading to an increase in the amount of CSA passing 
through the intestine into the portal vein. However, in contrast to 
the liver results, there was no difference in the expression of 
UGT1A1 and CYP3A1 in the small intestine among the three 

FIGURE 5

Heatmap of correlations between pharmacokinetic parameters 
and relative abundance of microbiota at genus level. Values in 
each square represent Spearman correlation coefficients. * is 
0.05 > p > 0.01; ** is 0.01 > p > 0.005; *** is p < 0.005.
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groups, and the protein expression of CYP3A2 in the ABT and 
FMT groups was higher than that in the CON group. The small 
intestine played a more critical role in drug transport than in drug 
metabolism. Therefore, the results of protein expression of drug 
metabolic enzyme and drug transporters in the small intestine 
were consistent with our pharmacokinetic results. CYP3A, 
UGT1A, P-gp, and MRP2 not only played an important role in the 
absorption and elimination of CSA, but also a large number of 
oral drugs. We ought to pay attention to the huge potential impact 
of the gut microbiota on drug personality difference.

How did the gut microbiome alter liver protein 
expression? In the ABT group, the relative abundance of 

Enterobacteria, Akkermansia, and Klebsiella was significantly 
higher than that of the other two groups. Akkermansia is a 
probiotic deserving research, which could participate in the 
regulation of intestinal inflammation, but its direct 
correlation with the expression of drug metabolic enzymes 
and drug transporters was not reported (Zhai et al., 2019). 
Nevertheless, studies showed that Akkermansia could 
up-regulate the production of short-chain fat acid (SCFA), 
which could down-regulate the expression of P-gp in mouse 
intestine (Zhang et al., 2020; Grajeda-Iglesias et al., 2021). 
Up-regulation of Akkermansia in ABT group could be  the 
reason for down-regulation of P-gp. Enterobacteria and 

A

B

FIGURE 6

Changes in protein expression. (A) is the statistical graph of protein expression. (B) is Western blotting grayscale image.
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Klebsiella, gram-negative bacteria, could produce outer 
membrane vesicles (OMV), which act on TL receptors and 
altered the expression of CYP3A and P-gp (Gao et al., 2017; 
Behrouzi et al., 2018). Moreover, the nuclear receptor FXR 
and PXR in liver down-regulated in ABT group, compared 
with CON group (Supplementary Figure S5). Metabolites 
produced by gut microbiota such as SCFA and secondary bile 
acid could activate or inhibit these two nuclear receptors to 
regulate the expression of the downstream proteins in liver. 
Future studies exploring differences in metabolites produced 
by microbiome, or examining effects of specific bacteria on 
CSA, are warranted.

Evidence suggested that changes in intestinal microbiota were 
likely to affect the formation of secondary bile acids (Sayin et al., 
2013; Ramírez-Pérez et al., 2017; Ma et al., 2018; Winston and 
Theriot, 2020). The protein expression level of bile acid-related 
transporters, NTCP and BSEP, wasn’t altered by gut microbiome 
significantly in the liver. However, the composition of bile acids in 
the intestine, liver and serum needs to be  determined by 
further experiments.

In general, intestinal permeability affects the intestinal 
permeability of oral drugs, especially macromolecule insoluble 
drugs. The results of H&E staining showed that intervention in the 
intestinal microbiota did not change the histological morphology 
of the proximal colon. The high abundance of Akkermansia may 
be one of the reasons for maintaining the intestinal barrier in the 

ABT group, when the intestinal flora was relatively disorganized. 
To elucidate whether the intestinal barrier dysfunction was 
induced by antibiotics, following-up studies on the expression of 
tight junction proteins are necessary.

However, there were limitations to this experiment.  
The specific molecular mechanism of bacterial regulation of  
liver protein expression was not elucidated. Qualitative and 
quantitative analysis of the metabolites produced by microbes 
could help us to explain the mechanism in more detail. 
We overlooked the direct metabolic effect of intestinal microbes 
on the prototype drug, which might also be a factor influencing 
the pharmacokinetics of CSA.

In conclusion, this study confirmed that gut microbes could 
influence the pharmacokinetics of CSA by regulating protein 
expression of liver drug metabolic enzymes and drug transporters. 
Patients receiving long-term treatment for anti-rejection may 
concomitantly take antibiotics along with the CSA. In this case, 
the use of antibiotics may alter the gut microbiota, resulting in 
altered metabolism of the CSA. Thus, it could introduce a cause of 
drug–drug interaction mediated by gut microbiota. Maintaining 
intestinal microbial stability might be a good way to exert the 
stabilizing effects of CSA. This study also provided a new 
perspective for the individualized application of CSA. In addition, 
fecal microbiota transplantation was expected to be an effective 
means to improve the poor transplant outcome caused by diarrhea 
during organ transplantation, for avoiding changes in 

A D
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FIGURE 7

H&E staining of liver and proximal colon sections.
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immunosuppressant drug concentrations caused by fluctuations 
in microbial levels.
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