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Cancer-derived small extracellular vesicles (sEVs) are emerging as crucial mediators of intercellular communication between
cancer cells and M2-tumor-associated macrophages (M2-TAMs) via transferring IncRNAs. We previously reported that miR-
134 blocks the expression of its targeting protein LAMC2 via the PI3K/AKT pathway and inhibits cancer stem cell (CSC)
migration and invasion in oral squamous cell carcinoma (OSCC). This study hypothesize that OSCC-CSC-derived small
extracellular vesicles (OSCC-CSC-sEVs) transfer a ceRNA of miR-134 and consequently promote M2 macrophage polarization
by targeting LAMC2 via the PI3K/AKT pathway through in vitro and in vivo experiment methods. The results showed that
sEVs derived from CD1337CD44" OSCC cells promoted M2 polarization of macrophages by detecting several M2 macrophage
markers (CD163, IL-10, Arg-1, and CD206"'CD11b"). Mechanistically, we revealed that the IncRNA UCAL1, by binding to miR-
134, modulated the PI3K/AKT pathway in macrophages via targeting LAMC2. Importantly, OSCC-CSC-sEV transfer of
UCAL, by targeting LAMC2, promoted M2 macrophage polarization and inhibited CD4" T-cell proliferation and IFN-y
production in vitro and in vivo. Functionally, we demonstrated that M2-TAMs, by transferring exosomal UCA and
consequently targeting LAMC2, enhanced cell migration and invasion of OSCC in vitro and the tumorigenicity of OSCC
xenograft in nude mice. In conclusion, our results indicated that OSCC-CSC-sEV transfer of UCA1 promotes M2 macrophage
polarization via a LAMC2-mediated PI3K/AKT axis, thus facilitating tumor progression and immunosuppression. Our findings
provide a new understanding of OSCC-CSC molecular mechanisms and suggest a potential therapeutic strategy for OSCC
through targeting CSC-sEVs and M2-TAMs.

1. Introduction

The tumor microenvironment provides survival conditions
that may enable tumor growth and progression [1]. It is
composed of tumor cells and a variety of stromal cells,
including matrix immune cells, among which mononuclear
cells or macrophages are an abundant and important com-
ponent [2, 3]. Under different regulatory mechanisms, mac-

rophages can differentiate into two main subtypes: the
classically activated M1 subtype exhibiting antitumor immu-
nity and inflammatory responses and the alternatively acti-
vated M2 subtype exhibiting a protumor effect that
contributes to tumor development and progression [4, 5].
Tumor-associated macrophages (TAMs) are a macrophage
population recruited and educated by cancer cells [2, 3].
TAMs are typically maintained in an M2-polarized
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condition with a protumor phenotype involving remodeling
of the extracellular matrix, immunosuppression, and tumor
progression in the tumor microenvironment [5].

Small extracellular vesicles (sEVs) including exosomes
act as nanoscale messengers. sEVs have emerged as crucial
mediators of intercellular communication between cancer
cells and stromal cells in the tumor microenvironment and
have been found to function by transferring cargos, includ-
ing proteins and RNAs [6, 7]. Recently, studies have shown
that cancer-derived sEVs promote M2 macrophage polariza-
tion through immune signaling pathways by transferring
noncoding RNAs in various cancers. For instance, oral
cancer-derived exosomes promote M2 macrophage polariza-
tion, mediated by exosome-enclosed miR-29a [8]. Cancer
stem cells (CSCs), a small subpopulation of cancer cells,
can be identified and isolated according to their expression
of distinctive markers. CSC-derived- sEVs are reported to
be responsible for disease progression of various cancers
[9-11]. Interestingly, CSCs secrete sEVs associated with an
immunosuppressive microenvironment and further pro-
mote M2 macrophage polarization in glioblastoma [12]
and colon cancer [13]. However, whether CSC-derived sEVs
transfer IncRNAs that promote M2 macrophage polarization
has rarely been reported.

Oral squamous cell carcinoma (OSCC) accounts for
more than 90% of all oral cancers and remains a major cause
of cancer morbidity and mortality worldwide [14]. We pre-
viously reported that miR-134 blocks the expression of its
targeting protein LAMC2 via the PI3K/AKT signaling path-
way and inhibits CSC migration and invasion in OSCC [15].
We have observed that both sEVs and M2 macrophages
exert their biological functions via the PI3K/AKT signaling
pathway in various cancers [16-20]. Furthermore, recent
reports have shown that LAMC2 induces the infiltration of
macrophages in lung cancer [21] and that sEVs transfer a
miRNA in ovarian cancer via a LAMC2-mediated PI3K/
AKT axis [22]. On the basis of previous studies, we hypoth-
esized that OSCC-CSC-derived sEVs (OSCC-CSC-sEVs)
might transfer a ceRNA of miR-134, thereby promoting
M2 macrophage polarization by targeting LAMC2 via the
PI3K/AKT signaling pathway. As expected, our results
revealed that OSCC-CSC-sEVs transferring the IncRNA
UCA1 promoted M2 macrophage polarization via a
LAMC2-mediated PI3K/AKT axis and further modulated
immunosuppression, partly by inhibiting CD4" T-cell prolif-
eration and IFN-y production.

2. Materials and Methods

2.1. Cell Culture and Identification of OSCC-CSCs. The
OSCC cell line Cal27 (CL-0265, Procell, Wuhan, Hubei,
China), human oral epithelial cells (HOEC, BS-C00865936,
Shanghai Binsui Biotechnology Co., Ltd., Shanghai, China),
and HEK-293T cells (CL-0005, Procell) were cultured in
Dulbecco’s  modified  Eagle’s medium  (DMEM)
(PM150210A, Procell) containing 10% fetal bovine serum
(FBS, 15950-017, Beijing ZEPING Bioscience & Technolo-
gies Co., Ltd., Beijing, China), 100 U/mL penicillin, and
100 U/mL streptomycin. Human THP-1 monocytes (CL-
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0233, Procell) were cultured in Roswell Park Memorial Insti-
tute- (RPMI-) 1640 complete medium (PM150110B, Pro-
cell) containing 10% FBS, 100 U/mL penicillin, and 100 U/
mL streptomycin. All cells were cultured in an incubator at
37°C under 5% CO,.

CD1337CD44" cells from Cal27 cells were selected as
OSCC-CSCs with a magnetic-activated cell sorting system
(130-092-545, Miltenyi Biotec GmbH, Bergisch Gladbach,
Germany). OSCC-CSCs were identified on the basis of
immunofluorescence and sphere formation. Cell sorting
and immunofluorescence were performed in accordance
with the manufacturer’s instructions, as described in our
previous study [15].

2.2. Sphere Formation Assays. Cal27-CSCs were cultured in
serum-free tumorsphere medium DMEM/F-12 (#12500-
062, Gibco, Carlsbad, California, USA) supplemented with
N-2 additive (#17502048, Gibco), 20ng/mL recombinant
basic fibroblast growth factor (bFGF, #100-18B, PeproTech,
Rocky Hill, NJ, USA), and 20 ng/mL epidermal growth fac-
tor (EGF, #AF-100-15, PeproTech). Cells were cultured at
a density of 7.5x 10 cells/10mm dish, and the medium
was changed every other day until clonospheres formed.

Cells were transduced according to the instructions for
lentiviral infection (Supplementary Table S1) in the
following groups: overexpression- (oe-) negative control
(NC) lentivirus, oe-UCA1 lentivirus, oe-NC lentivirus+sh-
NC lentivirus, oe-UCALI lentivirus+sh-NC lentivirus, and
0e-UCA1 lentivirus+sh-LAMC2 lentivirus.  Silencing
lentivirus particles was packaged by insertion of the core
plasmid (PLKO.1) and auxiliary plasmid (RRE, REV, and
Vsvg) of the target gene silencing sequence. The
overexpression lentivirus was packaged by insertion of the
core plasmid (Fugw-GFP and PIx304) and auxiliary
plasmid (RRE, REV, and Vsvg) of the cDNA sequence of
the target gene. Lentiviruses were purchased from
Genomeditech (Shanghai, China). Primer sequences and
plasmid construction were performed by Genomeditech.
All experimental steps were implemented according to the
manufacturer’s instructions.

2.3. Isolation and Identification of CSC-Derived sEVs. sEVs
were isolated from the supernatants of Cal27-CSCs and
Cal27 cells by differential centrifugation. The collected cul-
ture supernatant was centrifuged at 300 x g for 10 minutes,
at 2000 x g for 10 minutes, and at 10000 x g for 30 minutes.
The supernatant was then ultracentrifuged at 110000 x g for
2 hours to obtain the precipitate containing sEVs. The col-
lected sEVs were resuspended in PBS. The precipitate was
filtered with a 0.22 filter to remove small cell debris, resus-
pended in PBS, and then ultracentrifuged again for 2 hours
at 110000 x g to remove the PBS. The sEVs were stored at
—80°C before use. The above centrifugation was performed
at 4°C. The cells used for sEVs isolation were cultured in
medium without sEVs and serum (C38010050, VivaCell,
Shanghai, China). The morphology of CSC-derived sEVs
was verified with a transmission electron microscope
(TEM, H-7650, Hitachi Co., Ltd., Tokyo, Japan) and nano-
particle tracking analysis (NTA, NanoSight LMI0
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instrument, NanoSight Ltd., Minton Park, UK). Qualitative
detection of sEVs was performed on the basis of SEVs sur-
face marker proteins through Western blot analysis.

2.4. Macrophage (Me) Induction and Cal27-CSC-sEV
Uptake by M¢

2.4.1. Mg Induction. After centrifugation, the density of log-
arithmically growing THP-1 cells was adjusted to 2.5 x 10°
cells/mL. THP-1 cells were stimulated with 100 ng/mL
phorbol 12-myristate 13-acetate (PMA, HY-18739, Med-
ChemExpress, New Jersey, USA). M@ macrophages were
obtained after incubation in the dark for 48 hours. To detect
the effects of Cal27-CSC-derived sEVs (Cal27-CSC-sEVs)
on macrophage polarization, we cocultured 20 ug/mL
Cal27-CSC-sEVs and Mg for 24 hours and then performed
measurements.

2.4.2. Cal27-CSC-sEV Uptake by M. Cal27-CSC-sEVs were
exposed to 2 um PHK67 (MINI67, Sigma-Aldrich, St Louis,
MO, USA) fluorescence labeling dye according to the manu-
facturer’s instructions. Briefly, Cal27-CSC-sEVs were labeled
with PHK67 on slides, which were soaked in 4% paraformal-
dehyde for 30 minutes and permeabilized with 2% Triton X-
100 for 15 minutes. Afterward, the slides were blocked with
2% BSA for 45 minutes. After staining with 4',6-diamidino-
2-phenylindole (2 ug/mL, C1005, Beyotime), the slides were
sealed. Fluorescence expression was detected with a confocal
fluorescence microscope.

2.5. Bioinformatics Analysis. The Gene Expression Omnibus
(https://www.ncbi.nlm.nih.gov/gds) database was used to
download the dataset GSE146483, encompassing three nor-
mal tissues and eight OSCC tissues. The differentially
expressed genes were screened with the R “limma” package
(http://www.bioconductor.org/packages/release/bioc/html/
limma.html) with |log, fold change (FC)|>2 and p <0.01 as
the threshold. The IncRNAs binding the target miRNA were
predicted with the RNAlnter database (http://www.rna-
society.org/rnainter/). The Gene Expression Profiling Inter-
active  Analysis (GEPIA, http://gepia2.cancer-pku.cn/
#index) database was used to analyze the differential expres-
sion of target genes in The Cancer Genome Atlas (TCGA)
dataset. The correlation of gene expression in the TCGA
dataset was analyzed with the starBase database (http://
Starbase.sysu.edu.cn/index.php).

2.6. Dual-Luciferase Reporter Assays. The miR-134 binding
site (wild type [WT] or mutant [MUT]) in the UCALl
sequence was inserted into a luciferase reporter vector pmir-
GLO (3577193, BioVector, Beijing, China) to construct the
reporter plasmids pmirGLO-UCAI-WT and pmirGLO-
UCA1-MUT. Subsequently, 2.5 ug reporter plasmids were
cotransfected with miR-134 mimic plasmid and NC plasmid
into 293 T cells. After transfection for 48 hours, the cells
were lysed. After centrifugation at 12000 x g for 1 minute,
the supernatant was collected. A Dual-Luciferase® Reporter
Assay System (E1910, Promega, Madison, WI, USA) was
used to detect luciferase activity. To each cell sample,
100 pL firefly luciferase working solution and 100 yL Renilla

luciferase working solution were added to detect the activity
of firefly luciferase and Renilla luciferase. The ratio of firefly
luciferase activity to Renilla luciferase activity was deter-
mined as the relative luciferase activity.

2.7. Flow Cytometry. CD4" T cells were isolated from
peripheral blood by flow cytometry. The isolated cells were
cultured in RPMI 1640 medium (Procell) containing 2%
FBS, 100 U/mL penicillin, and 100U/mL streptomycin.
Briefly, 5 mL of peripheral blood was collected from healthy
volunteers. Lymphocytes were isolated by the addition of
lymphocyte isolation solution (P8610, SolarBio). The pre-
pared single cell suspension was closed to Fc (anti-CD16/
32, 564219, BD Biosciences, Franklin Lakes, NJ, USA) termi-
nal and cultured at 4°C for 15 minutes. The dead cells were
excluded with a Live/Dead cell staining kit (L34963, Thermo
Fisher Scientific, Waltham, Massachusetts, USA). Finally,
FITC-CD4 antibody (1:50, FITC-65143, ProteinTech Group
Inc.) was incubated at 4°C for 30 minutes. M2 macrophages
were detected by flow cytometry. After the induced macro-
phages were cocultured with Cal27-CSC-sEVs (30 ug) for
48 hours or after lentiviral transduction, macrophages were
incubated with antibodies to CD206 (1:50, 550889, BD Bio-
science) and CD11b (1:50, 746572, BD Bioscience) at 4°C for
30 minutes, then detected by flow cytometry.

Macrophages with different treatments were cocultured
with CD4" T cells (2x10* cells/well) in six-well plates
(3412, Corning Inc., Corning, N. Y., USA). At 24 hours after
the macrophages had been seeded in six-well plates, CD4" T
cells were seeded in the transwell chamber above the macro-
phages. After 48 hours, CD4" T cells were collected. The
CD4" T cells were fixed and permeabilized with Cytofix/
Cytoperm (88-8823-88, Thermo Fisher Scientific), and the
cells were stained with fluorescein-conjugated antibodies to
cytokines (PE-interferon-gamma [IFN-y], 554552, BD Bio-
science). The proliferation of CD4" T cells was detected by
the carboxyfluorescein diacetate succinimidyl ester (CFSE,
Beyotime) dilution method. CD4™ T cells were then stained
with 1umol/L CFSE dye and incubated at 37°C for 10
minutes. Dead cells were excluded with a Live/Dead cell
staining kit. A flow cytometer (FACSCalibur, BD Biosci-
ence) was used for analysis.

2.8. Western Blot Analysis. RIPA cell lysis buffer (P0013B,
Beyotime) containing PMSF was added to lyse tissues, cells,
and sEVs to extract total protein. A BCA kit (P0028, Beyo-
time) was used for protein concentration determination
according to the manufacturer’s instructions. The protein
on the gel was transferred to a polyvinylidene fluoride mem-
brane (1620177, Bio-Rad, Richmond, Cal., USA). The mem-
brane was blocked at room temperature for 1 hour with 5%
BSA and probed overnight with primary rabbit antibodies to
the following: CD81 (ab232390, 1:1000), CD63 (ab134045,
1:1000), calnexin (ab133615, 1:2000), LAMC2 (BA3650,
1:1000), PI3K (A01517-2, 1:1000), AKT (A00024, 1:500),
and phosphorylated- (p-) AKT (BM4762, 1:500) at 4°C.
Afterward, the membrane was reprobed for 1 hour with
horseradish peroxidase-tagged goat antirabbit IgG second-
ary antibodies (ab6721, 1:5000, Abcam) at room
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temperature. The membrane was immersed in electrogener-
ated chemiluminescence reaction solution (1705062, Beyo-
time) for 1 minute at room temperature. Strip exposure
imaging was performed with an ImageQuant LAS 4000 C
instrument (General Electric Company, Schenectady, NY,
USA). GAPDH (A01021, 1:5000, rabbit, Abbkine, Wuhan,
China) was used to normalize target protein expression.

2.9. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR). After total RNA was extracted with
TRIzol (16096020, Thermo Fisher Scientific), the purity
and concentration of the RNA were evaluated according to
the absorbance at 260 and 280 nm, measured by spectropho-
tometry. The A260/A280 ratio of the sample was >1.8. For
mRNA detection, a reverse transcription kit (RR047A,
Takara, Kyoto, Japan) was used to reverse transcribe mRNA
to obtain cDNA. For miRNA, a Poly(A) Tailing detection kit
(B532451, Sangon Biotech, Shanghai, China) was used
(including Universal PCR primer R and U6 Universal PCR
primer R) and the cDNA of miRNAs containing poly(A)
tails was obtained. PCR was performed with a LightCycler
480 instrument and SYBR Green I Master Mix, and the
results were normalized to U6 and GAPDH. The 2744¢T
method was used to determine the ratios of target gene
expression between the experimental group and the control
group. The primer sequences are shown in Supplementary
Table S2.

2.10. Transwell Assays. A transwell chamber (8 mm aperture;
3422, Corning) was used to detect cell migration in vitro in
24-well plates. First, 600 mL DMEM with 20% FBS was
added in the lower chamber and equilibrated at 37°C for 1
hour. Cal27 cells with different treatments were resuspended
in DMEM without FBS. Then, 3 x 10° cells/mL cells were
seeded into the chamber and cultured at 37°C and 5% CO2
for 24 hours. After the transwell insert was removed, the
cells in the chamber were fixed with 4% paraformaldehyde
for 20 minutes and stained with 0.1% crystal violet for 10
minutes. The surface cells were removed with a cotton ball
and observed under an inverted fluorescence microscope
(TE2000, Nikon, Tokyo, Japan). Five fields of vision were
read randomly and photographed. The number of cells that
passed through the chamber was counted. The average value
was the number of cells passing through the chamber in each
group. For cell invasion tests, the transwell chamber was
precoated with Matrigel (356234, Becton, Dickinson and
Company, Franklin Lakes, NJ, USA) to simulate the cell
matrix. Three duplicate wells were prepared for each group.

2.11. Tumor Xenograft Model. All experimental procedures
were approved by the Animal Ethics Committee of Shanghai
Ninth People’s Hospital, in compliance with the ARRIVE
guidelines and the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (NIH Publications
No. 8023, revised 1978). BALB/C adult male nude mice 6
weeks of age were reared under specific-pathogen-free con-
ditions and given free access to drinking and food. The mice
were randomly divided into three groups with six mice each:
the oe-NC+sh-NC group, the oe-UCA1+sh-NC group, and
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the oe-UCA1+sh-LAMC2 group. Cal27 cells and macro-
phages treated with different Cal27-CSC-sEVs were sus-
pended in PBS and implanted into the right axillary
subcutaneous tissue in nude mice (1 x 10° cells per mouse).
Cal27-CSC-sEVs (5ug/mL) were injected into the caudal
vein every 3 days after implantation. At 10 days after
Cal27 cell inoculation, T cells (1 x 10° cells per mouse) were
injected into the peritoneal cavity in the mice. After 28 days,
the nude mice were euthanized and the tumor weight and
volume were measured. The tumor size was measured with
Vernier calipers every 2 days. Tumor volume was calculated
from three vertical measurements. After the mice were
euthanized with pentobarbital sodium at 50 mg/kg (57-33-
0, Shanghai Beizhuo Biotechnology Co., Ltd., Shanghai,
China), the tumors were removed and photographed. The
spleen was isolated into single cells and analyzed by flow

cytometry.

2.12. Statistical Analysis. SPSS 21.0 (IBM Corp. Armonk,
NY, USA) was used for statistical analysis. The measurement
data are summarized as the mean + standard deviation.
Independent sample t-test was used for comparisons
between groups. One-way analysis of variance (ANOVA)
was applied for comparisons among multiple groups, and
repeated measures ANOVA, followed by Tukey’s post hoc
test, was used to compare data at different time points. p <
0.05 was considered to indicate a statistically significant
difference.

3. Results

3.1. OSCC-CSC-sEVs Promote M2 Polarization of
Macrophages. First, OSCC-CSCs were sorted using magnetic
bead sorting technology. Fluorescence microscopy
(Figure 1(a)) showed that the sorted CD1337CD44" cells
emitted red fluorescence and green fluorescence, thus indi-
cating that CD133 and CD44 were highly expressed in
OSCC cells. However, no red or green fluorescence was
observed in CDI133'CD44  cells, thus suggesting that
CD133 and CD44 were not expressed in those cells. The
results of sphere-forming assays in vitro indicated that the
ability of isolated OSCC-CSCs to form spheres was signifi-
cantly stronger than that of OSCC cells (Figure 1(b)).

Second, OSCC-CSC-sEVs were successfully extracted.
OSCC-CSCs were cultured in vitro, and sEVs were isolated
from the supernatant. Transmission electron microscopy
indicated that the isolated sEV's had typical sEV morphology
with a generally consistent round- or oval-shaped membra-
nous vesicle pattern (Figure 1(c)). NTA indicated that the
diameters of sEVs ranged from 85nm to 130nm
(Figure 1(d)). Western blot analysis indicated that the SEV
surface markers CD63 and CD9 were highly expressed, but
calnexin was not expressed on the surfaces of sEVs
(Figure 1(e)).

Third, OSCC-CSC-sEVs were taken up by M¢ and fur-
ther promoted M2 polarization. PMA was used to induce
THP-1 cells to differentiate into M¢@. PKH67- (green-)
labeled OSCC-CSC-sEVs were then cocultured with Mg
for 24 hours, and the uptake of PKH67 by M¢ was observed
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Figure 1: OSCC-CSC-derived sEVs (OSCC-CSC-sEVs) promote M2 polarization of macrophages. (a) CD133'CD44" cell
immunofluorescence staining synthesis map (left panel) and CD133°CD44" cell immunofluorescence staining synthesis map (right panel,
500x). (b) The formation of spheres, observed under an optical microscope (200x). (c) The sEVs derived from OSCC-CSCs, observed
under a transmission electron microscope (10000x). (d) Determination of exosome diameter by nanoparticle tracking analysis. (e)
Western blot analysis detecting the exosome surface markers CD81 and CD63. (f) The uptake of sEVs by macrophages, observed under
a confocal fluorescence microscope (200x). (g) Detection of M2 macrophage markers (CD163, IL-10, and Arg-1) by RT-qPCR after
coculture of macrophages and OSCC-CSC-sEVs. (h) Detection of CD206"CD11b" M2 macrophages by flow cytometry after coculture of
macrophages and OSCC-CSC-sEVs. *p < 0.05. All cell experiments were repeated three times.

under a fluorescence microscope (Figure 1(f)). The results
indicated that Me successfully took up sEVs. Furthermore,
RT-qPCR revealed that the expression of M2 macrophage
markers [CD163, interleukin- (IL-) 10, and arginase-1
(Arg-1)] markedly increased in Mg cocultured with
OSCC-CSC-sEVs (Figure 1(g)). Consistently, flow cytome-
try revealed a substantially greater proportion of CD206"
CD11b" cells in Mg cocultured with OSCC-CSC-sEV's
(Figure 1(h)).

3.2. UCAI Modulates the LAMC2/PI3K/AKT Axis in OSCC-
CSCs via Binding miR-134. We previously reported that
miR-134 influenced the biological behavior of OSCC-CSCs
via downregulation of the PI3K/AKT signaling pathway
and inhibition of LAMC2 expression [15]. IncRNAs are
widely recognized as ceRNAs that competitively bind miR-
NAs. To identify the IncRNAs that competitively inhibit
miR-134 in OSCC, we predicted the IncRNAs that might
bind miR-134 according to the RNAInter database and
intersected the results with the upregulated IncRNAs in
GSE146483; the results indicated that UCA1 binds miR-
134 and is highly expressed in OSCC (Figures 2(a)-2(d)).
Dual-luciferase reporter assays revealed that a miR-134
mimic significantly decreased the luciferase activity of
UCA1-WT, but did not affect the luciferase activity of
UCA1-MUT (Figure 2(e)). Hence, UCA1 binds to miR-
134. According to the GEPIA database, UCA1 has signifi-
cantly higher expression in OSCC than normal tissue
(Figure 2(f)). In addition, the results of GO and KEGG anal-
yses showed that miR-134 downregulates LAMC2 in OSCC

and subsequently regulates the PI3K/AKT pathway (Supple-
mentary Figure S1). According to starBase database analysis,
the positive correlation between UCAl and LAMC2
expression in OSCC was significant (Figure 2(g)). On the
basis of these findings and our previous study [15], we
speculated that UCA1 might affect the biological behavior
of OSCC-CSCs by regulating the LAMC2/PI3K/AKT axis
via binding miR-134.

3.3. UCAlI Modulates the PI3K/AKT Pathway in
Macrophages via Targeting LAMC2. First, we performed
oe-UCAL treatment in Mg through lentiviral transduction.
RT-qPCR showed that the expression of UCAL, LAMC2,
PI3K, and AKT significantly increased, whereas miR-134
expression decreased in Mg after treatment (Figure 3(a)).
Western blot analysis verified that the expression of LAMC2,
PI3K, AKT, and p-AKT significantly increased in M after
treatment (Figure 3(b)). Second, we performed oe-UCA1L
plus sh-LAMC2 treatment in Meg. The silencing efficiency
of sh-LAMC2 was verified by RT-qPCR (Figure 3(c)) and
Western blot (Figure 3(d)) analysis; sh-LAMC2-2 was used
in subsequent experiments because it had the better silenc-
ing effect. RT-qPCR showed that the expression of LAMC2,
PI3K, and AKT significantly decreased, whereas the UCA1
and miR-134 expression did not significantly change in
Mg after o0e-UCAl plus sh-LAMC2 treatment
(Figure 3(e)). Western blot analysis verified that the expres-
sion of LAMC2, PI3K, AKT, and p-AKT significantly
decreased after oe-UCAl plus sh-LAMC2 treatment
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F1GURE 2: UCAI modulates the LAMC2/PI3K/AKT axis in OSCC-CSCs via binding miR-134. (a) Heat map of differentially expressed genes
among three normal tissues and eight OSCC tissues in the GSE146483 dataset. (b) Volcano map of differentially expressed genes among
three normal tissues and eight OSCC tissues in the GSE146483 dataset. (c) Venn diagram of the intersection between IncRNAs binding
miR-134 in the RNAInter database and downregulated IncRNAs in OSCC in GSE146483. (d) The binding sites of UCA1 and miR-134.
(e) Dual-luciferase reporter assays detecting the binding relationship between UCA1 and miR-134. (f) The expression of UCALI in the
TCGA dataset, analyzed with the GEPIA database (red represents OSCC tissues, n=519; black represents normal tissues, n =44). (g)
The correlation between UCA1 and LAMC2 expression in HNSCC samples (n=502) from the TCGA dataset according to starBase
database analysis. *p < 0.05, “p > 0.05. All cell experiments were repeated three times.

(Figure 3(f)). Hence, UCA1 modulates the PI3K/AKT path-
way via targeting LAMC2 in macrophages.

3.4. OSCC-CSC-sEVs Promote M2 Polarization of
Macrophages by Transferring UCAI and Targeting LAMC2.
To investigate whether UCAI might be delivered by
OSCC-CSC-sEVs, we found that UCA1 was significantly
more highly expressed in Cal27-CSC-sEVs than Cal27-
sEVs on the basis of RT-qPCR (Figure 4(a)). After UCAL1
was silenced in Cal27-CSCs by sh-UCA1-1 or sh-UCA1-2,
the UCA1 expression significantly decreased according to
RT-qPCR; sh-UCA1-2 was used in subsequent experiments
because it had the better silencing effect (Figure 4(b)).
UCAL expression significantly decreased in Cal27-CSC-
sEVs treated with sh-UCA1 (Figure 4(c)).

To investigate the effect of UCA1 on the M2 polarization
of macrophages, we cocultured Cal27-CSC-sEVs and Mg
macrophages. According to RT-qPCR, the expression of
UCA1 and M2 macrophage markers (CD163, IL-10, and
Arg-1) in macrophages decreased after coculture with sEVs
from Cal27-CSCs treated with sh-UCA1 (Figure 4(d)).
According to the results of flow cytometry, the proportion
of CD206"CD11b" cells was clearly diminished by coculture

with sEVs from Cal27-CSCs treated with sh-UCAI
(Figure 4(e)). Therefore, OSCC-CSC-sEVs promote macro-
phage M2 polarization by transferring UCAL.

To further investigate the effect of UCA1 on M2 polari-
zation by targeting LAMC2, we performed oe-UCA1 plus
sh-LAMC2 treatment in Cal27-CSC-sEVs cocultured with
Mg. RT-qPCR showed that the expression of CD163, IL-
10, and Arg-1 significantly increased after oe-UCAL treat-
ment, but these effects were negated by additional sh-
LAMC?2 treatment (Figure 4(f)). Consistently, flow cytome-
try assays showed that the proportion of CD206"CD11b*
cells was significantly elevated after oe-UCAI1 treatment,
but this increase was abrogated by additional sh-LAMC2
treatment (Figure 4(g)).

We further investigated the LAMC2-mediated effects of
UCAL1, delivered by OSCC-CSC-sEVs, on the biological
function of OSCC Cal27 cells and Mg. Differently treated
Mg was cocultured with Cal27 cells. Transwell assays
revealed that the migration and invasion of Cal27 cells were
enhanced after oe-UCA1 treatment, but these effects were
nullified by additional sh-LAMC2 treatment (Figure 4(i)).
Differently treated Mg was cocultured with CD4" T cells.
Flow cytometry assays revealed that the proliferative number
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of CD4" T cells and the proportion of IFN-y*CD4" T cells ~ 3.5. OSCC-CSC-sEVs Transferring UCA1 Accelerate M2
significantly decreased after oe-UCAL treatment, and this =~ Macrophage Polarization and Enhance the Tumorigenicity
response was augmented by the addition of sh-LAMC2  of OSCC Xenografts in Nude Mice. The effects of UCAL
treatment (Figure 4(h)). delivered by OSCC-CSC-sEVs on the tumorigenicity and
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F1GURE 4: OSCC-CSC-derived sEVs (OSCC-CSC-sEVs) promote M2 polarization of macrophages by transferring UCA1 and targeting
LAMC2. (a) UCAL expression in Cal27-sEVs and Cal27-CSC-sEVs, measured by RT-qPCR. (b) Detection of UCAL silencing efficiency,
determined by RT-qPCR. (c) UCA1 expression in sEVs from Cal27-CSCs treated with sh-UCA1, detected by RT-qPCR. (d) RT-qPCR
determination of the expression of the UCA1 and M2 macrophage markers CD163, IL-10, and Arg-1 in macrophages cocultured with
sEVs from Cal27-CSCs treated with sh-UCAL. (e) Detection of M2 macrophages after macrophage coculture with sEVs from Cal27-
CSCs treated with sh-UCALI, determined by flow cytometry. (f) The expression of M2 macrophage markers (CD163, IL-10, and Arg-1)
in macrophages after oe-UCA1 and sh-LAMC?2 treatment, determined by RT-qPCR. (g) Detection of CD206"CD11b" M2 macrophages
after oe-UCA1 and sh-LAMC2 treatment, determined by flow cytometry. (h) The proliferation number of CD4" T cells and the
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Transwell assay detection of the migration and invasion ability of Cal27 cells cocultured with macrophages treated with oe-UCA1 and
sh-LAMC2 (100x). *p < 0.05, *p > 0.05. All cell experiments were repeated three times.

immune function of OSCC cells in nude mice were further
studied. Macrophages cocultured with Cal27 cells were
implanted subcutaneously in nude mice. After implantation,
different groups of OSCC-CSC-sEVs were injected via the

tail vein every 3 days. At 10 days after Cal27 cell inoculation,
T cells were injected into the peritoneal cavity in the mice.
After 28 days, the nude mice were euthanized and the tumor
weight and volume were measured. After oe-UCAL
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FIGURE 5: OSCC-CSC-derived sEVs transferring UCA1 accelerate M2 macrophage polarization and enhance the tumorigenicity of OSCC
xenografts in nude mice. (a) Tumor volume curve and (b) tumor weight of nude mice (n=6) in different treatment groups. (c)
Detection of CD206"CD11b" M2 macrophages in the tumor tissues of nude mice, determined by flow cytometry in different treatment
groups. (d) Detection of IFN-y*CD4" T cells among the spleen cells in nude mice, determined by flow cytometry in different treatment
groups. *p < 0.05, *p > 0.05. The data in the figure were measurement data from 6 mice, which summarized as mean + standard deviation.

treatment, the tumor volume (Figure 5(a)) and tumor weight Flow cytometry indicated that the proportion of CD
(Figure 5(b)) in mice had clearly increased, but this effect 206"CD11b" cells (Figure 5(c)) increased and that of IFN-
was abrogated by sh-LAMC2. y"CD4" T cells (Figure 5(d)) decreased significantly after



14

Tumor microenvironment

L, miR-134

sEVs-enriched UCAL == Molecular mechanism
o

)L—I =] T —> G

Stem Cells International

)

AKT

..'. .. SEVS‘}lPtjk? Py Mo 1

@ ®9 e . | . wesfp | Migrating & invasive,

——————— )

/

S
0SCC-CSCs O — =¥ oscc
y e - _ Immunosuppression
(CD163, IL-10, Arg-1) — (IFN-y*CD4*TcellsJ)
Macrophages M2 polarization
(M) (CD206* CD11b*) CD4* T cells

FIGURE 6: Schematic overview of the mechanism. OSCC-CSC-derived small extracellular vesicles (sEVs) transfer IncRNA UCAI, thus
promoting M2 macrophage polarization via a LAMC2-mediated PI3K/AKT axis and further enabling cell migration and invasion of
OSCC and modulating immunosuppression, partly by inhibiting CD4" T-cell proliferation and IFN-y production.

treatment with oe-UCAL, but this response was counteracted
by additional sh-LAMC2 treatment. Therefore, OSCC-CSC-
sEVs promote macrophage M2 polarization by transferring
UCALI and targeting LAMC2, thus enhancing the tumorige-
nicity and immunosuppression of OSCC in nude mice.
Together, our results revealed that OSCC-CSC-sEVs transfer-
ring the IncRNA UCA1 promote M2 macrophage polarization
via a LAMC2-mediated PI3K/AKT axis and further modulate
immunosuppression, partly by inhibiting CD4+ T-cell prolif-
eration and IFN-y production (Figure 6).

4. Discussion

TAMs and associated sEVs play important roles in mediat-
ing intercellular communication, modulating immunosup-
pression, and facilitating cancer progression in the tumor
microenvironment by transferring RNAs [3, 6]. Earlier stud-
ies have investigated cancer cell-derived sEVs, which pro-
mote M2 macrophage polarization in various cancers by
transferring noncoding RNAs [6-8]. However, whether
CSC-sEVs transfer noncoding RNAs, thus inducing M2
macrophage polarization, was largely unknown in most can-
cers [9]. In this study, we revealed that OSCC-CSC-sEVs
transferring the IncRNA UCA1 promote M2 macrophage
polarization via a LAMC2-mediated PI3K/AKT axis, thereby
facilitating tumor progression and immunosuppression.
The IncRNA UCAL1 has been reported to be involved in
malignant progression of OSCC by targeting miR-143 [23]
and miR-124 [24]. Furthermore, pancreatic cancer-derived
exosomal UCA1 has been found to promote tumor angio-
genesis by targeting miR-96 [25]; exosomal UCA1 modu-
lates cervical cancer stem cell self-renewal and
differentiation by targeting miR-122 [26]. However, the
association between UCAl and TAMs in OSCC was
unknown. We found that UCA1, delivered by OSCC-CSC-
sEVs, contributed to the migration and invasion of OSCC
by binding to miR-134. Moreover, several reports have
shown that OSCC-derived exosomes, by transferring pro-
teins and miRNAs, promote M2 macrophage polarization
[8, 27, 28]. Pang et al. have reported that OSCC-secreted

exosomal CMTM6 induces M2 macrophages polarization
[27]. Yuan et al. have reported that head and neck cancer
cell-released exosomal PD-L1 facilitates M2 macrophage
polarization [28]. Cai et al. have reported that OSCC-
derived exosomes deliver miR-29a, thereby promoting M2
macrophage polarization [8]. However, the association
between UCA1 and macrophages in OSCC was unknown.
We demonstrated that UCA1 delivered by OSCC-CSC-
sEVs promotes M2 macrophage polarization.

LAMC2 (laminin gamma 2 chain) has been reported to
be involved in the malignant behavior of OSCC by targeting
relevant miRNAs and IncRNAs [15, 29, 30]. Furthermore,
LAMC?2 expression is positively associated with macrophage
infiltration in lung cancer [21]. LAMC2, via exosomal miR-
146a, mediates increased chemotherapy sensitivity of ovar-
ian cancer cells through the PI3K/AKT pathway [22]. More-
over, PI3K/AKT signaling is an important pathway for the
biological behavior of cancer-derived sEVs and TAMs
[16-20]. For instance, M2 macrophage-derived exosomal
miRNAs inhibit cell migration and invasion in gliomas
through the PI3K/AKT pathway [20]. However, the associa-
tion between LAMC2 and sEVs or TAMs in OSCC was
unknown. In a previous study [15], we found that LAMC2
participates in mediating OSCC-CSC-derived exosomal
UCAL, thus promoting M2 macrophage polarization via
the PI3K/AKT pathway.

M2-tumor-associated macrophages (M2-TAMs) are
among the most abundant immunosuppressive cell types
in the tumor microenvironment. M2 macrophage polariza-
tion further contributes to immunosuppression via inhibit-
ing T-cell proliferation and the production of relevant
cytokines [31-33]. In this study, we revealed that OSCC-
CSC-derived exosomal UCAI, by targeting LAMC2, pro-
motes M2 macrophage polarization and inhibits CD4" T-
cell proliferation and IFN-y production in vitro and
in vivo. Importantly, we demonstrated that M2-TAMs, by
transferring exosomal UCA1 and targeting LAMC2,
enhance cell migration and invasion of OSCC in vitro and
the tumorigenicity of OSCC in nude mice in vivo. Further-
more, increasing evidence indicates that tumor-derived
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exosomes and M2-TAM:s play roles in the malignant biolog-
ical behavior of OSCC [34, 35]. However, their immunosup-
pressive mechanisms and functional roles in OSCC
microenvironment remain to be further explored [2].

5. Conclusions

In summary, our data suggested that the IncRNA UCALl
increased in OSCC-CSC-derived sEVs, and these UCA1-rich
CSC-secreted sEVs were transferred to unpolarized macro-
phages and induce macrophage polarization toward
protumor-related M2 macrophages by targeting LAMC2 via
the PI3K/AKT pathway. These findings indicated that the
OSCC-CSCs use sEV-transferring UCAl to modulate the
immunosuppressive microenvironment, thus enabling cell
migration and invasion of OSCC and enhancing tumorigenic-
ity. Our findings provide a new understanding of the molecular
mechanism of OSCC-CSC and suggest a potential therapeutic
strategy for OSCC by targeting CSC-sEVs and M2-TAMs.
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