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Abstract

Spinal cord injury (SCI) is associated with devastating neurological deficits affecting more than 

11,000 Americans each year. Although several therapeutic agents have been proposed and tested, 

no FDA-approved pharmacotherapy is available for SCI treatment. We have recently demonstrated 

that estrogen (E2) acts as an antioxidant and anti-inflammatory agent, attenuating gliosis in SCI. 

We have also demonstrated that nanoparticle-mediated focal delivery of E2 to the injured spinal 

cord decreases lesion size, reactive gliosis, and glial scar formation. The current study tested in 

vitro effects of E2 on reactive oxygen species (ROS) and calpain activity in microglia, astroglia, 

macrophages, and fibroblasts, which are believed to participate in the inflammatory events and 

glial scar formation after SCI. E2 treatment decreased ROS production and calpain activity in 

these glial cells, macrophages, and fibroblast cells in vitro. This study also tested the efficacy of 

fast- and slow–release nanoparticle-E2 constructs in a rat model of SCI. Focal delivery of E2 via 

nanoparticles increased tissue distribution of E2 over time, attenuated cell death, and improved 
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myelin preservation in injured spinal cord. Specifically, the fast-release nanoparticle-E2 construct 

reduced the Bax/Bcl-2 ratio in injured spinal cord tissues, and the slow-release nanoparticle-E2 

construct prevented gliosis and penumbral demyelination distal to the lesion site. These data 

suggest this novel E2 delivery strategy to the lesion site may decrease inflammation and improve 

functional outcomes following SCI.
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Introduction

Spinal cord injury (SCI) is a debilitating medical condition that can permanently impair 

motor and sensory function, with an associated devastating financial burden to patients [1]. 

Currently, no FDA-approved drug exists for the treatment of acute SCI. Methylprednisolone 

was widely used in the past in the setting of acute SCI, but this controversial therapeutic 

option did not receive FDA approval due to limited efficacy [2–6]. Without effective 

treatment, SCI leads to infiltration of numerous peripheral macrophages and neutrophils, 

which play a crucial role in the activation of endogenous cells throughout the secondary 

injury process [7]. SCI also results in rapid reactive oxygen species (ROS) production and 

oxidative damage, leading to neuronal dysfunction and cell death [8]. ROS and oxidative 

stress are believed to play an important role in the pathophysiology of SCI [9]. Thus, 

alleviating oxidative stress may be an effective therapeutic strategy.

Reactive astrogliosis is widely recognized as a pathological trait of SCI [10]. Inflammatory 

events in SCI increase the activities of calpains, leading to neurodegeneration. Fibroblasts 

are ubiquitous in peripheral connective tissues and organs, and these cells are the principal 

generators of stroma [11]. Within the central nervous system (CNS), fibroblast-like cells are 

mostly associated with the vasculature and contribute to the basal laminae. However, injury 

to the spinal cord can induce a marked fibroblast response, producing matrix components. 

These matrix components may inhibit neural regeneration directly and promote prolonged 

tissue remodeling via interaction with inflammatory cells. These stromal elements become 

spatially compartmentalized by surrounding reactive astrocytes to form the fibrotic core of 

the spinal injury scar [12].

The glial scar is one of the primary impediments to regeneration and repair in the injured 

spinal cord. It is comprised of a number of components such as extracellular matrix proteins 

(ECM), activated astrocytes/microglia, fibroblasts, infiltrating immune cells, and axonal 

growth inhibitors. Two types of glial scar have been reported: glial and fibrous [13]. An 

important factor in the glial scar is chondroitin sulfate proteoglycan (CSPG), which is 

produced by activated glia, and serves to block axonal regrowth [14]. CSPGs are produced 

by activated astrocytes in response to the pro-inflammatory milieu present in the secondary 

injury setting [15]. Astrocytes, in particular, also form the glial scar predominately through 

hypertrophied processes [16]. One approach to decreasing the glial scar may therefore be to 

decrease astrocyte activation and proliferation. The steroid hormone estrogen (E2) has been 
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shown to decrease astrocytic glial fibrillary acidic protein (GFAP) expression in acute SCI 

[17–20]. Thus, focal delivery of E2 to the injured spinal cord may help prevent activation 

and proliferation of reactive gliosis-attenuating glial scar and axonal damage in SCI.

We have recently demonstrated that focal delivery of E2 via nanoparticles reduced gliosis 

and CSPG in acute/subacute phases of SCI, improving functional outcomes in a rat 

model of SCI [21]. However, the fibrotic scar also consists of ECM proteins such as 

fibronectin, collagen, and laminin that are secreted by infiltrating activated fibroblasts [22, 

23]. Vimentin, an abundant cytoskeletal protein in cells of mesenchymal origin, has been 

associated with increased invasiveness and excessive scarring [24]. Inhibiting vimentin 

protects from fibrotic injuries [23, 25].

The use of single-agent targeted therapeutics in an enormously complex pathophysiology 

that includes inflammation, oxidative stress, protease activation, and glial scarring has 

not proven efficacious. Thus, evaluation of broadly acting agents, like E2, may be 

more effective. E2 is a highly pleiotropic substance that has been reported to activate 

transcription of some 137 E2 regulated genes [26]; E2 is known to have anti-inflammatory, 

anti-oxidant, anti-apoptotic, and neurotrophic properties [27–33]. E2 is also angiogenic 

and has exhibited a neuroprotective effect not only in SCI models [17, 32, 34–40] but 

also in experimental traumatic brain injury [41–46] and stroke models [47–51]. However, 

short-term systemic E2 treatment for contraception has been associated with increased risks 

of venous thromboembolism [52]. These safety concerns with traditional systemic E2 dosing 

(tablet or intravenous injection) are amplified in mobility-impaired SCI individuals who 

are already at an elevated risk for venous thromboembolism. Site-directed delivery through 

the use of nanoparticles provides for a significant reduction in systemic dosage, thereby 

reducing safety concerns. Such administration of low dose E2 via nanoparticles in SCI has 

been found to maintain E2 serum concentrations at physiological levels [21, 53].

Nanoparticles, synthetic polymers capable of targeted drug delivery, first received FDA 

approval for the treatment of cancer with Doxil in 1995 [54]. Subsequently, nanoparticle 

drug delivery systems have been shown to improve the therapeutic index of drugs. A 

recent exploratory delivery technique using methylprednisolone-loaded nanoparticles in a 

gel preparation was placed directly onto lesioned tissue in a rat SCI model, and its success 

illustrated the feasibility of this drug delivery approach [55]. Since acute SCI patients may 

undergo spine stabilization surgery, delivery of the nanoparticles directly via a surgically 

implanted epidural gel patch may effectively increase the therapeutic window of E2. This 

study therefore formulated and tested two different E2-nanoparticle constructs and examined 

their effects on gliosis and neuronal death in a rat model of SCI. Results from in vitro 

studies suggest that low dose E2 inhibits ROS, calpain activity, and vimentin production by 

fibroblast cells. In vivo studies suggest that focal delivery of E2 via nanoparticles attenuates 

glial activation, protects neuronal cells, and improves myelination and motor function in 

SCI.
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Materials and Methods

Cell Lines

Mouse BV-2 microglia cells [56] were cultured in complete IMDM (Iscove’s Modified 

Dulbecco’s modified Eagle’s medium) with 10% bovine growth serum (BGS) (Thermo 

Scientific, Logan, UT), 50 U/mL penicillin, and 50 μg/mL streptomycin (Life Technologies). 

Rat C6 astrocyte-like cell line was purchased from the BCRC (Bioresource Collection and 

Research Center; Taiwan) [57]. C6 cells were cultured in complete IMDM with 10% BGS 

(Thermo Scientific, Logan, UT), 50 U/mL penicillin, and 50 μg/mL streptomycin (Life 

Technologies) as described above. Mouse Raw264.7 macrophage cells [58] were cultured in 

complete DMEM (Dulbecco’s modified Eagle’s medium) with high glucose (Gibco, Thermo 

Scientific, Logan, Ut.) containing 10% fetal bovine serum (FBS) (Life Technologies), 50 

U/mL penicillin, and 50 μg/mL streptomycin (Life Technologies). Human fibroblast M1 

cells were cultured in complete DMEM (Corning, Manassas, VA) with 10% FBS (Thermo 

Scientific, Logan, UT), 50 U/mL penicillin, 50 μg/mL streptomycin (Life Technologies), and 

L-glutamate (Cellgro) as described [58]. Cells were cultured in a humidified incubator at 37 

°C with 5% CO2.

Reactive Oxygen Species (ROS) Detection Assay

BV-2, C6, Raw264.7, and M1 cells were cultured in complete media in tissue culture plates 

until 80% confluency. Cells were collected, counted, and 5 × 104 cells were treated with 40 

ng/mL of IFN-γ in the presence or absence of 40 nM of E2 for 24 h in 96-well plates (200 

μl/well). ROS was detected using Reactive Oxygen Species Assay Kit (Abcam ab186029) 

following the manufacturer’s protocol. Fluorescence was measured at Ex/Em 650/675 after 

30 min of incubation. Data analysis was performed using Microsoft Excel.

Calpain-Glo Protease Assay

Cells (4 × 106) were treated with 40 ng/mL of IFN-γ in the presence or absence of 40 

nM of E2 for 24 h in 25 mL tissue culture flasks containing 5 mL of media. Cells were 

collected, washed in PBS three times, and lysed in complete lysis buffer on ice. From 

each batch, 100 μg of protein were used for assay. The assay was performed in triplicate 

in 96-well flat-bottomed plates using Calpain-Glo™ Protease Assay Kit (Promega G8501, 

G8502) following manufacturer’s instructions. Plates were incubated at 37 °C for 5 min as 

indicated. Luminescence reading was recorded 10 min after the detection reagent was added. 

Data analysis was performed using Microsoft Excel.

Immunofluorescence

M1 cells were cultured on poly-D‐lysine‐coated (Sigma-Aldrich) coverslips, fixed with 

4% paraformaldehyde (Sigma‐Aldrich) in PBS (pH 7.4) for 10 min, washed three times 

with PBS, and incubated with blocking buffer containing 10% normal goat serum (Life 

Technologies) in PBS and 0.1% Triton X‐100 for 30 min at room temperature. After 

removing the blocking buffer, cells were incubated overnight with primary antibodies 

against vimentin (1:500, Abcam ab92547) and GFAP (1:200, mouse monoclonal; Sigma‐
Aldrich‐Aldrich Cat# G3893) at 4 °C. After washing three times with PBS at room 
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temperature, cells were incubated with fluorophore‐conjugated secondary antibodies 

(Sigma-Aldrich) that recognized primary antibodies. DAPI (Thermo Fisher Scientific) was 

used to label cell nuclei. Slides were mounted with 1 drop of Invitrogen™ ProLong™ Gold 

Anti-fade Mountant with DAPI (Thermo Fisher Scientific) and cover slipped. After staining, 

cells were viewed under a fluorescence microscope with representative images taken at × 20 

magnification.

Induction of SCI

Adult male Sprague-Dawley rats (200–250 g) were used for the induction of SCI and 

treatment with nanoparticle-encapsulated E2. While gender-related differences may be 

found in SCI where females are favored in terms of tissue preservation and locomotor 

recovery [60], no significant differences between males and females could be seen in SCI 

regarding the localization, onset, or distribution of pain. Moreover, factors affecting number 

of painful body regions, pain descriptors, ratings of pain intensities, and life satisfaction 

were similar. Thus, male rats were used in this study. Rats were anesthetized with ketamine 

(80 mg/kg)/xylazine (10 mg/kg). Following anesthetization of the animal and preparation of 

the surgical site, a midline incision was made on the back over the spinous processes, and 

a T-10 laminectomy was performed. SCI induction was performed as previously described 

[18, 61]. Briefly, the spine was immobilized with a stereotactic device, and the injury was 

induced via the method of Perot: dropping a constant weight (5 g) from a height of 8 cm 

onto an impounder (0.3 cm in diameter) gently placed on the spinal cord.

Vehicle-treated animals received the same volume of void nanoparticles in buffer (100 μL). 

Sham animals underwent a T-10 laminectomy [17, 18]. Wounds were closed using 5–0 

absorbable suture (for interior wound closure). Exterior wound closure was performed with 

either 4–0 ethilon sutures or application of staples 5–8 mm apart (EZ-Clip wound clips). The 

surgical site was monitored, and based on the rate of healing, sutures are removed under 

isoflurane anesthesia.

After surgery, animals were placed on a warming pad until awake. Food was placed on the 

floor of the cage, and long-stemmed water bottles were provided for ease of access to water. 

Animals were checked twice daily until sacrifice. Animals were visually inspected to check 

for abnormal behaviors (head pressing, piloerection, hunching) and handled gently for closer 

physical inspection, including checking for bladder function. The animals’ bladders were 

monitored and expressed twice daily. Rodents that develop urine scald were bathed with 

warm water and gently dried. Vaseline was applied to the affected area. Urine was expressed 

onto a clear glass dish in order to visually check for cloudiness.

If the subjects were not recovering appropriately, monitoring was amplified commensurate 

with the animal’s health needs. Affected animals were thus treated with antibiotics or 

analgesics, given soft food, or placed on a heating pad, depending on the symptoms. Blood 

and tissue samples were collected 7–14 days post-injury. All animal experiments were 

performed in accordance with the Guide for the Care and Use of Laboratory Animals of the 

US Department of Health and Human Services (National Institutes of Health, Bethesda, 

MD, USA) and were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the Medical University of South Carolina under the protocol ARC #1254.
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Preparation of E2-loaded Fast and Slow Release Nanoparticles

Nanoparticles were formulated in the Bioengineering Department of Clemson University, 

South Carolina using the nanoprecipitation method previously described [62, 63]. E2-loaded 

nanoparticles were prepared according to the revised protocol [63]. In the case of PLGA 

(poly-lactic-co-glycolic acid) nanoparticles, 20 mg of 50:50 PGA-PLA co-polymer (PLGA), 

5 mg of PLA:PEG, and 5 mg of E2 were dissolved in 2 mL of acetone. The resulting acetone 

solution was then added dropwise to 20 mL of deionized water, followed by ultrasonication 

in a bath sonicator (5510 Bransonic® Tabletop cleaner, Branson, Danbury, CT) for 30 min. 

To remove reagent residues, the obtained samples were centrifuged three times at 7000 

RCF for 2 h and rinsed with PBS. In the case of PLA nanoparticles, 20 mg of pure PLA 

were used instead of 50:50 PLGA co-polymer. Each batch was evaluated for particle size 

(dynamic light scattering), load efficiency, and zeta potential to ensure consistency among 

batches. Nanoparticles were stored in sucrose at − 20 °C. Unloaded nanoparticles were also 

synthesized and used as a reference.

PLA nanoparticles, due to their higher hydrophobicity and slower degradation rate, have 

been previously shown to have slower drug release rate than PLGA nanoparticles [64]. 

Among different compositions of PLGA co-polymers, 50:50 PLGA formulation has been 

previously shown to possess the fastest drug release rate [65]. Thus, pure PLA and 50:50 

PLGA were used here as the two formulations capable of providing slow and fast drug 

release rates, respectively.

Gel Plug Delivery System

Gel plugs (0.6% SeaPlaque agarose in PBS) were made by dissolving lyophilized E2-loaded 

PLGA nanoparticles at either 25 or 2.5 μg dose (or saline loaded vehicle control) in 50 

μL sterile filtered PBS. The gel (final volume 50 μL) was set in PCR amplification tubes 

overnight to harden. Prior to insertion into animals, gels were sterilized under a tissue 

culture UV lamp for 15 min.

Measurement of E2 Concentrations in Spinal Cord Tissues and Plasma by ELISA

Spinal cord tissue homogenates from PLGA-E2 treatment group were diluted 1:10–1:100 

in 6% BSA block. Plasma samples from PLA-E2 treatment group were serially diluted and 

used in the assay. E2 concentration was determined using a commercially available ELISA 

kit (Calbiotech Estradiol ELISA ES180S) [21]. Undiluted samples were processed following 

directions provided by the manufacturer. Using protein concentration data gathered from 

Bradford assay, the tissue sample E2 concentration was then converted from pg/mL to pg/μg 

of total protein to account for differences in protein concentrations between samples. Plasma 

E2 concentrations were expressed as pg/ml.

Western Blot Analysis

Spinal cord samples were homogenized on ice in a standard homogenizing buffer (50 

mM Tris-HCl, pH 7.4; 5 mM EGTA; 1 mM phenylmethylsulfonyl fluoride) with protease 

inhibitor as described [66–68]. Equal protein concentrations (30 μg/lane) from designated 

samples were separated on a 4–12% Bis/Tris NuPage gel (Invitrogen, Grand Island, NY) 

[69–71]. Proteins were transferred onto a nitrocellulose membrane (Pierce, Rockford IL), 
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and the blot was probed with Bcl-2 (Santa Cruz Biotechnology, sc-7382), Bax (Santa Cruz, 

sc-7480), Iba-1 (Abcam, ab153696), GFAP (Invitrogen, 14-9892-82), and MBP (1:1000, 

Millipore, MAB384), and Vimentin (1:1000, Abcam, ab92547). antibodies. The secondary 

antibodies used were horseradish peroxidase conjugated anti-mouse (1:2000, Santa Cruz, 

sc-2005) and anti-rabbit (1:4000, Santa Cruz, sc-2004). A monoclonal antibody for β-actin 

(1:1000, Santa Cruz, sc-81,178) was used as a protein loading control. Relative protein 

expression was assessed using Image J software (National Institutes of Health, Bethesda, 

MD) and expressed as relative density for each sample [72–74].

Statistical Analysis

Statistical analyses were performed using Microsoft Excel and GraphPad Prism (version 

6.0) Software. The immunoreactive bands obtained from Western blotting and the 

immunoreactive pixels of the immunofluorescence data were analyzed with ImageJ software 

(U.S. National Institutes of Health, Bethesda, MD). Two-tailed paired t-test and one-way 

ANOVA with Bonferroni test for multiple comparisons were used to determine statistical 

significance for all other analyses. Data were expressed as mean ± SEM or mean+/STDEV. 

A p-value < 0.05 was determined to be statistically significant for all calculations.

Results

Low Dose E2 Treatment Attenuates ROS Production by Microglia, Astroglia, Macrophages, 
and Fibroblast Cells

To determine the effects of E2 on ROS production, cells (microglia, astroglia, macrophages, 

and fibroblast) were treated with IFN-γ plus or minus E2 (40 nM) and tested for cellular 

ROS using Reactive Oxygen Species Assay Kit as described in the methods. Treatment of 

cells with IFN-γ significantly elevated ROS levels (p < 0.05) in microglia, astroglia, and 

fibroblast cells (Fig. 1A, B, and D). The production of ROS was also markedly elevated in 

264.7 Raw macrophage cells, but it was not statistically significant (Fig. 1C). Strikingly, E2 

treatment significantly inhibited ROS production in all the cells tested in the presence of 

IFN-γ (Fig. 1). These data suggest that low dose E2 attenuates cellular damage in glial cells, 

macrophages, and fibroblasts.

Low Dose E2 Treatment Attenuates Calpain Activity in Microglia, Astroglia, Macrophages, 
and Fibroblast Cells

To examine the effects of low dose E2 (40 nM) on calpain activity in macrophages, 

fibroblasts, and glial cells, cells were treated with or without IFN-γ as described in the 

methods. Treatment of cells with IFN-γ significantly increased calpain activity (p < 0.05) in 

microglia, astroglia, and fibroblast cells (Fig. 2A, B, and D). An increased calpain activity 

was also detected in 264.7 Raw macrophage cells, but it was not statistically significant 

(Fig. 2C). Interestingly, E2 treatment significantly inhibited calpain activity in all the cells 

tested in the presence of IFN-γ (Fig. 2). These data suggest that low dose E2 attenuates 

calpain activity, which may in turn reduce inflammatory events in glial cells, macrophages, 

and fibroblasts.
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Low Dose E2 Treatment Decreases Vimentin Expression in Fibroblast Cells

Vimentin has been shown to be involved in wound healing, but its functional contribution 

to this process is poorly understood. Loss of vimentin may lead to a severe deficiency 

in fibroblast growth. While astrocytic scars may act as a physical barrier to axonal 

growth, fibroblasts can play a role in the complex process of axonal growth. Glial 

fibrillary acidic protein (GFAP) and vimentin mediates reactive astrogliosis and glial scar 

formation. We have previously shown that E2 attenuates glial scarring after SCI [21]. In 

this study, we examined vimentin expression levels in IFN-γ activated fibroblast cells by 

immunohistochemistry and western blotting (Fig. 3). Treatment of fibroblast cells with low 

dose E2 (5–50 nM) reduced Vimentin level as analyzed by immunohistochemistry (Fig. 

3A). A significant reduction of vimentin expression in fibroblast cells was noted when the 

fluorescence intensity was analyzed by one-way ANOVA (Fig. 3B). Similarly, western blot 

analyses showed that the expression of Vimentin was significantly decreased by low dose E2 

(Fig. 3C and D). These in vitro findings align with our earlier results from an acute model of 

SCI and suggest that E2 treatment may reduce complex glial scar formation in SCI.

Bioavailability of Fast and Slow Release E2 Embedded Nanoparticles in SCI Rats

Our recent study has shown E2 driven neuroprotection in experimental SCI following 

systemic administration [75]. While systematic delivery of E2 reduces inflammation and 

improves functional outcome, it also causes thrombotic sequelae. Thus, we have formulated 

fast (PLGA-E2) and slow (PLA-E2) release nanoparticle E2 constructs (Fig. 4) to increase 

tissue concentration and reduce inflammation and neuronal death after SCI. The release 

of E2 was tested at various time points to confirm fast (Fig. 4A) and slow (Fig. 4B) 

release E2 embedded nanoparticles can be administered using a gel patch. Rapid release 

of PLGA-E2 gel patches (5.0 μg dose) were surgically placed on lesioned spinal cords. 

Animals were euthanized at 48 h following SCI induction and patch placement. Spinal cord 

tissue was collected at necropsy and analyzed for E2 concentrations by ELISA. Fast release 

PLGA-E2 gel patch resulted in decreased plasma concentrations [21] with increased tissue 

concentrations (Fig. 4C).

On the other hand, slow release PLA-E2 gel patches (5.0 μg dose) were surgically implanted 

in the acute rat SCI model. Animals were euthanized at day 0, 1, 2, 3 and 7 following 

SCI induction and patch placement. Blood plasma sample was collected after sacrifice and 

analyzed for E2 concentrations by ELISA. Slow release PLA-E2 gel patch also resulted in 

low plasma E2 concentrations (Fig. 4D). These data suggest that these focal E2 delivery 

approaches in the injured spinal may help attenuate inflammatory responses after SCI.

Focal Delivery of Fast Release PLGA-E2 Alters Bax/Bcl-2 Ratio and Protect Cells in Injured 
Spinal Cord

Bcl-2 family members mediate apoptotic signals through pro-apoptotic protein Bax and 

anti-apoptotic protein Bcl-2. The ratio of Bax and Bcl-2 is believed to be increased in spinal 

cord tissues following SCI [76]. Our western blot analysis showed that the expression of 

Bax was decreased while the expression of the Bcl-2 protein was increased in PLGA-E2 

treated rats after SCI (Fig. 5). These data suggest that focal delivery of E2 via fast release 

nanoparticles protects neuronal cells in SCI.
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Focal Delivery of Slow Release PLA-E2 Improves Myelination in Injured Spinal Cord

Secondary inflammation after SCI often promotes demyelination, impacting the recovery 

of neurological function. Thus, the effects of PLA-E2 on myelin basic protein (MBP) 

expression in injured spinal cord were also tested by western blotting, demonstrating 

increased levels of MBP in treated rats (Fig. 6). E2 may therefore attenuate demyelination in 

injured spinal cord.

Focal Delivery of Slow Release PLA-E2 Reduces Gliosis in Injured Spinal Cord

The activation of microglia/astrocytes is often detected following SCI. Here, we tested spinal 

cord tissues from the injured section following SCI and gel patch therapy with PLA-E2. 

Western blot analysis showed that microglial marker Iba-1 and astroglial marker GFAP were 

significantly reduced following focal delivery of E2 via PLA-E2 (Fig. 7). These data suggest 

that slow release E2 is effective in reducing glial activation in SCI.

Discussion

We have recently shown that E2 treatment reduces CSPG formation after SCI [21]. 

Injury to the spinal cord induces a significant fibroblast response which produces matrix 

components [77]. These matrix components may inhibit neural regeneration directly and 

promote prolonged tissue remodeling via interactions with inflammatory cells. SCI triggers 

a complex cascade of events that culminates in the spinal injury scar, consisting of multiple 

cell types and extracellular, non-neural components [78]. The lack of repair following SCI 

is due to both cell intrinsic factors and the extrinsic injury microenvironment. ROS regulate 

cellular homeostasis and act as prime modulators of cellular dysfunction contributing to 

disease pathophysiology. ROS are generated during mitochondrial oxidative metabolism as 

well as in cellular response to insults. Oxidative stress due to excess ROS is implicated in 

various neurodegenerative diseases.

Using microglia, astroglia, macrophages, and fibroblast cell lines, we have shown that 

IFN-γ induces ROS and increases calpain activity; however, both are significantly reduced 

by E2 administration. In a human fibroblast cell line, we have shown that IFN-γ induces 

upregulation of the fibroblast activation marker, vimentin. E2 treatment decreased vimentin 

immunoreactivity, suggesting that E2 can modulate fibroblast activation. This also suggests 

that E2 treatment in the chronic stage of SCI may alter glial and fibroblast activation with 

subsequent effects on glial scar composition. The pathophysiology of SCI is characterized 

by an initial primary injury to the spinal cord followed by a secondary phase of injury. 

In severe SCI, secondary lesions include activation of an inflammatory cascade and 

overproduction of free radicals, with overall poor outcomes [79–81]. Although the etiology 

and pathogenesis of secondary injury processes remain to be fully understood, it has 

been suggested that the production of ROS and oxidative stress play a significant role 

in SCI pathophysiology. Thus, reducing ROS and oxidative stress-mediated secondary 

injury process may provide an effective strategy for therapeutic intervention of SCI. Tissue 

degeneration can be initiated by cell membrane injury, inflammation, axonal damage, ROS, 

reactive free radicals, accumulation of calcium, and excessive calpain activity in cells. Focal 
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delivery of E2 may attenuate these events in injured spinal cord tissues, protecting neurons 

and improving functional outcome.

The ROS formed under normal physiological conditions may have both beneficial and 

harmful functions [82]. ROS promote apoptosis of vascular and neuronal cells and stimulate 

inflammation - while also supporting angiogenesis. Mitochondria are the major source of 

ROS in fibroblasts, which are thought to be crucial regulators of wound healing. Like 

many biologically active substances with antioxidant properties, low dose E2 may act as 

an anti-inflammatory agent to reduce ROS and oxidative stress. In the CNS, microglial 

cells are likely the main source of ROS production. Thus, microglial ROS production by 

IFN-γ was tested first; however, activated astrocytes, macrophages, and fibroblasts also 

appear to generate ROS. Accumulating evidence also suggests that ROS serves as critical 

signaling molecules in cell proliferation and survival [83–85]. Oxidative stress results in 

direct or indirect ROS-mediated damage of nucleic acids, proteins, and lipids, and it has 

been implicated in neurodegeneration [86, 87]. Because ROS are important mediators for 

activation of pro-inflammatory signaling pathways, inhibition of ROS by E2 may regulate 

inflammation following SCI.

Vimentin also plays an important role in inflammatory cell migration. Loss of vimentin 

may lead to a severe deficiency in fibroblast growth, limiting its role in glial scar 

formation. However, vimentin can also participate in many processes crucial for tissue 

repair and regeneration, including cell migration, proliferation, differentiation, angiogenesis, 

extracellular matrix remodeling, and immune responses [88]. E2 treatment reduced vimentin 

expression in fibroblast cells, and calpain activity was also significantly decreased. 

Excessive calcium levels after injury may result in the activation of calpains, which can 

promote oxidation of fatty acids in cell membranes and demyelination. Reduction of calpain 

activity was observed in glial cells, macrophages, and fibroblasts following E2 treatment. 

Interestingly, E2 treatment also induced protection of myelin in SCI rats, suggesting that 

demyelination can be minimized by E2 after SCI.

Reactive astrocytes play a role in pathological processes following SCI [89]. Even in the 

normal aging brain, reactive astrocytes are thought to contribute to inflammatory processes 

[90]. These cells form a physical barrier to obstruct axonal growth and secrete inhibitory 

proteins that hinder functional recovery. During the chronic phase of SCI, astrocytes may 

transform into scar-forming astrocytes [78, 90], which produce inhibitory factors such as 

CSPG [89]. This was significantly attenuated by rapid release PLGA-E2 treatment. Thus, 

the above data indicates slow release PLA-E2 significantly reduced microglial/astroglial 

activation, suggesting nanoparticle mediated delivery of E2 is effective against glial 

activation and inflammatory responses following SCI. Therefore, all these factors taken 

together E2 treatment may facilitate the pathway for regeneration process required in 

damaged axon for making connection following SCI.
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Fig. 1. 
Low dose E2 inhibits ROS production by microglia, astroglia, macrophages, and fibroblast 

cells. BV-2 microglia (A), C6 astroglia (B), Raw264.7 macrophages (C), and M1 fibroblast 

(D) cells were treated with either 40 ng/mL IFN-γ or 40 ng/mL IFN-γ + 40 nM E2 

overnight. ROS assay was performed in 96-well plate by the Reactive Oxygen Species 

Assay Kit (ab113851) according to the manufacturer’s protocol. *p < 0.05; control vs. 

IFN-γ, IFN-γ vs. IFN-γ + E2. ns = not significant. Data are representative of three separate 

experiments
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Fig. 2. 
Low-dose E2 inhibits calpain activity in microglia (A), astroglia (B), macrophages (C), 

and fibroblast (D) cells. BV-2 microglia, C6 astroglia, Raw264.7 macrophages, and M1 

fibroblast cells were treated with either 40 ng/mL IFN-γ or 40 ng/mL IFN-γ + 40 nM E2 

overnight. Calpain activity was tested in 100 μg of protein from each group and determined 

by Calpain-Glo™ Protease Assay Kit (G8501) according to the manufacturer’s protocol. 

*p < 0.05; control vs. IFN-γ, IFN-γ vs. IFN-γ + E2. ns = not significant. Data are 

representative of three separate experiments
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Fig. 3. 
Low-dose E2 inhibits vimentin protein expression by human fibroblast cells. Human 

fibroblast cell line M1 was treated with 40 ng/mL of IFN-γ or 40 ng/mL of IFN-γ plus 

5–50 nM of E2 overnight at 37 °C. (A) Immunofluorescence assay was performed as 

described in the methods. (B) Relative immunofluorescence intensity was quantitated by 

ImageJ software (*p < 0.05; Control vs. IFN-γ and IFN-γ vs. E2). (C) Western blot analysis 

of vimentin using anti-vimentin antibody (ab92547). (D) Densitometric analysis of protein 

band intensity by ImageJ (*p < 0.05). Data are representative of three separate experiments
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Fig. 4. 
Availability of E2 from fast and slow release nano-E2 therapy following SCI. (A) Percent E2 

released from PLGA-E2 in vitro over time. (B) Percent E2 released from PLA-E2 in vitro 

over time. (C) SCI rats were treated with PLGA-E2 (5 μg), and spinal cords were collected 

at 6 and 48 h post injury. Tissues were homogenized and E2 concentration was measured 

by ELISA (Calbiotech ES180S). (D) SCI rats were treated with PLA-E2 (5 μg), and plasma 

samples were collected at various time points after SCI and analyzed by ELISA. *p < 0.05. 

N = 3–5
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Fig. 5. 
SCI rats were treated with PLGA-E2 for 48 h. (A) Spinal cord tissues from lesion section 

were obtained, homogenized, and subjected to western blotting for Bax and Bcl-2. (B) 
Densitometric analysis of protein band intensity and a ratio of Bax and Bcl-2 suggest 30% 

increase with injury, but a significant decrease after PLGA-E2 treatment (*p < 0.05 Injury + 

PLGA-E2 vs. Injury. N = 3 in sham group, and N = 5 in injured groups)
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Fig. 6. 
SCI rats were treated with PLA-E2 for 7–14 days as described. (A) Spinal cord tissues 

distal to the lesion section were obtained, homogenized, and subjected to western blotting 

for MBP. (B) Densitometric analysis of protein band intensity suggests a significant increase 

in MBP protein expression after PLA-E2 treatment (N = 3–5)
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Fig. 7. 
Rats were treated with PLA-E2 (5 μg), and spinal cords were collected at seven days post 

injury. Tissues were homogenized and analyzed by western blotting for Iba-1 (A) and GFAP 

(B) as described in the methods. Densitometric analysis of protein band intensity (lower 

panels) suggests that Iba-1 and GFAP expression levels were significantly inhibited by 

PLA-E2 treatment (N = 3–4 per group)
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