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Dietary shifts and social interactions drive temporal fluctuations
of the gut microbiome from wild redfronted lemurs
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Animals living in highly seasonal environments adapt their diets accordingly to changes in food availability. The gut microbiome as
an active participant in the metabolization of the host’s diet should adapt and change with temporal diet fluctuations, but dietary
shifts can be short-term and, hence, difficult to detect in cross-sectional studies. Therefore, we performed a longitudinal study
combining repeated sampling of fecal samples with observations of feeding behavior in wild redfronted lemurs. We amplified
taxonomical marker genes for assessing the bacteria, archaea, protozoa, helminths, and fungi, as well as the active bacterial
community inhabiting their gut. We found that the most abundant protozoans were Trichostomatia and Trichomonadida, and the
most abundant helminths were Chromadorea. We detected known members of the gut mycobiome from humans but in low
abundances. The archaeal community is composed only of members of Methanomethylophilaceae. The predominant phyla in the
entire bacterial community were Bacteroidota and Firmicutes while the most abundant genera harbor so far unknown bacteria.
Temporal fluctuations at the entire community level were driven by consumption of fruits and flowers, and affiliative interactions.
Changes in alpha diversity correlated only with the consumption of flowers and leaves. The composition of the entire and active
bacterial community was not significantly different, but the most abundant taxa differed. Our study revealed that monthly changes
in the bacterial community composition were linked to fruit and flower consumption and affiliative interactions. Thus, portraying
the importance of longitudinal studies for understanding the adaptations and alterations of the gut microbiome to temporal
fluctuations.

ISME Communications; https://doi.org/10.1038/s43705-021-00086-0

INTRODUCTION

The gut microbiome is a complex fluctuating microbial
ecosystem comprising prokaryotic and eukaryotic microorgan-
isms playing a pivotal role in immunity, physiology, metabolism,
and susceptibility to disease of the host [1, 2]. Investigations of
factors driving these fluctuations help to understand how this
ecosystem adapts to the changing conditions, and the potential
effects these variations have on the health and fitness of their
hosts [2-4].

Essential nutrient cycling processes of the gut ecosystem occur
between the host diet, the microorganisms, and the host itself
[1, 2, 4]. Bacteria catalyze the fermentation of dietary fiber and
starch into short-chain fatty acids and monosaccharides taken up
by the host and other microorganisms [1, 2]. They also provide
ammonia for protein synthesis by metabolizing essential and non-
essential amino acids [2]. The host diet shapes the microbial gut
communities and the presence of certain microorganisms is
crucial for proper degradation and uptake of nutrients from diet
and the resilience of the gut ecosystem [1, 2, 41. Therefore, the gut
microbial ecosystem of wild animals living in highly seasonal
environments should be capable of adapting to dietary changes
following fluctuations in food availability and seasonality [3-5].
Research in wild mice (Apodemus sylvaticus), Tibetan macaques

(Macaca thibetana) and pandas (Ailuropoda melanoleuca) found
marked seasonal variations in the gut microbiome composition
and diversity associated with environmental fluctuations affecting
food availability [5-7]. Furthermore, cross-sectional studies in
black howler monkeys (Alouatta pigra), white faced capuchins
(Cebus capucinus), and Verreaux’s sifakas (Propithecus verreauxi)
determined these fluctuations correlate with changes in foraging
and feeding behaviors [8-10]. Nonetheless, by sampling only
representative months of each season, short-term dietary and gut
microbiome shifts might be undetected [4]. In the Hadza hunter-
gatherers, a seasonal cycling of the gut microbiome following
seasonal changes in their diets between fruit foraging and
hunting was detected [11]. Longitudinal studies in great apes
(Gorilla gorilla gorilla, Gorilla beringei beringei and Pan troglodytes
troglodytes) and geladas (Theropithecus geladas) determined
seasonal fluctuations of the gut microbiome correlate with
rainfall, temperature, and food availability [12, 13]. While a time
series study in baboons (Papio cynocephalus) detected a highly
dynamic gut microbiome varying according to the group’s diet,
rainfall, and the quality of the water sources [14]. Thus,
enhancing the importance of time series analysis in wild animals
to determine how the gut microbial communities adapt to
seasonal changes [4, 8, 12, 14].
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To our knowledge, all taxonomic profiling studies in wild animals
focus on the amplification of 16 S rRNA gene from DNA, hence
studying the entire community. This approach can be biased by the
number of 16 S rRNA operons and the presence of dormant or dead
cells in the sample [15]. Conversely, when amplifying the 16 S rRNA
transcripts, only the bacterial community that is actively replicating
is investigated, providing insights into the potentially active
community [16]. This approach can provide better proxies into the
functional metabolic changes that the gut microbiome undergoes
as a response to seasonality [2, 4].

We performed a longitudinal analysis of the entire and active gut
bacterial community in a wild primate, the redfronted lemur
(Eulemur rufifrons). Their habitat, Kirindy Forest in Madagascar, is
highly seasonal having a cold dry season from April to October and a
warm rainy season from November to March [17, 18]. These
environmental conditions cause changes in the availability of food
and water sources, posing adaptive challenges for these animals [19-
21]. Redfronted lemurs are mainly frugivorous but consume leaves,
and flowers following seasonal fluctuations, and adjust their drinking
behavior according to the available water sources [20, 21]. Hence,
these redfronted lemurs are a suitable study system to characterize
temporal fluctuations in the gut microbiome composition. Moreover,
they possess a high eukaryotic parasite richness with variations in
their monthly prevalence as detected from morphological studies,
suggesting complex prokaryotic and eukaryotic interactions occur in
their guts [18, 22, 23]. However, their gut mycobiome is still
unexplored despite its potential metabolic importance [24, 25].

For 1 year, we collected up to three fecal samples per month for
each individual and conducted regular animal focal observations
to determine their dietary composition and affiliative interactions.
Since previous research suggested that social group and home
range can also impact the gut microbiome [10, 26], we studied
only one group consisting of five individuals to control for these
potential confounding factors. To characterize the microbiome
composition, we assessed the entire and active bacterial commu-
nity as well as other inhabitants of the gut, including Protozoa,
helminths, Fungi, and Archaea. We hypothesize that by using a
longitudinal approach, we [1] determine temporal fluctuations in
composition and diversity of the bacterial entire and active
community correlate to monthly changes in diet and affiliative
interactions, [2] find no significant differences between the entire
and the active bacterial communities, and [3] detect temporal
changes in the abundances of the eukaryotic community.

METHODS

Sample, behavioral, and environmental data collection

This study was conducted at the research station of the German Primate
Center in Kirindy Forest, Western Madagascar (44°39’E, 20°03’S) from May
2018 to April 2019 [17]. Samples and data were collected over 1 year from
five redfronted lemurs belonging to the same group; three adult females
(FLucF, FTorF, and FMayF), one juvenile female (FBonF) and one adult male
(FCaiM) (Supplementary Table S1). Fecal samples were collected in
RNAlater (Thermofisher Scientific, Massachusetts, USA) from the forest
floor immediately after defecation between 7:30 and 11:00, stored at —20°
Ciin the field station and later at —80 °C in Germany. A total of 142 samples
were collected, with an average of two samples per individual per month
(Supplementary Table S1). Behavioral data was collected by continuous
focal observations for 30 min in the morning (7:30-11:00) and afternoon
(14:00-17:00). Feeding behaviors were recorded by protocolling their
duration and the ingested food item (leaves, flowers, or fruits). For
affiliative interactions, we protocolled the duration of grooming and body
contact behavior. Environmental data (daily temperature and precipitation)
were collected at the field station with a Tropos data logger (Lambrecht
meteo, Gottingen, Germany).

DNA extraction and amplification of taxonomic marker genes
DNA extractions were performed with the PowerSoil DNA isolation kit
(Qiagen, Hilden, Germany) using 150 mg fecal sample following the
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manufacturer’s instructions but including a bead beating step of 6.5m/s
and 24x2 for 20s using FastPrep-24™5G (MP Biomedicals, California,
USA). PCR reactions for all taxonomical marker genes were performed in
triplicates with the primers and thermocycling protocols listed in the
Supplementary Table S2 and included a negative control without DNA
template and a positive control [27-32]. Triplicates per sample were
pooled equimolar, purified, and sequenced as in [33].

RNA extraction and cDNA synthesis

RNA was extracted from 250 mg fecal sample using the RNeasy Power
Microbiome kit (Qiagen) following the manufacturer’s instructions, and
according to the protocol from [33].

Bioinformatic processing of amplicon data

Paired-end reads were quality-filtered with Fastp0.20.0 [34] using default
settings with the addition of an increased per base phred score of 20, base
pair corrections by overlap (-c), as well as 5- and 3’-end read-trimming with a
sliding window of 4, a mean quality of 20 and minimum sequence length of
50 bp. Quality-controlled reads were merged with PEARv0.9.11 [35] and
primer-clipping was performed with cutadapt2.5 [36] with default settings.
VSEARCH2.14.1 [37] was used for size-sorting, size-filtering (16 S rRNA > 300
bp; 18S rRNA >250bp; ITS2>140bp) and dereplication. The sequences
were denoised with UNOISE3 [38] using default settings and chimeras were
removed with UCHIME3 (de novo followed by reference-based) [39] leading
to the final set of amplicon sequence variants (ASVs). Then all reads were
mapped against the ASVs and taxonomy was assigned with a minimum
identity of 90% using BLAST2.9.0 + [40] against different databases according
to the taxonomical marker gene. The databases were SILVA SSU 138 NR [41]
for 16 S rRNA, PR? SSU rRNA [42] for 18 S rRNA and UNITE 8.2 [43] for ITS2.
Best hits were only accepted if (M) > 93 following the
recommendation of SILVA database [41]. Best blastn hit identity for bacterial
species <98.7% or genus <94.5% were corrected to unclassified [44].
Functional predictions were performed using Faprotax1.2.3 [45] for the
bacterial 16 S rRNA gene data after beforementioned filters were applied. All
sequencing statistics are presented in Supplementary Table S3.

Data visualization and statistical analysis

Data visualization and statistical analysis were performed using Rv3.6.2 [46]
and RStudiov1.20.5033 [47] by using the packages ampvis2 [48], ape [49],
stringr [50], reshape2 [51], viridis, data.table [52], tidyverse [53], and
ggplot2 [54]. Datasets for barcharts, heatmaps, and linecharts were
normalized using GMPR [55], whereas data was rarefied for diversity and
multivariate analysis (Supplementary Table S3). A phylogenetic tree was
generated by aligning all sequences with MAFFTv7.407-1 [56] at 100
iterations, calculated using FastTreeMPv2.1.7 [57] and midpoint-rooted
using FigTree v1.4.4 [58] for estimating Faith’s phylogenetic diversity (PD)
with the package picante [59].

For the 18 S rRNA gene amplicon analysis of eukaryotic parasites and
symbionts, samples with <9000 reads were excluded leaving 115 samples.
ASVs from the kingdoms previously reported as inhabitants of the
gastrointestinal tract of animals: Cercozoa, Ciliophora, Metazoa, Apicom-
plexa, Lobosa, Conosa, and Metamonada were analyzed [23, 60]. For the
ITS2 dataset samples with <7000 reads after quality-filtering samples were
removed leaving 125 samples for analysis.

ANCOM analysis to estimate differential taxa between seasons. To
determine bacterial genera with significant different relative abundances
between seasons, we used ANCOM 2.1 [61] and the packages exac-
tRankTests [62], nlme [63], compositions [64], and readr [65] by using the
repeated measures model with season as main variable and individual as
random effect, and 0.7 as threshold of the W statistic.

Multivariate analysis to study temporal changes in B-diversity. Principal
coordinate analyses (PCoA) using weighted UniFrac distances (WUnifrac)
[66, 67] were calculated in ampvis2 [48]. To test for correlations of the
behavioral and environmental variables an environmental fit with 999
permutations was calculated and corrected for repeated sampling by using
strata as individual with vegan [66]. A PERMANOVA test was calculated
with the adonis function from the vegan package to test for significant
differences between individual -diversity calculated as WUnifrac. Mantel
tests using Spearman correlations were calculated with the vegan package
to estimate correlations between {-diversity from WUniFrac distances and
time between sample collection.
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Linear mixed model for estimating the effects on bacterial composition. The
effects of feeding behaviors and affiliative interactions on the bacterial
composition of the entire bacterial community were tested by fitting a
Linear Mixed Model (LMM) with Ime4 [68]. The model included monthly
feeding rates (min/h) on fruits, leaves, or flowers, and affiliative interactions
(min/h) per individual as test predictors, and mean monthly precipitation
(mm) as control predictor. Taxa with abundances <0.5% in a sample were
removed to account for index hopping during sequencing [69]. To deal
with data compositionality, the microbial proportions of each sample were
centered log-ratio transformed [70]. The random intercepts effects of
individual, taxon, sample, and taxon nested within individual (taxon-
individual) were included, the latter to account for individual specific
microbial compositions. Random slopes for all predictors in taxon,
individual, and taxon-individual were included, excluding flower feeding
rates for taxon-individual [71]. Parameters for the correlations between
random intercepts and slopes within taxon and taxon-individual were
included [71] but not within individual because they were unidentifiable
[72]. Assumptions of normally distributed and homogeneous residuals
were checked visually with QQ-plots of residuals and residuals plotted
against fitted values which revealed no obvious deviations. No issues of
collinearity were detected by calculating Variance Inflation Factors using
car [73] on a model lacking the random effects (maximum: 1.203). The
crucial terms in this model were the random slopes within taxon
representing the taxon-specific effects of the test predictors and were
tested with a permutation test by shuffling the labels of taxa within sample
[74, 75]. As a test statistic, we used the difference between the log
likelihoods of the full model and simpler models. One of the simpler
models lacked all random slopes within the sample except that of
precipitation allowing a full-null model comparison by testing the
combined effects of all test predictors. The others lacked the individual
random slopes (except precipitation) within taxon allowing to test their
individual contribution. A total of 1000 permutations including the original
data as one permutation were conducted, and p-values were calculated as
the proportion of permutations that revealed a test statistic at least as
large as that of the original data. If an individual random slope effect was
significant, then the effect of the respective predictor differs between taxa.
The 20 taxa differing most from the average effect across all taxa, meaning
they had the largest absolute values of the respective Best Linear Unbiased
Predictors (BLUPs), were inspected [76]. Model stability was assessed by
dropping individuals one at time, fitting the full model to each of the
subsets, and then comparing the estimates derived with those obtained
for the full model revealing it was acceptable. Residuals for each
combination of taxon and predictor were plotted verifying the presence
of linear trends.

Linear mixed models for estimating effects on alpha diversity. The effects of
feeding behaviors and affiliative interactions on alpha diversity for the
entire and active bacterial community were estimated by fitting a LMM
using Ime4 [68], MuMIn [77], and visualized with sjPlot [78]. The response
variable was PD, which was log-transformed for the model of the active
community. Affiliative interactions were log-transformed to achieve a
more symmetrical distribution and avoid influential cases, and all
predictors were z-transformed to facilitate model convergence. We
included individual identity as a random intercept effect and the random
slopes of all fixed effects into individual identity to keep the type | error at
the nominal level of 5% [71]. For estimating the significance of the test
predictors, a null model excluding the test predictors was calculated and
then compared to the full model using a likelihood ratio test. We
determined the effect of single fixed effects using likelihood ratio tests
comparing the full model with reduced models removing one fixed effect
at a time [71]. Model assumptions and collinearity (DNA: 1.203; RNA:
1.205) were checked as in the LMM for bacterial composition with no
obvious deviations from these assumptions. Model stability was assessed
as described above.

Procrustes analysis. Procrustes analysis and significance testing with
protest were performed using vegan [66] to test for correlations between
the plant material detected from the 18S rRNA gene amplicons and the
entire bacterial community from calculated PCoAs of Bray Curtis
dissimilarity matrices in ampvis2 [48]. Only those samples with >1000
reads for Archaeplastida were analyzed, leaving 97 samples after
rarefaction. The same test was used to determine significant differences
between the composition of the entire and active bacterial community
from the PCoAs from WuUnifrac distances. A summary of all statistical
results is depicted in Supplementary Table S4.
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Gene alignments and phylogenetic tree from eukaryotic data
Sequence alignments were done with MUSCLE [79] with UPGMA and
default settings. Phylogenetic trees were calculated with the Maximum
Likelihood method, Tamura-Nei model, and 1000 bootstrap in MEGA X
[80]. The 18S rRNA gene and ITS2 sequences from representative
nematodes and Fungi were retrieved from GenBank database [81].

Data deposition

The 16 S rRNA gene and transcripts, 18 S rRNA gene, and ITS2, paired-end
raw reads were deposited in the National Center for Biotechnology
Information Sequence Read Archive (SRA) under the Bioproject
PRINA694983. SRA numbers are in Supplementary Table S1.

RESULTS

Composition of the redfronted lemur gut microbiome

The most abundant bacterial phyla in the five redfronted lemurs
were constant throughout the sampling period with varying
relative abundances; these were Bacteroidota (30.6% +7.6),
Firmicutes (30.0% = 8.2), Proteobacteria (12.3% + 6.5), Spirochaetota
(8.7% £ 2.5) and Verrucomicrobiota (6.3% =2.2) (Fig. 1A and
Supplementary Table S5). These were consistent for all individuals
exempting an increase of Firmicutes (55.7%) and Proteobacteria in
February for FBonF, and an increase of Fusobacteriota (9.9%) in
January for FLucF.

The taxa detected from the amplification of the 18S
rRNA gene were Metazoa (56.9% * 22.7), Streptophyta (21.3% +
13.2), Fungi (6.6% % 6.1), Ciliophora (9.6% +7.2), and Metamo-
nada (1.9% £ 1.5) with a total of 3.1% + 2.9 unclassified reads
(Fig. 1B and Supplementary Table S6). The most abundant
orders previously reported as eukaryotic parasites detected
were Chromadorea, Trichostomatia, and Trichomonadida (Fig. 1C).
Chromadorea highest abundances were in October (94.4%) and
lowest in February (40.0%). While Trichostomatia increased in
February (53.6%), and Trichomonadida in May (7.3%). Overall,
ASVs classified as Chromadorea showed high diversity, indicat-
ing a diverse nematode community (Supplementary Fig. S1).

To study fungal gut communities, we analyzed the ITS2 region.
A total of 71% + 16.8 of sequences were unclassified to Kingdom,
thus demonstrating a lack of information from Malagasy fungal
organisms in databases (Fig. 1D and Supplementary Table S7).
When studying the gut mycobiome the separation between
symbionts and environmental fungi using metagenomic
approaches is challenging [24, 82]. Especially in redfronted lemurs,
who feed on Fungi and plants, which potentially harbor fungal
pathogens. Thus, we extracted only those fungal genera described
before as gut symbionts [24]. We detected these genera in relative
abundances <1%: Cryptococcus, Agaricus, Candida, Saccharomyces,
Malassezia, and Clavispora whereas other genera like Cladospor-
ium, Aspergillus, Fusarium, and Penicillium were present in relative
abundances >1%. In a phylogenetic analysis calculated from the
20 most abundant unclassified ASVs against ITS2 sequences from
some of the fungal genera described as inhabitants of the gut
mycobiome only one ASV was phylogenetically related to
Cladosporium (Fig. 1E). Also, no similar sequences were detected
in the NCBI database.

The archaeal community was assessed with 16S rRNA gene
analysis in a smaller set of samples using two different sets of
primers aiming to recover sequences of different lineages. In both
cases, only Methanomethylophilaceae was identified (Supplemen-
tary Tables 8 and 9). Thus, the archaeal community has a low
diversity and comprises members also known from the gut of
great apes and humans [83, 84].

Temporal variations of the entire gut bacterial community
composition

The five most abundant genera comprise mostly novel organisms
for which only classification at the family level was possible

SPRINGER NATURE
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Prokaryotic and eukaryotic communities from the gut of redfronted lemurs during the study period from May 2018 until April

2019. A Monthly relative abundances of bacterial phyla for the five studied individuals as determined from 16 S rRNA gene sequencing. Bar
charts depict relative abundances of bacterial phyla from normalized counts for each individual per month. All phyla with abundances <2%
were grouped as rare taxa. B Eukaryotic organisms detected in the fecal samples through 18 S rRNA gene sequencing. Bar charts show
monthly relative abundances of eukaryotic classes from normalized counts. All phyla with abundances <2% were grouped as rare taxa.
C Monthly fluctuations in the relative abundances of Chromadorea, Trichostomatia, and Trichomonadida. Linecharts depict relative abundances
of normalized counts of the detected eukaryotic parasites or endosymbionts in the fecal samples. D Fungal organisms detected in the fecal
samples through ITS2 sequencing. Barcharts display monthly relative abundances of fungal orders from normalized counts. All taxa with
abundances <2% were unified as rare taxa. E Maximum likelihood phylogenetic tree of the unclassified ITS2 ASVs against representative Fungi.

(Fig. 2A). These genera belong to the four families of Prevotellaceae
(14.6% £ 7.4), Spirochaetaceae (8.9% =+ 3.1), Rikenellaceae (5.7% %
4.1) and Kiritimatiellae (5.1% + 2.4). The fifth most abundant genus
was Sutterella (3.9% + 2.3). All showed monthly fluctuations in their
abundances, which were not always consistent among individuals
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(Supplementary Fig. S2). The top 20 most abundant genera also
presented monthly and individual differences in their relative
abundances (Supplementary Fig. S3). A PERMANOVA test con-
firmed the B-dissimilarities were significantly different between
individuals (p < 0.002).
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Fig. 2 Monthly fluctuations in most abundant bacterial genera and alpha diversity detected in fecal samples from redfronted lemurs
from May 2018 to April 2019. A Top 5 most abundant bacterial genera and their monthly changes for all studied individuals. Line charts
display relative abundances from normalized counts. B Mean monthly precipitation calculated from records of daily precipitation and seasons
from the study period. C Monthly feeding rates on fruits, leaves, and flowers determined through behavioral focal observations. D Monthly
variations in alpha diversity measured by Faith’s Phylogenetic Diversity Index of all studied individuals.

Seasons were defined following previous publications [17],
however, during our study rainfall increased at the end of the
dry season (Fig. 2B), and feeding behaviors varied across
months (Fig. 2C). Alpha diversity increased during the dry
season with a maximum between August and October (Fig. 2D).
The PD value fluctuated during the whole rainy season and
was lower compared to the dry season. Monthly alpha diversity
changes followed the same pattern in all individuals (Supple-
mentary Fig. S4).

ANCOM analysis revealed that 75 genera showed significant
differential abundance between dry and rainy seasons (Supple-
mentary Fig. S5). We focused on taxa classified with relative
abundances >1% (Fig. 3A).

Mean monthly precipitation, consumption of fruits, leaves, and/
or flowers and the rate of affiliative interactions correlated to the
temporal variations in B-diversity. Samples from the dry season
clustered together unlike the samples from the rainy season
(Fig. 3B), and season (p = 0.001), precipitation (p = 0.001), feeding
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on fruits (p=0.003), leaves (p =0.044), flowers (p=10.001), and
affiliative interactions (p = 0.006).

The LMM detected taxon-specific effects (full-null model compar-
ison; permutation test: p=0.001) of flower (p =0.001) and fruit
feeding (p =0.001), and affiliative interactions (p =0.043) on the
overall bacterial community composition (Supplementary Table S10)
the following: exhibited significant correlations. We thus inspected
the 20 taxa for which the taxon-specific effect deviated most from
the average effect across all taxa for each significant predictor
(Fig. 3C and Supplementary Fig. S6-9).

A time series analysis of WuUnifrac distances against time
between sample collection confirmed temporal variations on
individual level (Supplementary Fig. S10 and Supplementary
Table S11). Thus, the longer the timespan between the samples,
the more dissimilar were the gut bacterial communities.

The LMM for the alpha diversity (full-null model comparison: p =
0.003) detected an effect of feeding on leaves (p = 0.055, Fig. 4B)
which correlated with an increase in PD, while the rates of flower
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Fig. 3 Seasonal variations of bacterial genera, beta diversity, and composition of the entire gut bacterial community of redfronted
lemurs from May 2018 until April 2019. A Log2f fold changes in the mean abundances of bacterial genera between dry and rainy season as
detected with ANCOM 2.1. B PCoA based on weighted Unifrac of the bacterial community and environmental fit analysis depicting significant
correlations between temporal fluctuations in beta diversity and the environmental, diet and social factors investigated. C Heatmap showing
the 20 bacterial genera for which taxon-specific effects differed most from the average across all taxa as detected in a LMM estimating the
effects of diet and affiliative interactions on community composition. The image displays the test predictors for which an effect was detected,
feeding on flowers and fruits, and affiliation rates. Precipitation was included as the control predictor. Positive effects are depicted with
orange, whereas negative effects are colored in purple.
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Fig.4 Environmental and dietary factors driving the monthly fluctuations in alpha diversity of the entire bacterial community measured
with the Faith’s Phylogenetic Diversity index. A Monthly rates of flower consumption (min/h) correlate negatively with alpha diversity.
B Monthly rates of leaves feeding (min/h) correlate positively with a higher alpha diversity. C Mean monthly precipitation correlates negatively
with alpha diversity. The effects of diet, affiliation rates and precipitation were determined with a LMM.

consumption and mean monthly precipitation correlated negatively Potential active bacterial community in the redfronted

with PD (flowers: p=0.002; Fig. 4A; monthly rainfall: p =0.039, lemur gut

Fig. 4C, Supplementary Table S12). An effect of dietary changes on The potentially active bacterial communities were analyzed from
bacterial community composition was further confirmed by one sample per individual per month. The five most abundant phyla
significant correlations from the plant diet deduced from the 18S detected in the active community were Firmicutes (56.1% + 13.1),
rRNA gene analysis (Supplementary Fig. S11A) to the fluctuations of Bacteroidota (16.5% +6.1), Actinobacteriota (9.9% + 4.4), Proteobac-
the bacterial community (Supplementary Fig. S11B) (p=0.001; teria (5.2% +2.2), and Spirochaetota (4.9% +2.2) (Supplementary
Supplementary Fig. S110). Fig. S12A). The five most abundant genera were Colidextribacter
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Fig. 5 Monthly fluctuations in the bacterial composition and alpha diversity of the active bacterial community in fecal samples from
redfronted lemurs from May 2018 to April 2019. A Top five most abundant bacterial genera and their monthly changes for all studied
individuals. Line charts display relative abundances from normalized counts. B Monthly variations in alpha diversity measured by Faith's
Phylogenetic Diversity Index in all studied individuals. C PCoA from WUnifrac of the bacterial community and environmental fit analysis
depicting significant correlations between temporal fluctuations in beta diversity and the environmental, diet and social factors investigated.
D Monthly rates of flower consumption (min/h) correlate negatively with alpha diversity. The effects of diet, affiliation rates and precipitation

on alpha diversity were determined with an LMM.

(11.5% + 8.1), Prevotellaceae—Unclassified (8.8% +4.8), Collinsella
(6.7% =+ 3.4), Spirochaetaceae—Unclassified (4.8% + 2.8), and Oribac-
terium (4.5% + 4.6) (Fig. 5A and Supplementary Fig. S12A). The top
20 most abundant genera were also investigated, which presented
monthly and individual differences in their relative abundances
(Supplementary Fig. S13).

The ANCOM analysis revealed that 40 genera exhibited
significantly different relative abundances between seasons. Most
exhibited abundances <1% or were only classifiable to order level
(Supplementary Fig. S14) leaving only Bacteroidales group RF16
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with lower abundances in the rainy season, whereas Lachnospir-
aceae group XPB1014 and Fusobacterium had higher abundances
in the rainy season. PD was higher during the dry season and
more variable during the months of the rainy season, like at the
entire community level (Fig. 5B). The PCoA did not show seasonal
clustering (Fig. 5C). However, the environmental fit analysis
detected correlations of season (p=0.007), feeding on flowers
(p=0.003) and precipitation (p=0.013) with the monthly
alterations of the bacterial community (Fig. 5C). Mantel correlation
tests of the B-dissimilarities and the timespan between sample
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collection for each individual were significant (Supplementary
Table 13). Only feeding on flowers (p = 0.002) was associated with
an effect in alpha diversity correlating with a decrease (Fig. 5D,
Supplementary Table S14).

For comparison of entire with active communities a PCoA from
WUnifrac with the reduced sample size was calculated also at
entire community level. Precipitation (p = 0.003) and feeding on
fruits (p=0.056) and flowers (p=0.002) were significantly
correlated (Supplementary Fig. S15A). The comparison between
the PCoAs from the entire and active community with the protest
test from the Procrustes analysis detected significant correlations
(p=0.001). Thus, they were not significantly different (Supple-
mentary Fig. S15B).

Functional predictions performed for the active community
assigned 51.7% of the ASVs to an entry of the Faprotax database.
Chemoheterotrophy (21.6% +3.6) and fermentation (21.3+3.7)
were the most abundant metabolisms, with a peak during the
rainy season from October to January coinciding with an increase
in fruit feeding (Fig. 2C and Supplementary Fig. S16).

DISCUSSION

Our longitudinal approach coupled with a dense sampling regime
and behavioral data allowed us to detect in detail the temporal
fluctuations of the gut microbial communities from redfronted
lemurs. We determined the entire bacterial community changed
accordingly to a higher consumption of fruits and flowers, and
variations in affiliative interactions. Hence, the bacterial commu-
nity quickly adapted to monthly changes in the diet but also to
the host social behavior. Moreover, we characterized the
potentially active bacterial community, which also underwent
temporal fluctuations that correlated but only to flower consump-
tion. The overall composition of the entire and the active bacterial
communities were not significantly different, but the most
abundant genera differed. The eukaryotic communities also
presented temporal fluctuations and includes undescribed
organisms.

Unknown genera inhabit the gut microbiome of redfronted
lemurs

The most abundant bacterial phyla identified were Bacteroidota
and Firmicutes similarly to other primates and humans [12, 85, 86].
Spirochaetota was also detected in high abundances, coinciding
with previous reports from other primates and a cross-sectional
study from the same species [86, 87]. A previous study in the same
lemur species detected only low abundances of treponemes but
higher abundances of Cyanobacteria and Firmicutes [87]. However,
in this study, samples were not placed in preservation solution for
a time span of 12h, which might have altered the bacterial
community [87].

The impossibility to classify the most abundant bacteria to
taxonomic resolutions below family level highlights the presence
of yet unclassified microorganisms in the gut of redfronted lemurs,
as described in other non-human primates [86]. While the
classifiable taxa are reported inhabitants of the gut from humans
and other non-human primates [8, 11, 13, 86, 88]. Genera from
Prevotellaceae and Spirochaetaceae, have been associated to plant-
based diets providing pathways for their metabolization
[11, 85, 86]. Rikenellaceae ferments carbohydrates and proteins
[89]. Taxa from Verrucomicrobiota have been reported as mucin-
utilizers [11]. Less is known about the metabolic role of Sutterella, a
common inhabitant of the human gut [90].

The potential active bacterial community has a lower alpha
diversity and differs in the most abundant taxa

The potential active community had higher relative abundances of
Firmicutes and a lower alpha diversity compared to the entire
community. There are several possible explanations for the lower
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alpha diversity detected. First, redundancy of metabolisms in the
bacterial community due to a pool of phylogenetically different
community members capable to degrade the same substrates,
which are not all active at the same time [2, 16, 91]. Second,
community resilience, with other members in dormant stages that
allow further functional adaptations when the environmental
conditions change [16, 91]. Third, differences in the copy numbers
of 16 S rRNA genes between taxa, inflating the abundance of a
taxa but not portraying the actual functional scenario [15, 16, 91].
However, the entire and active community are not significantly
different and follow similar temporal fluctuations. Therefore, study-
ing only the entire community provides insights into the temporal
fluctuations of the gut microbiome, but studying the active
community indicated functionally important active taxa can go
unnoticed because of their lower abundances at entire community
level. Regarding the most abundant genera detected differing from
the entire community, there is no information about the metabolism
of Colidextribacter, while Collinsella and Oribacterium are polysac-
charide degraders coinciding with the lemurs’ diet [92-94].

The functional predictions from the active community indicated
an increase in fermentation and chemoheterotrophy during the
rainy season possibly associated to the higher consumption of
fruits and flowers [8, 9, 12, 14]. However, we did not detect an
augmentation of cellulolytic metabolism correlating with leaf
consumption during the dry season. Since we performed
metabolic predictions from taxonomy, we consider this is caused
by the limited and biased metabolic information for certain taxa.

Dietary changes have an effect in the temporal fluctuations of
the gut microbiome

The collection of behavioral data and the dietary assessment
performed with the 18S rRNA gene data allowed us to confirm
temporal fluctuations of the gut microbiome correlate to dietary
changes. We detected differentially abundant taxa for the rainy
season, correlations of flower and fruit consumption to the
temporal variations in {-diversity, and taxon-specific effects of
flower and fruit consumption in bacterial composition. Flowers
and fruits are high in non-structural polysaccharides like mono-
and disaccharides, but flowers contain more protein whereas fruits
have a higher lipid content [95-97]. The positively affected taxa by
the consumption of these plant parts coincide with these
observations, since they are reported fermenters of mono- and
disaccharides, like Succinivibrio, Oscillospiraceae, and Prevotella-
ceae, while Anaerovibrio, metabolizes glycolipids [85, 98-100].
Furthermore, Succinivibrio and Anaerovibrio produce succinate
from their fermentations which in turn is the energy source of
Phascolarctobacterium, another positively  affected taxon
[98, 99, 101]. The correlation of flower consumption with a lower
alpha diversity suggests that a diverse gut microbial community is
not needed for the digestion of flowers, coinciding with their less
complex biochemical composition [96, 971.

Against our expectations, consumption of leaves only correlated
to B-diversity changes from the dry season but did not influence
the overall bacterial composition. However, leaf consumption
correlated to higher alpha diversities, also reported in the Hadza
community and baboons [11, 14]. As leaves have complex
structural polysaccharides like hemicellulose, cellulose, and lignin,
this indicates that a more diverse bacterial community is needed
for the processing of the structural polysaccharides from a leaf
diet [97].

Social interactions have an effect in the temporal fluctuations
of the gut microbiome

Affiliative interactions correlated to the changes in B-diversity and
influenced the overall gut microbiome composition. Lemurs use their
toothcomb to groom themselves and others, by doing so, they can
uptake microorganisms present on their furs and anogenital regions
[102]. Rikenellaceae, Alloprevotella, Kiritimatiellae—WCHB1-41, and
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Spirochaetaceae were positively affected by affiliative interactions,
indicating that they are transmitted via affiliative interactions. Social
interactions correlated with B-diversity fluctuations in the dry season
as well. During this period, social behaviors like mating, birth, and
social thermoregulation to cope with the low temperatures occur,
increasing microbe transmission [19, 103]. Nonetheless, there were
no births during our study period suggesting social thermoregulation
played a more important role [19].

Correlations between precipitation and temporal fluctuations
of the gut microbiome

Precipitation correlated with the fluctuations in B-diversity and a
lower alpha diversity during the rainy season. Redfronted lemurs
drink from waterholes and temporary ponds during the rainy
season, whereas in the dry season, they drink from partially dry
water holes in the river having higher microbial loads [20]. Higher
precipitation resulting in water sources with lower microbial loads
decreased alpha diversity and correlated to changes in B-diversity.
Thus, taxa with higher abundances in the dry season could be
ingested from drinking at the river waterholes like Kiritimatiellae—
WCHB1-41, which was impacted negatively by higher precipita-
tion and has been previously isolated from environmental water
suggesting transmission from water sources [104].

Gut of redfronted lemurs is inhabited by a great diversity of
molecularly uncharacterized helminths and protozoa

The gut of all individuals harbored helminth and protozoan
organisms over the entire year. These were classified only at the
order level because they had high identity but low coverage to
parasites of humans or livestock at higher taxonomical resolution. We
detected a high prevalence of the Chromadorea and suspect most
are from Lemuricola vauceli or Callistoura of Oxyuridae; however,
genetical information from the V4 region of these organisms is
absent in databases [18, 22]. This high prevalence has been
previously detected morphologically but not in other metabarcoding
studies [18, 22, 23]. Furthermore, our phylogenetic analysis detected
other families like Trichuridae and Strongyloididae confirming a great
diversity of nematodes inhabiting these lemurs [22].

The sequences detected from Trichostomatia possibly belong to
Balantidium, following previous microscopical reports of this lemur
species [22, 23]. Moreover, the identified Trichomonadida, possibly
a novel organism, was not detected before in microscopical
studies, only in amplicon-based reports [22, 23]. The differences in
the taxa detected between this study and a previous metabarcod-
ing report might be due to the amplification of different regions of
the 18 S rRNA gene, we used the V4 while in other studies the V3-
V4 and V3-V5 were investigated [23, 311.

The gut mycobiome of redfronted lemurs is comprised by
novel fungi

We detected in low relative abundances fungal genera described as
human gut symbionts, suggesting the gut mycobiome of redfronted
lemurs has low abundances and diversity, as reported in humans
[24]. The majority of the ASVs were unclassifiable, even after
performing a phylogenetic analysis of the most abundant sequences
against representative fungi, confirming the deficiency in genomic
information from fungal organisms found in Madagascar and the
gut of wild-living animals [24, 82]. The observed variation of the
unclassified taxa between months could portray changes in the gut
mycobiome. Nonetheless, it should be considered that some of the
detected taxa might derive from diet, as redfronted lemurs fed on
fungi or fungal plant pathogens [25, 82].

CONCLUSION

Fruit and flower consumption, affiliative interactions and water
sources are important drivers of the temporal fluctuations of
the gut bacterial communities from redfronted lemurs. Thus,
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displaying how this bacterial community adapts to the host diet
and behavior following temporal changes. Eukaryotic gut com-
munities also fluctuate monthly and are very diverse. Our results
affirm intricate host-microbiome interactions in the gut of
redfronted lemurs are affected by the host diet, precipitation,
and social behavior. To our knowledge, this is the first 1-year study
combining thorough sampling and individual behavioral data
collection allowing the detection of direct links between temporal
fluctuations of bacterial taxa and consumption of specific food
items and social behavior. Longitudinal studies as the one
performed here capture better the effects of seasonality on the
fluctuations of the gut microbiome, diet, and social behaviors than
cross-sectional approaches.
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