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The development of strategies for effectively manipulating and engineering beneficial plant-associated microbiomes is a major
challenge in microbial ecology. In this sense, the efficacy and potential implications of rhizosphere microbiome transplant (RMT) in
plant disease management have only scarcely been explored in the literature. Here, we initially investigated potential differences in
rhizosphere microbiomes of 12 Solanaceae eggplant varieties and accessed their level of resistance promoted against bacterial wilt
disease caused by the pathogen Ralstonia solanacearum, in a 3-year field trial. We elected 6 resistant microbiomes and further
tested the broad feasibility of using RMT from these donor varieties to a susceptible model Solanaceae tomato variety MicroTom.
Overall, we found the rhizosphere microbiome of resistant varieties to enrich for distinct and specific bacterial taxa, of which some
displayed significant associations with the disease suppression. Quantification of the RMT efficacy using source tracking analysis
revealed more than 60% of the donor microbial communities to successfully colonize and establish in the rhizosphere of recipient
plants. RTM from distinct resistant donors resulted in different levels of wilt disease suppression, reaching up to 47% of reduction in
disease incidence. Last, we provide a culture-dependent validation of potential bacterial taxa associated with antagonistic
interactions with the pathogen, thus contributing to a better understanding of the potential mechanism associated with the
disease suppression. Our study shows RMT from appropriate resistant donors to be a promising tool to effectively modulate
protective microbiomes and promote plant health. Together we advocate for future studies aiming at understanding the ecological
processes and mechanisms mediating rates of coalescence between donor and recipient microbiomes in the plant rhizosphere.
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INTRODUCTION

Public, veterinary, and plant health are increasingly challenged by
pathogenic infections. The animal gut and the plant rhizosphere
are systems colonized by numerous and diverse microbes [1, 2]
that dynamically affect the host health [3, 4]. Similar to the gut
system [5], the rhizosphere microbiome is tightly linked with the
host developmental stage [6], and with levels of nutrient uptake
[7]. These and other case-specific factors (e.g., host genetics,
physiology) will determine the degree to which microbiomes
mediate plant resistance to biotic [8] and abiotic stresses [9, 10].
While disease occurrence is often associated with microbiome
dysbiosis in the gut [11] and at the rhizosphere [12], the assembly
of specific beneficial taxa has been shown to successfully suppress
pathogens in animals [13] and plants [8]. Some of these beneficial
microbes, often termed probiotics for human health, act by
inducing host immunity and/or by antagonizing specific patho-
gens [14]. Conversely, in plants, beneficial microbial taxa have
mostly been associated with growth-promoting rhizobacteria
(PGPR), albeit other beneficial functions (e.g., disease suppression)
may not be included within this terminology [15].

Despite the multitude of commercial products of probiotics and
PGPRs that are coming to the market, their successful effects on
disease suppression are variable due to unstable colonization and
forceful competition with other taxa within the resident micro-
biomes [16, 17]. To overcome this limitation and move beyond
single strain/synthetic community inoculation, fecal microbiome
transplantation—transferring the gut microbiome from healthy
donors to diseased patient recipients—has been studied with
cases of success for particular clinical diseases [18], such as
Clostridium difficile infections [19] and cancer [20]. In the plant
rhizosphere, this strategy has received relatively little attention,
potentially due to the difficulty in applying it at large scales and in
an effective manner [21]. However, transplanting ‘protective’
microbiomes from resistant to susceptible plants offer an
opportunity to better understand the factors controlling the
rhizosphere microbiome assembly. It takes a holistic approach of
community coalescence and opens up new insights for prospec-
tive strategies aiming at controlling plant diseases [22].

Cultivation-dependent studies have shown that bacteria
belonging to Pseudomonas [23, 24], Bacillus [25, 26], and other
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Fig. 1 Schematic representation of the RMT approach used in this study to investigate the mechanisms mediating wilt disease
suppression in tomato plants. The field site used in this study has been infected by R. solanacearum for more than 10 years.

genera [27, 28] are able to endow disease suppression in soils
[29-31]. Cultivation-independent studies, however, have advo-
cated for a community-level approach aiming at promoting and
establishing suppressive microbiomes in soils [21, 32]. These
include examples in black root rot [33], common scab [34],
Fusarium wilt [35], and bacterial wilt diseases [36]. A more classical
approach has been based on the notion that the transplant of a
disease-suppressive soil to a conducive soil based on a 1:9 ratio
(w/w) can stimulate the plant resistance against Rhizoctonia solani
infections. This has been validated and shown to enrich the
abundance of 17 bacterial populations belonging to Proteobac-
teria, Firmicutes, and Actinobacteria [37]. Recently, the growth of a
susceptible variety in soils previously cultivated with a resistant
variety was reported to slow down the progression of bacterial
wilt disease. This phenomenon was mostly associated with the
enrichment of Flavobacterium in the rhizosphere microbiome [8].
Similarly, soils derived from healthy plants (in this case, enriched
with Firmicutes and Proteobacteria) conferred a lower incidence of
bacterial wilt in the subsequent plant cultivation [38]. Together,
these studies provide mounting evidence to support rhizosphere
microbiome transplants (RMT) as a plausible approach to protect
plants against pathogen infections.

Advancing microbiome transplant strategies might take into
account the ecological basis of community coalescence that is
dynamically affected by the donor and recipient communities, as
well as the environmental context [39]. First, the approach should
seek to find appropriate donors for the RMT, since plants can actively
select for a proportion of microbial taxa in rhizosphere [7, 40], leading
to the difference in their resistance to soil-borne pathogens [8, 41].
Second, significant variability in inter-individual rhizosphere micro-
biomes mediated by factors such as growth stages [42], soil types
and nutrients [43], and health status [44] should be taken into
account. Third, the rate of colonization of transplanted microbiomes
will be highly dependent on the local environment, similarities
between plant species, and the outcome of biological interactions
between taxa in the donor and recipient communities, thus resulting
in coalescence between these systems [16].

Here, we used the soil-borne pathogen Ralstonia solanacearum
as a model organism to study the microbiome of resistant and
susceptible Solanaceae crop varieties. This pathogen is the causal
agent of bacterial wilt disease affecting numerous economically
important crops globally [45]. Eggplant varieties were used for
donor selection since this species is one of the representative
Solanaceae crops naturally infected by the model R. solanacearum
pathogen [46] and recognized an important resistant resource for
breeding for resistance against bacterial wilt disease in Solanaceae
crops [47]. We started by profiling the landscape rhizosphere
microbiomes both in resistant and susceptible plants in a 3-year
field trial (Fig. 1). Then, we selected the resistant varieties as
microbiome donors to test the efficiency of RMT in suppressing
the occurrence of bacterial wilt disease on a susceptible (model)
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tomato variety MicroTom. We set a focus on answering three
major questions: (1) What are the fine-scale differences in
rhizosphere microbiomes between resistant and susceptible
varieties? (2) To what extent the transplanted rhizosphere
microbiomes from resistant donor plants are able to colonize
susceptible recipient plants? (3) What are the underlying
taxonomic and functional differences between ‘success’ and
‘failure’ of RMT mediating soil-borne disease suppression?

MATERIALS AND METHODS

Field trials to assess disease resistance

A three-year phenotypic evaluation of bacterial wilt disease resistance of 12
eggplant varieties for donor selection (Table S1) was performed in the field.
Eggplant is one of the repressive Solanaceae crop species naturally infected
by the pathogen R. solanacearum [46] and recognized as an important
resistant resource for Solanaceae crop resistance breeding against bacterial
wilt disease [47]. The site has a history of soil infestation with R. solanacearum
for more than 10 years and it is located at the Guangxi Agricultural Sciences
Academy Lijian Scientific Research Bases, Guangxi, China (23.25° E, 108.06° N).
Seeds of Solanaceae plant varieties were germinated in a greenhouse under
controlled conditions (25 °C, 70% relative humidity) and under a natural light
regime. About one and a half months after germination, the four-leaf stage
plants were transplanted to the ‘diseased’ field in a randomized block design
(ca. of 20 plants per block, 3 blocks). The system was maintained from April to
July for three consecutive years 2017-2019. Temperatures in the field ranged
between 26-35°C (during the day) and 21-27°C (during the night), and
plants were cultivated for 3 months under open-field conditions. The disease
progression was analyzed every two weeks until the fruit setting stage when
bacterial wilt disease outbreaks. The disease incidence was defined as the
proportion of severe bacterial disease symptoms (proportion of leaves wilted)
in each block. In order to simplify the variation in resistance level of
Solanaceae varieties, we used a binary classification of resistance level based
on the cut-off of 50% (>50% of leaves wilted). This cut-off was established
based on the average disease incidence of the three years. Thus, the average
disease incidence above and below 50% was referred to as ‘susceptible’ and
‘resistant’ varieties, respectively.

Soil collection and rhizosphere sampling

The soil used in the greenhouse experiments was collected from a tomato
field without detectable levels of the pathogen R. solanacearum, at the
Nanjing Agricultural University Baima Teaching Scientific Research Base
(119.18° E, 31.61° N), Nanjing, China. The top 10-20cm of the soil was
collected and sieved (3-mm sieve) to remove rocks and other debris.
Seedlings of the 12 Solanaceae varieties were grown in sterilized jiffy
substrates (Huaian Agricultural Technology Development Ltd) until they
reached the four-leaf stage, and were further transplanted into pots
containing 5 kg of soil. The rhizosphere samples were collected 4 weeks
after transplanting. For that, excess soil on the roots was discarded by
gently shaking the plants, and the remaining soil particles attached to the
root surface were collected as rhizosphere soil [48]. Samples were
homogenized and 0.5g and 10g of rhizosphere soils were subjected to
rhizosphere microbiome profiling and to the transplant assay, respectively.
The remaining sample amounts were cryopreserved in 5mL of 30%
glycerol at -80 °C. Each Solanaceae variety consisted of three plants.
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Rhizosphere microbiome transplant and pathogen infection
assays

We used a non-destructive rhizobox [38] to grow the recipient tomato plants
(Solanum lycopersicum cv. MicroTom) and to perform the rhizosphere
transplant experiment. This variety is susceptible to R. solanacearum and it is
well-recognized as a model plant to study bacterial wilt disease [49]. The
microbiome inoculum was based on a 10-times dilution of the rhizosphere
soils (1:10v/v) of each resistant variety (referred to as donor(s)). The
rhizosphere microbiome inoculum was added to the root part of four-leaf
stage MicroTom recipient plants, immediately after transplanting into the
rhizobox. The rhizosphere soil samples within the small nylon bags (Taizhou
Lugiao Yinfan Ltd,; see rhizobox design for details [38]) were harvested 4
weeks after the microbiome transplant and processed as described above.
The self-transplant of the MicroTom rhizosphere microbiome (vMT) was used
as control. After the collection of rhizosphere samples, the pathogen R.
solanacearum (strain QL-Rs1115) was inoculated in all pots using a soil
drenching method resulting in a final concentration of 5.0 x 10° CFU-g™" of
soil [48]. The disease development was daily monitored and quantified by
the proportion of wilted leaves per plant [50]. ‘Failure’ and ‘success’
terminologies were used to refer to the proportion of wilted leaves similar or
significantly lower than those observed in the self-transplant treatment (vMT
referred to as the control treatment) 10 weeks after the pathogen
inoculation. Statistics were performed using Student’s t tests.

Bacterial isolation and assessment of antimicrobial activity
To determine whether the success of RMT is due to the colonization by
antagonistic bacteria from resistant donors on susceptible recipient plants,
we isolated and tested the antimicrobial activity of rhizosphere bacterial
isolates against the pathogen R. solanacearum. For that, ‘failure’ and
‘success’ rhizosphere soils were collected and homogenized independently
and divided into three replicated samples. Approximately 200 isolates were
randomly picked per replicate, resulting in a total of 997 bacterial isolates
(486 and 513 isolates for ‘success’ and ‘failure’ groups, respectively).
Isolation and purification of bacterial colonies were performed using
tryptone soy agar (1.5gL~" tryptone, 0.5g L' soytone, 0.5gL™" sodium
chloride and 15 gL~ agar, pH 7.0) at 30 °C as previously described [51]. All
purified isolates were stored in 96-well microplates at —80°C in 20%
glycerol (v/v). The full-length sequences of the 16 S ribosomal RNA (rRNA)
gene of all 997 bacterial isolates were sequenced with the primer pair 27 F
(5'-GGTTACCTTGTTACGACTT-3') and 1492R (5-AGAGTTTGATCCTGGCT-
CAG-3') [52], and subjected to taxonomic identification using the online
classifier tool of the Ribosomal Database Project (RDP) database (http://rdp.
cme.msu.edu) [53]. These sequences were further aligned using MAFFT
[54], and a ‘de novo’ phylogenetic tree was constructed using the FastTree2
based on the maximum-likelihood method [55]. The phylogenetic tree was
further visualized using the iTOL web tool (https:/itol.embl.de).

The antimicrobial activity of the bacteria isolates was estimated by
testing the inhibition effect of their cell-free supernatants against the
pathogen strain R. solanacearum QL-Rs1115 [42]. Briefly, overnight cultures
of each isolate were filtered through a 0.22 ym filter to obtain sterile
supernatants. A volume of 20 uL of supernatant was added to 180 uL of
fresh casamino acid-peptone-glucose (CPG: casamino acid 1gL~’,
peptone 10gL~" and glucose 5gL~', pH7.0) media containing the
pathogen R. solanacearum at an initial ODggo of 0.05 as previously reported
[42]. The pathogen R. solanacearum was set to grow for 24 h at 30°C at
170 rpm, and the pathogen density was evaluated by ODgqgo values in a
Max M5 Plate reader. Control treatments received 20 pl of CPG media
instead of a bacterial supernatant. The pathogen inhibition effect of each
bacterial cell-free supernatant was defined as the relative pathogen
growth reduction compared to the control treatment.

Microbiome sequencing and analysis

The total DNA was extracted from 0.25 g of rhizosphere samples using the
PowerSoil DNA Isolation Kit (Mobio Laboratories, Carlsbad, CA, USA),
following the manufacturer’s protocol. The DNA quality and concentration
were checked using a NanoDrop 1000 spectrophotometer (Thermo
Scientific, Waltham, MA, USA). The DNA was subjected to bacterial 16S
rRNA amplicon sequencing to determine the composition and diversity of
bacterial communities. PCR amplifications were performed as follows: 95 °C
for 2 min, followed by 25 cycles at 95 °C for 30's, 55 °C for 30 s, and 72 °C for
30s, and a final extension at 72°C for 5min. PCRs were performed in
triplicate in 20 pL mixture containing 4 pL of 5x FastPfu Buffer, 2 L of
2.5 mM dNTPs, 0.8 uL of each primer (5 uM), 0.4 pL of FastPfu Polymerase,
and 10 ng of template DNA. Amplicons were extracted from 2% agarose
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gels and purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) according to the manufacturer’s
instructions. Sequencing was carried out at the Shanghai Biozeron
Biological Technology Co. Ltd, based on the V4 hypervariable region of
the 16S rRNA gene using the primer pair 563F (5'-AYTGGGYDTAAAGVG-3')
and 802R (5-TACNVGGGTATCTAATCC-3'). All sequences were processed
using QIIME [56]. Bacterial OTUs were set at 97% of nucleotide identity
using USEARCH [57]. The taxonomic affiliation of OTUs was carried out
using the RDP database [53]. Community alpha-diversity was determined
based on the Shannon diversity index (Shannon) and OTU richness using
the vegan R package [58], after removing R. solanacearum sequences [44].

Tracking the microbial sources in recipient plants

To quantify the colonization rate of the transplanted microbiome of
resistant donors into the recipient MicroTom plant rhizospheres, we
tracked the most likely origin of microbial communities in the transplanted
plants using the FEAST software [59]. FEAST uses a Bayesian approach to
estimate the most probable proportion of the user-defined ‘source’
microbial communities in a given ‘sink’ community. For this analysis,
samples from recipient MicroTom plants were set as ‘sinks’, and samples
from the resistant donor plants as ‘source’. The ‘unknown’ proportion in
recipient plant-rhizosphere microbiomes likely refers to the local coloniza-
tion from the soil.

Statistics and data processing

Student’s t tests (two-sided) were used to compare the statistical
significance between pairs of samples. Analysis of variance (ANOVA) and
Tukey’s honest significant difference (HSD) tests were used to determine
the statistical significance of multiple comparisons using the R agricolae
package [60]. The microbial community composition was ordinated by
principal coordinates analysis (PCoA) based on Bray-Curtis distances, and
differences in rhizosphere soil samples between resistant and susceptible
plant varieties were compared using the nonparametric permutational
multivariate analysis of variance (PERMANOVA, P < 0.05, 999 permutations),
using the Adonis function in the R package vegan [58]. Linear discriminant
analysis and a significance test were used to explore the most
discriminating OTUs between resistant levels using DESeq2 [61], edgeR
[62], and LEfSe [63]. Three screening criteria were based on (1) fold change
>4 (resistant relative to susceptible varieties), (2) linear discriminant
analysis with a score > 2 (resistant relative to susceptible varieties), and (3)
significance test P < 0.05. Co-occurrence network analysis was performed
following MENAP [64]. All differentially abundant OTUs based on DESeq2,
edgeR, and LEfSe were retained for this analysis, and the count number of
sequences was log-transformed and analyzed using a random matrix
theory-based approach [65]. The edges (i.e., connections between OTUs)
correspond to strong and significant correlations (positive or negative)
between nodes (OTUs) [66]. We also used the NetShift method [67] to
identify potential keystone taxa based on differences in network
interactions between resistant and susceptible microbiomes. This method
allows to quantify the directional changes in the individual node
interactions by exploring: (1) whether there is a significant change in
community patterns between resistant and susceptible plants, (2) whether
there are major changes in associations of each constituent node in
resistant and susceptible plants, (3) whether specific nodes have been
important members in the community, and (4) whether there is an
increase in specific node importance in resistant plants. Functional
prediction of microbial communities was performed using PICRUSt2
(Phylogenetic Investigation of Communities by Reconstruction of Unob-
served States, version 2), allowing a putative inference of the functions
encoded by these bacterial communities based on the 16S rRNA gene
sequences [68]. The predicted functional annotations were based on the
KEGG (Kyoto Encyclopedia of Genes and Genomes, e-value cut-off 107°)
database. The KEGG pathways at L3 level were used for comparing
functional diversity (Shannon and richness), functional community
composition (PCoA), and the discriminating functional genes (enriched
vs depleted) as described above for OTU-based analysis.

RESULTS

Differences in the rhizosphere microbiome and the
association with wilt disease resistance

The three-year field trial revealed significant differences in bacterial
wilt disease incidence across the 12 Solanaceae plant varieties
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(ANOVA: F11.06 = 37.9, P < 0.001, Fig. 2a). Based on the cut-off of 50%
of average disease incidence, the resistance level was further
classified into resistant (>50%) and susceptible (<50%) groups (see
“Methods” for details). The disease incidence of susceptible varieties
ranged from 54.7% to 86.1% with an average of 73.1%. Likewise,
resistant varieties displayed a significantly lower disease incidence,
ranging from 7.8% to 27.8%, with an average of 17.2% (Student’s t
testt t=16.1, df=106.0, P<0.001, Fig. 2a). Analyses of the
rhizosphere microbiomes did not identify significant differences in
alpha-diversity (Shannon index and OTU richness) across resistant
and susceptible varieties (Supplementary Fig. 1a). However, the
composition of the rhizosphere bacterial communities clustered into
two distinct groups corresponding to resistant and susceptible
groups (PERMANOVA: R>=0.112, P < 0.001, Fig. 2b). At the phylum
level, Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes,
Chloroflexi, Cyanobacteria, and Gemmatimonadetes were the most
dominant phyla accounting for 88.2% of the rhizosphere bacterial
communities in total (86.9% and 89.5% in the resistant and
susceptible varieties, respectively) (Supplementary Fig. 1b). The
analysis of differentially abundant OTUs between resistant and
susceptible groups revealed a total of 31 and 101 OTUs to be
associated with resistant and susceptible plants, respectively
(Supplementary Fig. 2a-e). These OTUs in the rhizosphere of
resistant varieties were affiliated to the phyla Acidobacteria (3 OTUs,
uncultured bacterial taxa within the family Acidobacteriaceae
Subgroup 1), Actinobacteria (2 OTUs, Luedemannella sp. and an
unclassified genus within the order Frankiales), Bacteroidetes (2
OTUs, uncultured genera within the orders Sphingobacteriales and
Chitinophagales), Chloroflexi (an uncultured bacterium within the
family Ktedonobacterales-JG30-KF-AS9), Cyanobacteria (2 OTUs,
Tychonema sp.), Dependentiae (1 OTU, uncultured bacterium within
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the family Vermiphilaceae), Firmicutes (1 OTU, Pullulanibacillus sp.),
Gemmatimonadetes (4 OTUs, Gemmatimonas sp. and Gemmatirosa
sp.), Patescibacteria (4 OTUs, uncultured bacterial taxa within the
order Saccharimonadales, and Candidatus Peribacteria), Proteobac-
teria (5 OTUs, Mizugakiibacter sp. and Bdellovibrio sp. and uncultured
bacterial taxa within the orders Elsterales and Oligoflexales), and
WPS-2 (Fig. 2c). Conversely, OTUs enriched in the rhizosphere of
susceptible varieties belonged to the phyla of Bacteroidetes (18
OTUs), Cyanobacteria (25 OTUs), Patescibacteria (3 OTUs), Verruco-
microbia (9 OTUs), and other lower abundant phyla (proportion <
0.02, 46 OTUs) (Supplementary Fig. 2f). The co-occurrence analysis
revealed the network of resistant plants to be more complex than
that of susceptible plants. That is, displaying higher number of
nodes and edges, greater average path lengths, and higher
modularity (Fig. 2d, e). Besides, the network from resistant plants
had more negative interactions (13.1%) than that of susceptible
plants (3.2%) (Fig. 2d). The NetShift analysis indicated Pseudomona-
daceae, Caulobacteraceae, and the A4b genera as potential keystone
taxa in the rhizosphere microbiomes of resistant plants (Supple-
mentary Fig. 3). Last, PICRUSt2 functional prediction suggested the
resistant plant microbiomes have a higher genetic potential for the
biosynthesis of indole alkaloid, flavone, and betalain (Supplementary
Fig. 4h), all of which were positively associated with differentially
abundant taxa in the rhizosphere microbiomes of resistant plants
(Supplementary Fig. 4i).

Quantifying the efficiency of RMT from donor to recipient
plants

Four weeks after the RMT, no significant differences were found for
bacterial community richness and diversity in the rhizosphere of
donor and recipient plants (Supplementary Fig. 5a, b). However, the
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rhizosphere bacterial community compositions differed significantly
between the two groups (PERMANOVA: R?=0.301,P<0.001, Fig. 3a).
Source tracking analysis revealed that between 45.3% and 68.3%
(average of 60.8%) of bacterial OTUs in recipient plants were
originated from the rhizosphere microbiome of the six different
donor varieties (70.3% for vMT), i.e,, referred to as the transplanted
OTUs from donors compared to the unknown sources (Student’s
t test: t=16.1, df=106.0, P<0.001, Fig. 3b and Supplementary
Fig. 6). The “unknown sources” of bacterial OTUs in the recipient
rhizospheres refer to the potential colonization from the local
microbiome in the soil, which accounted for an average proportion
of 39.2% (ranging from 31.7% to 54.7%) (Fig. 3b and Supplementary
Fig. 6). When compared to the self-transplanted OTUs in the
MicroTom variety (vMT) (i.e, 3296 OTUs), we found the number of
successfully transplanted OTUs to range from 2986 to 3509
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according to different donor varieties. The sum results in a total of
5805 OTUs, of which 1524 represent the core transplanted OTUs
(bacterial OTUs consistently detected in all donor varieties and
recipient plants; Fig. 3c). Within the transplanted microbiomes, taxa
belonging to the phyla Actinobacteria, Acidobacteria, Bacteroidetes,
Chloroflexi, Firmicutes, Gemmatimonadetes, Patescibacteria, Proteo-
bacteria, and Verrucomicrobia accounted for 92.3% of the total
(Fig. 3d). Similarly, taxa belonging to the phyla Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmati-
monadetes, Patescibacteria, Proteobacteria, and Verrucomicrobia
accounted for 98.8% of the core (Fig. 3e). Worth mentioning, alpha-
diversity parameters (Shannon index and OTU richness) of the total
and core transplanted microbiomes in recipient plants were slightly
lower than that at the donor plant varieties (Supplementary
Fig. 5¢-f).
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RMT promotes wilt disease resistance in recipient plants

The RMT-greenhouse experiment revealed a significant difference
in wilt disease incidence in MicroTom tomato plants that received
RMT from 6 resistant donor varieties (ANOVA: Fs530=20.6, P<
0.001, Fig. 4a and Supplementary Fig. 7). Interestingly, one out of
six RMT (v19: S. melongena var. Shf) completely suppressed the
disease incidence at 10 weeks post-inoculation with the pathogen
R. solanacearum (Fig. 4a and Supplementary Fig. 8). The RMT of
four resistant donors (v17: S. anguivi var. wcb, v26: S. melongena
var. GX-11, v31: S. melongena var. D11, v33: S. melongena var. D15)
was found to slow down the wilting symptom progression
without significantly differing from the control (diseased: self-
transplant of vMT) treatment in the lag-phase of the disease curve
(HSD test: P> 0.05, Supplementary Fig. 7b). Based on the cut-off of
disease incidence in the vMT control (average of 68.2%), the
recipient plants were further classified into ‘success’ and ‘failure’
with respect to RMT mediating wilt disease suppression (Supp.
Fig. 7). The disease incidence of ‘failure’ recipients ranged from
64.1% to 69.8%, with an average of 66.3% (similar to the vMT, HSD
test: P < 0.05). These values were significantly higher than that of
‘success’ transplanted recipients with an average disease

SPRINGER NATURE

incidence of 36.4% (Student’s t test: t=11.5, df=8.1, P<0.001,
Fig. 4a). The analysis of the rhizosphere microbiomes of ‘failure’
and ‘success’ recipients did not significantly differ in terms of
alpha (Supp. Fig. 8a) and beta diversities (PERMANOVA: R?=0.044,
P=0.581, Fig. 4b). At the phyla level, these communities were
mostly dominated by taxa belonging to Acidobacteria, Actino-
bacteria, Bacteroidetes, Chloroflexi, Cyanobacteria, Gemmatimo-
nadetes, Patescibacteria, Proteobacteria, and Verrucomicrobia,
collectively accounting for 94.2% of these communities (in detail,
94.6% and 94.1% in ‘success’ and ‘failure’ transplanted recipients,
respectively; Supplementary Fig. 8b). A more detailed analysis
revealed that a total of 159 and 170 potentially differential OTUs
(Supplementary Fig. 9f, g), of which 12 and 11 core OTUs
(Supplementary Fig. 9i, j) were found to be associated with
‘success’ and ‘failure’ transplanted recipients, respectively (Supp.
Fig. 9). Taxa differentially occurring in the ‘success’ transplants
were affiliated to Actinobacteria (2 OTUs, Nonomuraea sp. and
Actinoplanes sp.), Bacteroidetes (6 OTUs, Lacibacter sp., Fluviicola
sp. and uncultured bacterial taxa within the families Sphingobac-
teriales, Chitinophagales, and Ignavibacteria-OPB56), Chloroflexi
(an uncultured bacterium within the family Roseiflexaceae),
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Cyanobacteria (an uncultured Microcoleus sp.), and Proteobacteria
(2 OTUs, uncultured Aquicella sp. and a bacterium within the
family Solimonadaceae) (Fig. 4c). Conversely, those associated
with the ‘failure” were affiliated to Bacteroidetes (an uncultured
bacterium within the family Microscillaceae), Chlorofiexi (2
uncultured bacterial taxa within the order Anaerolineae-
SBR1031), Cyanobacteria (an uncultured bacterium within the
family Chroococcidiopsaceae), Proteobacteria (5 OTUs, Caulobac-
ter sp., Paraburkholderia sp., Sneathiellaceae-AT-s3-44 sp., Bdellovi-
brio sp. and an uncultured bacterium within the order
Xanthomonadales), and Verrucomicrobia (2 OTUs, Lacunisphaera
sp. and an unclassified bacterium within the family Pedosphaer-
aceae) (Supplementary Fig. 9e). Worth mentioning, the PICRUSt2
functional prediction did not identify any significant differences in
predicted functional profiles of the rhizosphere microbiomes
between the ‘success’ and ‘failure’ groups (Supplementary Fig. 10).

To explore potential antibacterial mechanisms associated with
wilt disease suppression, we isolated a total of 997 bacteria from
the rhizosphere of ‘success’ (484) and ‘failure’ (513) groups
(Fig. 4d). The phylogenetic reconstruction based on the bacterial
16S rRNA gene sequences (Fig. 4d) revealed the isolates to
encompass a total of 70 bacterial genera belonging to four main
bacterial phyla, including Actinobacteria (90), Bacteroidetes (284),
Firmicutes (135), and Proteobacteria (488) (Supplementary Fig. 11).
Microplate-based antagonistic assays revealed 65.4% of these
bacterial isolates to be able to inhibit the pathogen growth. A
higher number of these potentially suppressive strains were
obtained from the ‘success’ group (441 out of 484; 91.1%)
compared to the ‘failure’ group (198 out of 513; 38.6%)
(Supplementary Fig. 12). Besides, the pathogen inhibition of
bacterial isolates originated from ‘success’ group (average at
26.1%) were significantly higher than that of bacteria isolated from
the ‘failure’ group (average at —4.4%) (Student’s t test: t=14.7,
df =897.0, P <0.001; Supplementary Fig. 12a, b). Although a few
bacterial isolates were matched to the taxonomic feature of core
differential OTUs (Supp. Fig. 9j), 34.1% of them (340) were
affiliated to the genera Nocardioides, Stenotrophomonas, Flavo-
bacterium, Pseudomonas, Brevundimonas, Pseudoxanthomonas,
Bacillus, and Flavisolibacter (Supp. Fig. 9g and Supplementary
Fig. 12¢). All of which were found to be potentially differentially
abundant in the ‘success’ transplanted recipients (Fig. 4e,
Supplementary Figs. 9g and 12c). Notably, these potentially
suppressive isolates were either specific in the ‘success’ trans-
planted recipients (Nocardioides and Pseudoxanthomonas) and/or
highly antagonistic (Stenotrophomonas and Pseudomonas; P <
0.001 by Student’s t test), when compared to isolates obtained
from the ‘failure’ transplanted recipients (Fig. 4e). In addition, the
‘success’ recipients harbored other genera (e.g., Sphingobacterium
and Arthrobacter) that displayed inhibitory effects on the growth
of the pathogen (Student'’s t test: P < 0.001; Supp. Fig. 12c).

DISCUSSION

Here we tested the feasibility and efficiency of using RMT to
actively manipulate the plant-rhizosphere microbiome towards
promoting the suppression of an important soil-borne pathogen.
We also unraveled the potential ecological mechanism mediating
the disease-suppressive phenotype. The experimental design
intentionally combined different plant species (resistance screen-
ing and susceptible host transplant validation) in order (i) to
minimize the potential effects of negative plant-soil feedbacks (i.e.,
growing the same plant genotype successively in the soil can lead
to higher disease incidence), and (ii) to prove the generality of our
principle by showing the enrichment of suppressive taxa to be
consistent across different plant species. Our data showed that the
RMT from one (out of six) Solanaceae resistant variety was
successful and significantly reduced the incidence of the bacterial
wilt disease caused by the pathogen R. solanacearum by up to

ISME Communications

G. Jiang et al.

47%. Besides, the RMTs from the other four resistant varieties were
found to slightly delay the disease incidence and progression. We
advanced our analysis by investigating potential antagonistic
effects of rhizosphere bacterial isolates (ca. 997 isolates, 486 and
513 isolates for the ‘success’ and ‘failure’ groups, respectively, see
“Methods” for details) suppressing the growth of the pathogen R.
solanacearum using in vitro assays based on the inhibitory effect
of cell-free supernatants. We acknowledge that caution is
warranted in terms of extrapolating the outcome of this in vitro
essay with in vivo performances of these isolated taxa. With that
said, although non-significant difference was found between
‘success’ and ‘failure’ transplanted microbiomes, we showed that a
total of 218 bacterial isolates matched the differentially abundant
bacterial genera detected in the ‘success’ RMT plants. From this
total, a large proportion of the isolates (197 out of 218) displayed
in vitro antagonistic effects on the growth of the pathogen. This
indicates that most likely the microbiome-mediated wilt disease
suppression is mediated by a small fraction of the successfully
transplanted microbial taxa rather than an overall suppressive
community effect. These results are in line with previous studies
showing that patterns of disease resistance against soil-borne
pathogens are tightly linked with the occurrence/colonization of
protective bacterial taxa in the soil [37, 69] and/or in the plant
rhizosphere [8, 38].

It is worth discussing that despite we achieved a significant
success only in one out of six cases for the RMT, other studies
reported a similar percentage of success (ca. 10-20%). For
example, it was shown that only 2 out of 18 (ca. 11%) transplanted
soils effectively reduced the incidence of bacterial wilt disease at
levels ranging from 20-60% in tomato plants [69]. Notably,
susceptible plants were less wilted after being replanted in the
soils previously cultivated with a resistant variety, displaying a
27.7% reduction in disease incidence [8]. This value was
significantly higher in our study, reaching up to 47%, likely due
to differences in experimental designs and material types. The
functional failure of RMT can simply be related to our yet inability
to properly manipulate the rhizosphere microbiome in different
scenarios (e.g. soil types, plant developmental stage, genotype,
etc.) [69]. Here we show that to quantitatively study our efficiency
in RTM, the approach of community coalescence combined with
source tracking analysis provides an opportunity to advance this
ecological principle with direct practical implications (possibly also
in the clinics). For comparison, lower success cases have been also
observed in fecal transplant therapy in medical studies. For
example, ca. of 10% to 30% of patients with melanoma were
reported to gain clinical benefits by fecal microbiome transplant
[20, 70], and a similar range of effectiveness ranging from 10% to
40% was reported for gastrointestinal disorders [71]. However, in
more specific cases, such as the control of recurring infections
caused by C. difficile, the success of fecal transplant therapy can
reach up to >90% of the cases [19, 72]. We speculate that this
variability in efficacy of microbiome transplant is likely related to
the association between the disease and the dysbiosis caused in
the microbiome [73], and edaphic changes imposed in the local
environment (e.g., shifts in pH, nutrients, etc.). Collectively, these
will be ultimately linked with the overall composition and status of
the donors and recipient microbiomes [74].

In ecology, the transplant of entire communities into existing
ones can better be envisioned in light of ‘community coalescence’
(sensu [39]). In brief, it has been conceptualized that several factors
are likely to influence the outcome of community coalescence,
including environmental conditions, the mixing ratios of donor
and recipient communities, the biological interaction interface
between taxa, and the subsequent temporal dynamics of
community coalescence. In our research model, the pathogen
R. solanacearum is known to cause a significant disruption of
the resident microbiome [44], thus leading to dysbiosis in the
rhizosphere microbiome of diseased plants [75]. In this case, the
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initial outbreak of the disease is also known to be determined by
the pathogen’s ability to initially invade the soil and rhizosphere
microbiomes [12, 38]. Besides, since the coalescence outcome
may vary due to several factors and may also change in time, our
results show that in four cases, the disease incidence was not
significantly controlled but was rather delayed in terms of the
progression and aggressiveness. Taken together, disentangling
these underlying mechanisms associated with factors controlling
the coalescence and thus the success of RMT might be a plausible
way to advance studies focusing on soil-borne disease control
based on rhizosphere microbiome manipulation, with potential
theoretical implications for clinical settings.

It is well-known that the rhizosphere microbiome can form a
biological layer of protection that promotes plant health [76]. This
protection can be mediated by developing niche space for more fit
competitions to thrive [42, 77] and directly antagonize pathogens
[8, 38], and/or via indirect effects based on the activation of plant
immune defenses [78, 79]. Despite we did not observe a more
diverse bacterial community in the rhizosphere of resistant,
compared to susceptible, Solanaceae varieties (as similarly observed
elsewhere, Wei et al. [79]; Hu et al. [77]), we found resistant varieties
to host a higher number of taxa displaying negative interactions
within the network. These are potentially associated with strong
competitive interactions in the microbiome that—to some extent—
can prevent the pathogen invasion [80]. Besides, we also detected
significant differences in the composition of the rhizosphere
microbiomes of resistant and susceptible plants, which are
consistent with previous studies [4], including those studying
bacterial wilt [8], and Fusarium wilt [81]. These distinct microbiomes
from resistant plants were suggested to host a potentially protective
functional gene pool able to produce antagonistic secondary
metabolites that control the pathogen growth. These include the
indole alkaloid [82], flavone [83], and betalain [84]. These findings
align with our results, in which some of these genes were also
predicted to be enriched in the microbiomes of our resistant lines
and associated with the differentially abundant taxa belonging to
the phyla Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes,
Gemmatimonadetes, Patescibacteria, Gammaproteobacteria. Within
these phyla, several taxa, i.e., Stenotrophomonas [85], Flavobacterium
[86], Pseudomonas [87], and Bacillus [88] within Actinobacteria,
Firmicutes, Bacteroidetes, and Gammaproteobacteria have also been
reported as important in plant protection and termed PGPRs in
bacterial wilt disease management [8, 12, 77].

In summary, RMT is a promising approach for the effective
manipulation of protective plant microbiomes, in this case,
applied to control an important soil-borne disease. Although the
concept of fecal transplant therapy is advancing in clinical
medicine, the use of a similar approach for RMT is still limited
for plant disease management [22]. We acknowledge that most of
the challenges relate to (1) the problem of scale-up this potential
application with a significant impact for large-scale agroecosys-
tems, and (2) the difference in complexity of soil/rhizosphere
microbiomes compared to the gut systems, and how these relate
to cases of success. However, we posit that advancing research in
RMT in light of the ecology of community coalesce might provide
benefits beyond the application of this method for disease
control. For instance, it might open up new avenues for root-
microbiome manipulation and provide new insights into the
mechanisms by which beneficial microbial taxa act within a
community to promote plant health and protection.
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